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“These lectures combine logical precision and intuition, and they provide a 
firm foundation in basic principles of pure and applied mathematics, as 
well as in mathematical philosophy.”  
–Dr. Giuliano Di Bernardo, Professor Emeritus of Philosophy of Science 
and Logic at the Università degli Studi di Trento, Member of the 
Académie Internationale de Philosophie des Sciences (Brussels), and 
Founder and Grand Master of the Dignity Order. 
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Preface 
 
The word “mathematics” comes from the Greek word “manthānein,” 
which means “to learn.” Mathematics is mainly about forming ways to see 
problems in order to solve them by combining logical rigor, imagination, 
and intuition. Furthermore, mathematics is a peculiar sense that enables us 
to perceive realities that would otherwise be inaccessible to us. In fact, 
mathematics is our sense for patterns, relations, and logical connections. 
Mathematics, in its essence, is not so much about calculating as about 
understanding, and, thus, it is a way of knowing, searching for truth, 
thinking, and developing technology.  
In general, “truth”―the pursuit of which remains at the heart of scientific 
endeavor―can be defined as a set of relations that determine if, and the 
extent to which, the representation of reality within consciousness (that is, 
the knowledge of reality) is in concordance with the presence of reality 
itself (that is, with the nature of reality). 
The development of mathematical intuition depends on learning the basic 
concepts (thus, creating a powerful intellectual toolbox), using our 
intellectual toolbox in order to solve problems, and thinking creatively 
(rather than simply memorizing mathematical tools). 
I have written and presented these lectures in order to address the 
following audiences: 

i. Mathematics students: Those who study mathematics can 
profitably use my present lectures as a self-contained, 
conceptual and methodic guide and compendium of pure and 
applied mathematics and as a supplement to their standard 
textbooks in the courses of algebra, linear algebra, geometry 
(including classical Euclidean geometry, analytic geometry, 
non-Euclidean geometries, and metric geometry), 
infinitesimal calculus (single-variable, multivariable, and 
vector calculus), differential equations, and real analysis.  

ii. Natural-science and social-science students: I have written 
this series of lectures in order to enable one to understand the 
significance of mathematical modeling (including analytic 
and statistical methods) both in the context of the natural 
sciences and in the context of the social sciences. Therefore, 
this series of lectures can be useful for both natural-science 
and social-science students, helping them to better 
understand the importance of mathematics in their discipline 
and the mathematics courses included in their curriculum.  
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iii. Philosophy students: This series of lectures contains a 
systematic study of mathematical philosophy, philosophy of 
science, and the methodology of mathematics. 

iv. Any person who would like to enhance his/her ability to 
understand science in general, to get a better understanding 
of mathematics, and to fill cognitive gaps that he/she may 
have in mathematics and philosophy of science. 

Regarding my competence in mathematics, I would like to acknowledge 
the importance of the mathematical education and scientific guidance that 
I received from the following professors during my studies at the 
University of La Verne: the renowned research mathematician Professor 
Themistocles M. Rassias (Ph.D./University of California, Berkeley, former 
Chairman of the Department of Mathematics at the University of La 
Verne’s Athens Campus and Professor at the National Technical 
University of Athens) taught me Calculus I, II & III, Advanced Calculus, 
Linear Algebra, Differential Equations, and Number Theory, and he 
supervised my research work in the foundations of mathematical analysis 
and differential geometry (a part of the research work and the dissertation 
that I completed at the University of La Verne under the supervision of 
Professor Themistocles M. Rassias was published in 1998 as the volume 
no. 24 of the scientifically advanced Series in Pure Mathematics of the 
World Scientific Publishing Company); the highly experienced applied 
mathematician Professor Christos Koutsogeorgis (Ph.D./City University of 
New York) taught me Discrete Mathematics, Abstract Algebra, and 
Probability Theory with mathematical statistics; and the distinguished IT 
Professor Chamberlain Foes (Ph.D./Portland State University) taught me 
PASCAL (programming language) and introduced me to mathematical 
informatics and management information systems.  
Moreover, my cooperation with the prominent philosopher Dr. Giuliano 
Di Bernardo, who held the Chair of Philosophy of Science and Logic at 
the Faculty of Sociology of the University of Trento from 1979 until 2010, 
has helped me to explore several aspects of epistemology. Epistemology is 
the branch of philosophy that makes knowledge itself the subject matter of 
inquiry, and, therefore, every conscientious scholar has to be 
epistemologically sensitive and informed. Furthermore, epistemology is 
intimately related to ontology, also known as metaphysics, which 
investigates the nature of existence itself as well as the degree of existence 
of the phenomena that appear to us (and epistemology enables us to 
distinguish between theorems about models and theorems about reality; 
this distinction is very important in applied science, where models must be 
not only logically valid but also empirically validated).  
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Regarding my interdisciplinary studies and research work, I would like to 
acknowledge the contribution of the following professors to my education 
during my studies at the University of La Verne (1992–96): the historian 
Professor Vassilios Christides (Ph.D./Princeton University) taught me a 
comprehensive set of courses on the history of world civilization; the 
historian Professor Paul Angelides (Ph.D./Ohio State University) taught 
me the courses “U.S. Intellectual History” and “Development of American 
Democracy”; the political scientist Professor Blanca Ananiadis 
(Ph.D./University of Essex) taught me European politics and political 
institutions; and the sociologist Professor Gerasimos Makris (Ph.D./LSE) 
taught me Sociology. My studies in the history of civilization in general 
and in the history of science in particular have enabled me to articulate a 
typology of cultures, and, in this context, I have to mention that my 
approach to cultural issues, including science, is founded on certain 
aspects of classical philosophy and of what we call “modernity.”  
My gratitude extends to the following scholars: the political scientist Dr. 
Hazel Smith (Professor of International Security at Cranfield University, 
UK, and Fellow of the Royal Society of Arts, London) and the economist 
and epistemologist Dr. Michael Nicholson (Professor of International 
Relations at the University of Sussex), who supervised my research work 
in the epistemology and the mathematical modeling of International 
Relations and Political Economy during 1997–99 at the University of 
Kent’s London Centre of International Relations; as well as my colleagues 
at the Faculty of Philosophy of the Theological Academy of Saint Andrew 
(Academia Teológica de San Andrés),  Veracruz, Mexico, where I 
completed a series of Ph.D. courses (specifically, Methodology of 
Philosophical Investigation I & II, Theology and Philosophy I–IV, 
Selected Topics in Christian Philosophy I–IV, Seminar on Investigation in 
Christian Philosophy I–IV, and Interpretation of Philosophical Texts I & 
II), and the Dean of that Theological Academy, Metropolitan Dr. Daniel 
de Jesús Ruiz Flores of Mexico and All Latin America of the Ukrainian 
Orthodox Church (Iglesia Ortodoxa Ucraniana en México) helped me to 
explore and appreciate the interdisciplinary nature of the scholarly 
disciplines of theology and philosophy, and he signed my Doctoral Degree 
in Christian Philosophy. 
In fact, I have systematically investigated theology and philosophy in 
order to investigate and analyze the meaning of reality, the dynamicity and 
the levels of the intentionality of human consciousness, and the general 
process of idealization. Moreover, my studies in theology and philosophy 
have helped me to study and understand the intellectual history of 
humanity and to study science in general and mathematics in particular 
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within the context of the history of world civilization. The central theme of 
theology and philosophy is condensed in the meaning of the Greek word 
“logos,” which means both language and thought, and refers to both the 
efficient cause and the final cause of the beings and the things that exist in 
the world. Indeed, ancient Greek and Roman scholars used the term 
“logos” in order to refer to the creative Nature, to the Norm of conduct, 
and to the Rule of discourse, and, gradually, the study of these three 
fundamental dimensions of reality was specialized in the context of 
particular scientific disciplines. 
In the eleventh century C.E., the first “university” in the world was 
founded by an organized guild of students (studiorum) in Bologna. In fact, 
the founders of the University of Bologna created the word “uni-versity,” 
and they invented an institution called “university” in order to give an 
adequate account of the “uni-verse,” and, since the universe comes in 
many aspects, they thought that the study of each aspect of the universe 
requires the creation of a corresponding scholarly discipline. In fact, those 
students, acting as a mutual aid society, hired scholars to teach them 
liberal arts (grammar, logic, rhetoric, geometry, arithmetic, astronomy, and 
music), law, theology, and ars dictaminis (the composition of official 
letters and other epistolary documents). Thus, in the context of the “uni-
versity,” which reflects and gives an adequate account of the “uni-verse,” 
each scholarly discipline informs and is informed by every other scholarly 
discipline, and this synthetic approach to knowledge underpins the 
classical ideal of education.  
In this presentation of my lectures, I study and delineate the following 
topics: Mathematical Philosophy; Mathematical Logic; the Structure of 
Number Sets and the Theory of Real Numbers, Arithmetic and Axiomatic 
Number Theory, and Algebra (including the study of Sequences and 
Series); Matrices and Applications in Input-Output Analysis and Linear 
Programming; Probability and Statistics; Classical Euclidean Geometry, 
Analytic Geometry, and Trigonometry; Vectors, Vector Spaces, Normed 
Vector Spaces, and Metric Spaces; basic principles of non-Euclidean 
Geometries and Metric Geometry; Infinitesimal Calculus and basic 
Topology (Functions, Limits, Continuity, Topological Structures, 
Homeomorphisms, Differentiation, and Integration, including 
Multivariable Calculus and Vector Calculus); Complex Numbers and 
Complex Analysis; basic principles of Ordinary Differential Equations; as 
well as mathematical methods and mathematical modeling in the natural 
sciences (including physics, engineering, biology, and neuroscience) and 
in the social sciences (including economics, management, strategic 
studies, and warfare problems). The option of, firstly, presenting algebra, 
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geometry, and mathematical analysis in a new, creative, and synthetic way 
(emphasizing a methodical and thorough conceptual study of the subject-
matter) and, secondly, combining different branches of pure and applied 
mathematics as well as philosophy into one self-contained course gave rise 
to a unique, innovative project. 
I originally wrote and presented these lectures during the academic year 
2022–23 in the context of a Laboratory of Interdisciplinary Mathematics 
and Epistemology (for both scholars and professional technocrats) that I 
organized inspired by, and in honor of, my philosophy mentor Professor 
Giuliano Di Bernardo and with the support of an international private 
Masonic Lodge of literati that I have created and manage on the basis of 
the teachings and honors that I have received from Professor Giuliano Di 
Bernardo in the context of the Dignity Order (which is a private exclusive 
membership association for the defense of the dignity of humanity, and it 
was founded by Professor Giuliano Di Bernardo in 2012 under Austrian 
Law). As an independent scholar and consultant, with several informal 
international scholarly affiliations, I have the opportunity to consider and 
study various mathematical and methodological-epistemological problems 
as well as other analytical issues in the context of many projects in the 
fields of physics, engineering, biology, economics, management, social 
policy, and strategic studies. Furthermore, my inspiration for writing these 
lectures was enhanced by the legacy of the Royal Society of Arts 
(London), which approved my Fellowship in December 2023 (my 
Fellowship No. being 8289155), as well as by my experience as an 
instructor at the University of Indianapolis (Athens Campus, Greece, 
2012–13), where I taught epistemological and methodological issues to 
students of International Relations, and as an analyst in financial-services, 
construction, IT, and shipping companies.   
 

A Few Preliminary Thoughts 
 

It is due to the intentionality, or the referentiality, of consciousness, or, in 
other words, due to the fact that consciousness is the consciousness of its 
contents, that the contents of consciousness become experiences for it. In 
fact, as the Austrian-German philosopher and mathematician Edmund 
Husserl (1859–1938) has taught, consciousness not only treats the 
presence of experiences within itself in a critical way, but also causes their 
presence, as it is implied by the term “intentionality.” Intentionality is not 
only the ability to refer to something, but also the ability to cause 
something. Given that, as the French philosopher Henri Bergson (1859–
1941) has taught, intentionality consists of both the ability to refer and the 
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ability to cause, we realize that the term “intentionality” expresses the 
dynamism of consciousness; and the dynamism of consciousness 
manifests itself in the manner in which consciousness intervenes in the 
reality of the world and restructures it. 
Furthermore, regarding the creativity of human consciousness, it should be 
mentioned that the American neuroscientist Benjamin Libet and his 
collaborators clarified an aspect of free will through their discovery that 
humans consciously decide to act before they even think about making the 
decision to act. In his book Mind Time, Libet maintains that free will is not 
only an expression of the brain’s conscious activity, but it begins earlier in 
the unconscious mind, and it has a power of veto over whether or not the 
action takes place.  
The evolutionary history of humanity is defined by the increase in brain 
size, as the latter made possible the rise of consciousness, both in its 
primitive form and in its higher order. Higher order consciousness, in turn, 
made possible the birth of language and intentionality or purposefulness. 
Consciousness is essentially linked to intentionality, through which human 
beings can access external reality and enter into relationships with each 
other. Undoubtedly, there are conscious states that are not intentional, and 
there are intentional states that are not part of our consciousness. 
Nevertheless, the connection between consciousness and intentionality 
plays a crucial role in understanding human beings and history. 
Intentionality can operate according to a hierarchy of relations ranging 
from a minimum to a maximum. The levels of this hierarchy of relations 
are called “orders of intentionality,” in the terminology of the prominent 
British cognitive anthropologist Robin Dunbar (University of Oxford). In 
his book The Human Story, Dunbar has analyzed the development of the 
different orders of intentionality. Specifically, bacteria and certain insects 
have zeroth-order intentionality, while brain-equipped organisms are 
conscious of their mental states. For instance, brain-equipped organisms 
know when they are in danger or hungry. Therefore, brain-equipped 
organisms have first-order intentionality. First-order intentionality means 
that a being is self-aware, consciously referring to itself. However, there 
are also types of higher-order intentionality. Intentionality can be directed 
towards the beliefs of other people―we say that it is second-order 
intentionality. In other words, in the terminology of Robin Dunbar, we can 
distinguish the orders of intentionality as follows: most vertebrates can 
recall their mental states, at least in an elementary way, that is, by knowing 
that they know. Organisms that know that they know have first-order 
intentionality. Organisms that, moreover, know that someone else knows 
something have second-order intentionality. Organisms that, in addition, 
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know that someone else knows that someone else knows something have 
third-order intentionality. As the number of subjects in the intentionality 
sequence increases, so does the number of hierarchical orders. This 
sequence can reflexively be extended indefinitely, but, in the context of 
their everyday life, most people rarely reach intentionality of an order 
higher than fourth, and they can very hardly rise to the fifth order―that is, 
to the following type of reasoning: “Theodore knows that Christina 
believes that George thinks that Nicolas supposes that Natasha intends to 
do something.” Fourth-order intentionality is required, at a minimum, for 
the development of literature that goes beyond mere narrative, because, for 
example, an author wants his/her readers to believe that literary hero A 
thinks that literary hero B intends to do something. The same level of 
minimum skills is required for the development of science, since doing a 
scientific task requires asking whether the world could exist otherwise and 
going beyond the level of sensory experience, and then asking someone 
else to do the same. 
As Robin Dunbar argues in his book How Religion Evolved and Why It 
Endures, the invention of religion by the species Homo is one of the 
earliest and most impressive manifestations of humanity’s ascent to very 
high levels of intentionality, and, indeed, religion represents an extremely 
advanced and complex expression of humanity’s creative capacity. In fact, 
the ability to conceive religion is an exclusive privilege of the human 
species. No other biological species living on Earth can formulate 
anything even remotely resembling religion. Since humans are a product 
of evolution, we must carefully investigate the factors that may have 
favored the emergence of our religious impulse. 
In order to explain religion as a social activity and as a social institution, 
we need at least fourth-order (perhaps even fifth-order) intentionality, so 
that we can handle syllogisms of the following type: “John supposes (1) 
that Mary believes (2) that John believes (3) that there is a divine being 
intending (4) to influence people’s future (because this divine being 
understands people’s desires (5)).” Until people can interact and form a 
community on the basis of fourth-order (or even fifth-order) intentionality, 
we cannot yet speak of a fully developed religion, but only of religious 
beliefs. The existence of a common belief―that is, the fact that there are 
things that mean the same to everyone―is the keystone of religion. Hence, 
a true communion of words, a sharing of words as a basic characteristic of 
any genuine dialogue, is a major underpinning of religion. 
Based on the point that, in order to understand religion, one needs a well-
formed language and at least fourth-order intentionality (while the 
creation of a religion requires at least fifth-order intentionality), we can 
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determine when religion made its first appearance in the evolutionary 
history of hominids. Specifically, in view of the foregoing, we can argue 
that the first appearance of religion in the evolutionary history of hominids 
coincided with the time of the first appearance of language. Fifth-order 
intentionality, associated with Homo sapiens, manifested itself much later, 
when fifth-order intentionality in conjunction with a well-formed language 
equipped with advanced grammar and advanced syntax expressed religion 
as both a social institution and a metaphysical system.  
Darwin’s theory of evolution favors everything that can help the species to 
survive. As Giuliano Di Bernardo argues in his book The Epistemological 
Foundation of Sociology (Amazon, 2021), the evolutionary advantages 
that the human species has derived from religion are social cohesion, 
social control, creative imagination (especially regarding the conception of 
a better world), and creative management of existential anxiety. To 
achieve these goals, religion uses powerful means, such as belief in 
immortality, metaphysics, mysticism, and rituals. 
However, in the context of the ancient Greek civilization, in the Aegean, 
certain Greek intellectuals became aware of and highlighted the fact that 
the human mind can discern and differentiate itself from the surrounding 
body of nature and can discern similarities in a multiplicity of events, 
abstract these from their settings, generalize them, and deduce therefrom 
other relationships consistent with further experience. “Abstraction” 
means getting rid of what we consider unnecessary details (so that, after 
getting rid of unnecessary details, things that were different because of 
unnecessary details become identical), and, therefore, we have a non-
trivial concept of “identity,” on the basis of which we study the 
“sameness” of certain things, or we look at certain things as if they were 
the same. “Composition” means that we combine certain abstract objects 
into bigger abstract objects, so that, when we have to deal with complex 
problems, we need to be able to divide (“analyze”) the bigger problem into 
smaller problems, solve them separately, and then combine the solutions 
together. These concepts underpin “operational structuralism,” which, in 
turn, underpins the development of modern mathematics (by the term 
“operation,” we mean a rule according to which we can combine any two 
elements of a given system). The origin of “operational structuralism” can 
be traced back to ancient Greek philosophy. In the context of modern 
science and philosophy, the scholar that put operational structuralism 
within a rigorous mathematical-logical setting was René Descartes, the 
acknowledged founder of modern analytic geometry and of modern 
philosophy.  
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Philosophy and the scientific method were invented by the ancient Greek 
civilization. Initially, philosophy was developed within the context of the 
ancient Greek mystery cult of Orphism, but, gradually, it achieved its 
structural autonomy from religion; and a philosophical approach to 
religion (that is, a reflection on religion, which is something different from 
religion) gave rise to theology. Hence, with the invention of philosophy, 
the ancient Greek civilization created a method that enables humanity to 
rise to the highest levels of intentionality without having to resort to 
religion, as well as to secure for the human beings the evolutionary 
advantages offered by religion without being dependent on religion. In the 
context of philosophy, we study truth itself, what we can know, what 
makes an argument rational, valid, or fallacious, the reality of being, the 
relationship between consciousness and the world, moral criteria, and the 
interplay between different scholarly disciplines in the most abstract and 
most rigorous way possible. Thus, the invention of philosophy by the 
ancient Greek civilization made the ancient Greek civilization capable of 
becoming the inventor of science, too. For instance, the mathematical and 
philosophical problems suggested and studied by Aristotle, Plato, Zeno, 
and Pythagoras inspired and guided the mathematical works of Eudoxus, 
Archimedes, Apollonius of Perga, and Nicolas d’Oresme, who were 
leading pioneers of infinitesimal calculus, and, in turn, the latters’ 
achievements inspired and guided the mathematical works of Torricelli, 
Cavalieri, Galileo, Kepler, Valerio, and Stevin, who made decisive 
contributions to the development of infinitesimal calculus and its 
applications, and, in turn, the latters’ works inspired and guided Barrow 
and Fermat, who developed infinitesimal calculus even further and set the 
stage for the systematic and rigorous formulation of infinitesimal calculus 
by Newton and Leibniz. For a systematic study of the importance of 
ancient Greek thought for the development of science and philosophy, I 
strongly recommend the books written and edited by the British classical 
scholar, educationalist, and academic administrator Sir Richard 
Livingstone (1880–1960). 
Based on the principles of abstraction and syllogism, mathematicians 
study the quantitative and the qualitative relations and the forms of a space 
(structured set), identify various connections in the processes that take 
place in reality, and they formulate them in the form of logical sentences 
written in symbols. The heuristic role of mathematics, that is, the 
articulation of new results, which then acquire empirical significance and 
confirmation or a new interpretation, is based on the correct representation 
of reality by mathematical models.  
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A “model” is intended as a carefully and methodically simplified analogue 
of real-world phenomena and situations, and its deductive structure helps 
scientists to explore the consequences of alternative assumptions. Given 
that scientific modeling aims to explain how things are and why things are 
the way they are, as well as to analyze and evaluate alternative 
assumptions, it contrasts, for instance, with the use of basic statistical 
methods solely to summarize empirical data. Furthermore, one can 
experiment with the model (by changing the assumptions) when it would 
be epistemologically, technically, and/or morally impossible and/or too 
risky to experiment with the real world.  
In general, we should be aware that, usually, the object of scientific 
investigation is not an object of the real world but an ideal image of it. For 
instance, physics introduces many idealized objects to use in the 
idealization of physics problems; such as the following: (i) “Particle”: this 
term refers to a fundamental and universal physical object, and, when 
physicists use this concept, they ignore the geometric dimensions of an 
object in comparison with the characteristic distances of the corresponding 
problem. (ii) “Rigid body”: in this idealized object, all possible strains are 
ignored. (iii) “Elastic body”: in this idealized object, the remnant strain is 
ignored. (iv) “Inelastic body”: this idealized object is incapable of 
sustaining deformation without permanent change in size or shape, and, in 
this case, elastic deformation is ignored. Moreover, physics introduces 
idealized physical processes, too; such as the isochoric, isobaric, 
isothermal, and adiabatic processes. Similarly, in microeconomics and 
econometrics, the “model” of a real economic phenomenon reflects the 
essentials, allows only for the most important interrelations and 
interactions, and considers idealized actors rather than real actors. In 
particular, the mainstream of economic theory does not deal with real 
businesses or interests, or real markets, but it deals with theoretically 
representative firms, abstract markets, and generalities like the interest rate 
and the flow of money, and, therefore, it predicts general (rather than 
individual) behavior, and, more specifically, it predicts what the 
consequences of different kinds of behavior will be under certain 
hypotheses. 
Scientific explanation is based on the fact that real objects and phenomena 
themselves are so complicated and interrelated that their study and 
quantitative investigation with due account for all aspects, interrelations, 
and interactions would lead to insurmountable mathematical difficulties. 
Therefore, a reasonable level of idealization of concrete problems 
characterizes every meaningful task in the context of applied science. If 
applied scientists did not idealize their problems, then they could not solve 
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a single concrete problem in full. The simplifying assumptions vary from 
problem to problem, but a common feature of every scientific idealization 
consists of the methodical identification of non-essential, secondary 
interrelations and interactions and the decision to ignore them. Hence, a 
question of criteria arises. When, in what conditions, can an interrelation 
or interaction be characterized as non-essential and ignored, and when 
not? The answer depends on the method used in analyzing the solution to a 
problem and on the estimate method. However, two ways of idealization 
are most commonly used in applied science: the introduction of idealized 
objects (or idealized actors) and the decision to ignore non-essential 
interactions and processes (once we have clearly identified them as such). 
In the context of my work in mathematical modeling, I have been using 
two categories of mathematical models: one category of mathematical 
models depends on the Italian physicist and engineer Galileo’s method 
(consisting of intuition or resolution, demonstration, and experiment), and 
the other category of mathematical models depends on General System 
Theory (originally due to the Austrian biologist Ludwig von Bertalanffy). 
Applied firstly to celestial mechanics, Galileo’s method is characterized by 
a mechanistic conception, according to which formal rules (“reasons”) 
cause behavior (in an automatic way), and it is ideally suited for the study 
of classical physics. In fact, the estimation of a physical phenomenon 
consists of finding the fundamental law governing the phenomenon and, 
subsequently, numerically calculating the order of magnitude of the 
respective physical quantity. However, applied firstly in biology and, 
subsequently, in certain aspects of modern physics and ecological studies, 
as well as in behavioral and social sciences (where formal rules 
(“reasons”) do not necessarily cause behavior), the “working attitude” of 
General System Theory is that of the “open system,” delineated by Ludwig 
von Bertalanffy in his book General System Theory (originally published 
in 1968).  
The closed system, reflecting the model of thought of classical physics, is 
axiomatic in a way that the object of scientific research is separated from 
the outer environment, and the outcome results from the initial conditions. 
From this perspective, scientific research is concerned with the analysis of 
the characteristics and the quantities of the elemental components, which 
are held in isolation for the purpose of study. Moreover, it is based on an 
additive methodology that underpins the deduction of the meaning of the 
whole from a specific corpus of knowledge of the character of its 
elementary parts. Thus, it is characterized by “reductionism.” Thinking 
according to this model (the “machine model”) has introduced both useful 
and misleading insights in the study of human systems. For instance, the 
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“machine model” provides a rigorous reference system (specifically, a 
platform equipped with a ruler and a clock, enabling us to determine the 
position of the bodies under consideration and the course of time) as well 
as powerful analytical methods, but the actions of living things, in general, 
do not fit the conceptual models of classical physics. 
On the other hand, General System Theory endorses and absorbs the 
clarity of thought and the rigor that characterize the “machine model,” but 
it is based on the empirically verified fact that living beings and their 
organizations are not collections of isolated and uniform units, the sum of 
which accounts for a total phenomenon. Even though there is a structural 
continuity between inorganic matter and organic matter, life—by 
transforming inorganic matter into organic matter—implies an important 
differentiation in matter. Some characteristic differences between 
inorganic matter and organic matter are the following: Firstly, inorganic 
matter is governed by inertia, whereas organically structured living beings 
sense things, react to external stimuli, and move on their own. Secondly, 
inorganic matter reacts according to the laws of mechanics, but the 
reactions of organically structured living beings manifest peculiar 
qualitative features that are not strictly analogous to the stimuli that cause 
reaction, and they depend on organic relations that govern each living 
being according to its structural program. Thirdly, according to the 
Standard Model of particle physics, the minimal constituent matter 
elements of inorganic bodies are uniform—that is, subatomic particles are 
identical (so that no exchange of two identical particles, such as electrons, 
can lead to a new microscopic state)—but the minimal constituent matter 
elements of organic matter (such as DNA) are subject to differentiations, 
which underpin the actualization and the manifestation of the structural 
program of an organic being. Fourthly, inorganic bodies are connected 
with each other under specific conditions in order to form chemical 
compounds, which are always characterized by the same quantitative data 
(e.g., Antoine Laurent Lavoisier’s “law of conservation of matter,” Louis 
Proust’s “law of constant composition,” and John Dalton’s “law of 
multiple proportions”), but organically structured living beings exchange 
some of their constituent elements with some of their environment’s 
constituent elements in the context of a dynamical process that is called 
assimilation. Fifthly, inorganic bodies exist in definite and fixed 
quantities, but organically structured living beings (specifically, “parents”) 
create new living beings (specifically, “offspring”) similar to them in the 
context of the reproductive process. Sixthly, with few exceptions (such as 
radioactive nuclides, or nuclear species which are unstable structures that 
decay to form other nuclides by emitting particles and electromagnetic 
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radiation), inorganic bodies are incapable of self-transformation, but 
organically structured living beings follow life cycles (namely, 
developmental stages that occur during an organism’s lifetime). 
The phenomena of the living world must be modeled as open systems, in 
which the “components” are sets of organized actions that are maintained 
by exchanges in the environment, and the issue of teleology (normative 
action) must be explicitly addressed in the models of human systems. 
Therefore, the postulates that refer to the dynamism of an open system and 
the rules that relate means to ends must explicitly find their place in any 
meaningful study of the social sciences. For this reason, deontic logic, 
approximation theory, stochastic processes, and a dynamical approach to 
structural analysis play an important role in the modeling of human 
systems.  
 

The Meaning of a “Conceptual Study” 
 
Mathematics plays a very important role in the world (and this is easily 
and thoroughly understood in applied mathematics); and, therefore, the 
student of mathematics must be properly instructed to understand the true 
nature of mathematics. The understanding of the true nature of 
mathematics is a key underpinning of the progress of civilization. As 
Euclid has taught, the true nature of mathematics is inextricably linked to 
deductive reasoning: from various hypotheses (often related to the 
perception of the world), we logically proceed to proofs.  
However, hypothetico-deductive systems, especially when we rise to very 
high levels of abstraction, give rise to paradoxes, that is, contradictions of 
understanding, contradictions of logic, contradictions of semantics, and 
contradictions of thinking. Paradoxes have played an important role in the 
development of mathematics and logic. Some well-known mathematical 
paradoxes are the following: Zeno’s paradox, Eubulides’s heap (“sorites”) 
paradox, Epimenides’s “liar paradox,” Hilbert’s “Grand Hotel” paradox, 
Russell’s paradox, etc. 
In the context of hypothetico-deductive systems, we have to accept 
axiomatic truths, and, simultaneously, we have to be ready to concede that 
various problems stem from these axiomatic truths. On the one hand, we 
have to accept the existence of mathematical truths, and, on the other 
hand, we have to concede that mathematical truths give rise to paradoxes 
and comprehension problems. A way out of this uncomfortable situation 
was offered by the great philosopher and logician Ludwig Wittgenstein, 
who explained this uncomfortable situation, especially regarding the 
capacity of our evidentiary tools. Specifically, Wittgenstein maintains that 
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the limits of our language together with our perceptual skills determine the 
limits of our thinking, since they construct the image (intellectual 
representation) of the world that we can perceive. As we rise to higher and 
higher levels of abstraction, we must be prepared to confront paradoxes. 
Moreover, another great philosopher and logician, Kurt Gödel, proved 
that, in the world, there exist propositions whose truth is valid but 
unprovable by (i.e., within the context of) the formal mathematical 
framework that we have established. In other words, as I shall explain in 
Chapter 1, Gödel proved that, in a formal mathematical framework, there 
exist mathematical propositions that are necessarily true and 
simultaneously unprovable by means of the tools provided by the given 
formal mathematical framework (and, therefore, they urge us to expand 
our conceptual and mathematical toolbox). Gödel has mathematically 
proved that a completely formalized system of arithmetic (like a machine) 
is either inconsistent (leading to a contradiction) or incomplete (lacking in 
its axiomatic foundations). Absolute, mechanistic rigor is impossible. 
Conceptual knowledge (which is a formally constructed and linguistically 
expressed kind of knowledge), far from contradicting or excluding 
intuitive knowledge (which is a way of knowing that is more direct, 
immediate, and expressing a felt sense of things), is in a relationship of 
mutual complementarity with intuition, specifically, rational intuition (to 
which I shall refer in the Introduction). Conceptual knowledge is a 
necessary underpinning of rational intuition, and rational intuition, in turn, 
provides the mental readiness of the knowing subject to recognize and 
accept a truth that lies before him/her. This creative synthesis between 
conceptual knowledge and rational intuition underpins the ancient Greek 
notion of “epopteia,” which means having seen an object in a 
comprehensive way (“global vision”). Moreover, as the philosopher 
Michael Dummett has pointedly argued, “intuition is not a special source 
of ineffable insight: it is the womb of articulated understanding” 
(Dummett, Truth and Other Enigmas, p. 214). 
The value and the utility of mathematics do not derive from the “beauty” 
of mathematical formalism or from the complexity of mathematical 
abstractions, but from the fact that mathematics helps us to articulate 
representations of reality, which are useful in order to understand and/or 
restructure reality according to the intentionality of consciousness. I 
endorse the argument of the great French mathematician René Thom 
(1923–2002) that “what justifies the ‘essential’ character of a 
mathematical theory is its ability to provide us with a representation of 
reality”; and the possibility of abstracting mathematical entities from 
concrete situations derives from the fact that mathematics provides us with 
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a model of the “real” (Thom, Mathématiques essentielles, pp. 2–3). 
Moreover, René Thom has brilliantly explained the term “real,” which is 
the object of mathematical modeling, by arguing that, by the term “real,” 
he means “both aspects of the reality of the external world—whether it is 
given to us by the immediate perception of the world around us, or by a 
mediated construction such as scientific vision” (ibid). 
Thus, Thom’s understanding of mathematics is not focused on formalism, 
but on a broad perspective of motion, form, and change of form, where 
“form” is interpreted according to Aristotle’s hylozoism. According to 
formalism, mathematics is a game of symbols, bringing with it no more 
commitment to an ontology of objects or properties than chess or ludo, 
whereas, from the perspective of Aristotle’s philosophy, mathematics is a 
body of propositions representing an abstract sector of reality. According 
to Aristotle’s hylozoism, every being is composed, in an indissociable 
way, of matter and form, and matter is a substratum awaiting and needing 
to receive a form in order to become a substance, the substance of being. 
When Aristotle says that a being exists with regard to its substance, he 
refers to the “material” of which a being is composed, namely, to the 
“material cause” of a being. The “substantive” mode of being is 
complemented by form (i.e., by the “formal” mode of being), which is due 
to species. In his Metaphysics, Aristotle replaced the Platonic term “idea” 
with the concept of species. Form is a mode of being that is assumed by 
substance, and, due to its form, a being is even more sharply differentiated 
from every other being. 
According to Thom, in the context of Aristotle’s hylozoism, the notion of 
a bounded open set can exist as the substratum of being, whereas the 
notion of an unbounded open set cannot (Thom, “Les intuitions 
topologiques primordiales de l’aristotélisme,” p. 396). Furthermore, 
following Aristotle’s hylozoism, Thom maintains that, in mathematical 
modeling, the ideal of quantitative accuracy in description must always be 
pursued in conjunction with the ideal of qualitative accuracy in 
explanation. The ideal of qualitative accuracy in explanation refers to the 
elucidation of structure, that is, of the coherent link between the substance 
and the form of the phenomenon under study. In particular, Thom has 
considered the following case: Let us suppose that the experimental study 
of a phenomenon 𝛷  gives an empirical graph 𝑔  whose equation is 𝑦 =
𝑔(𝑥) , and that a researcher attempting to explain 𝛷  has available two 
theories, say 𝜃"  and 𝜃# . In Figure 0-1, we see the empirical graph 𝑦 =
𝑔(𝑥) of the phenomenon 𝛷, the graph 𝑦 = 𝑔"(𝑥) of theory 𝜃" , and the 
graph 𝑦 = 𝑔#(𝑥) of theory 𝜃#. Neither the graph 𝑦 = 𝑔"(𝑥) nor the graph 
𝑦 = 𝑔#(𝑥)  fits the graph 𝑦 = 𝑔(𝑥)  well. As shown in Figure 0-1, the 
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graph 𝑦 = 𝑔"(𝑥)  fits better quantitatively, in the sense that, over the 
interval considered, ∫|𝑔 − 𝑔"|𝑑𝑥  is smaller than ∫|𝑔 − 𝑔#|𝑑𝑥 . On the 
other hand, Figure 0-1 clearly shows that the graph 𝑦 = 𝑔#(𝑥) fits better 
qualitatively, in the sense that it has the same shape and appearance as 𝑦 =
𝑔(𝑥) (e.g., more specifically, in terms of monotonicity and curvature). 
Hence, René Thom argues that, in this situation, the researcher should 
retain 𝜃#  rather than 𝜃"  “even at the expense of a greater quantitative 
error,” because “ 𝜃#, which gives rise to a graph of the same appearance as 
the experimental result, must be a better clue to the underlying 
mechanisms of 𝛷  than the quantitatively more exact 𝜃" ” (Thom, 
Structural Stability and Morphogenesis, p. 4). 
 
Figure 0-1: Quantitative and qualitative aspects of modeling. 
 

 
 
In view of the foregoing, there is a strong interplay between philosophy, 
logic, and mathematics; and mathematical education must include a deep 
understanding of mathematical concepts, the methodology of mathematics, 
and epistemology in general. The importance of the interaction between 
mathematical education and philosophical education becomes even clearer 
in the context of interdisciplinary mathematics. 
The present series of my lectures on pure and applied mathematics and 
epistemology expresses my efforts to educate various groups of people in 
mathematical thinking and epistemology, starting from the basics. 
Moreover, these lectures aim to equip every aspiring person with a self-
contained reference work for self-study in the fields of mathematics and 
epistemology.  
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I have taken great care in typing these lectures, which express my love for 
these subjects and my method of teaching in these fields. For any 
remaining typing errors in these lecture notes, I am wholly responsible, 
and I would deeply appreciate if they are brought to my notice by the 
readers. 
 
Nicolas Laos 
December 2023 
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Introduction: 
Mathematical Philosophy 

 
Every scientific activity is based on consciousness, thinking, perception, 
memory, judgment, imagination, volition, emotion, attention, as well as 
intuition.  
Consciousness can be construed as an existential state that allows one to 
develop the functions that are necessary in order to know both one’s 
existential environment as well as the events that take place around oneself 
and within oneself. Thinking is based on symbols, which represent various 
objects and events, and it is a complex mental faculty characterized by the 
creation and the manipulation of symbols, their meanings, and their mutual 
relations. Perception is a process whereby a living organism organizes and 
interprets sensory-sensuous data by relating them to the results of previous 
experiences. In other words, perception is not static, but a developing 
attribute of living organisms; it is active in the sense that it affects the raw 
material of scattered and crude sensory-sensuous data in order to organize 
and interpret them; and it is completed with the reconstruction of the 
present (present sensory-sensuous data) by means of the past (data 
originating from previous experiences). Therefore, perception is intimately 
related to memory and judgment. Judgment is one’s ability to compare and 
contrast ideas or events, to perceive their relations with other ideas or 
events, and to extract correct conclusions through comparison and 
contrast. Memory is one’s ability to preserve the past within oneself―or, 
equivalently, the function whereby one retains and accordingly mobilizes 
preexisting impressions. Imagination is a mental faculty that enables one 
to form mental images, representations, that do not (directly) derive from 
the senses. Imagination is not subject to the principle of reality, as the 
latter is formed by the established institutions. Imagination develops 
because consciousness cannot conceive the absolute being in an objective 
way. Volition, or will, is one’s ability to make decisions and implement 
them kinetically. Emotion or affect is the mental faculty that determines 
one’s mood. Attention is a mental faculty that focuses conscious functions 
on particular stimuli in a selective way, and it operates as a link between 
perception and consciousness. Intuition means that consciousness 
conceives a truth (that is, it formulates a judgment about the reality of an 
object) according to a process of conscious processing that starts from a 
minimum empirical or logical datum and rises to a whole abstract system 
with which consciousness realizes that it is connected or to which 
consciousness realizes that it belongs (rational intuition, in particular, is 
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intimately related to a type of subconscious thinking). In his Republic, 
Plato tries to define intuition as a fundamental capacity of human reason to 
comprehend the nature of the object of consciousness, and, in his works 
Meno and Phaedo, Plato understands intuition as the awareness of 
knowledge that previously existed in a dormant form within the mind. 
Moreover, David Hume, in his book entitled A Treatise of Human Nature, 
explains intuition as the power of the mind to recognize relationships 
(relations of time, place, and causation) without requiring further 
examination.  
In general, philosophers are preoccupied with methodic and systematic 
investigations of the problems that originate from the reference of 
consciousness to the world and to itself. In other words, philosophers are 
preoccupied with the problems that originate from humanity’s attempt to 
articulate a qualitative interpretation of the integration of the 
consciousness of existence into the reality of the world. The 
aforementioned problems pertain to the world itself, to consciousness, and 
to the relation between consciousness and the world. 
It goes without saying that scientists are also preoccupied with similar 
problems. However, there are two important differences between 
philosophy and science. Firstly, from the perspective of science, it suffices 
to find and formulate relations and laws (generalizations) that, under 
certain conditions and to some extent, can interpret the objects of scientific 
research. Philosophy, on the other hand, moves beyond these findings and 
formulations in order to evaluate the objects of philosophical research and, 
ultimately, to articulate a general method and a general criterion for the 
explanation of every object of philosophical research. Whereas sciences 
consist of images and explanations of these images, philosophies are 
formulated by referring to wholes and by inducing wholes from parts. 
Hence, for instance, a philosopher will ask what is “scientific” about 
science, or what is the true meaning of science? Therefore, philosophy and 
science differ from each other with regard to the level of generality that 
characterizes their endeavors, and philosophy is a reflection on science. 
Secondly, as the French philosopher Pierre Hadot pointed out in his book 
Philosophy As a Way of Life, unlike the various scientific disciplines, 
philosophy is not merely a science, but it is a “way of life.” More 
specifically, philosophy implies a conscious being’s free and deliberate 
decision to seek truth for the sake of knowledge itself, since a philosopher 
is aware that knowledge is inextricably linked to the existential freedom 
and the ontological integration and completion of the human being. 
Furthermore, as I have already explained, philosophy is a reflection on 
science.  
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Knowledge 

 
By the term “knowledge,” we mean: (i) the mental action through which 
an object is recognized as an object of consciousness; (ii) the mental action 
through which consciousness conceives the substance of its object; (iii) the 
object whose image or idea is contained in consciousness; and (iv) that 
conscious content which is identified with the substance of the object of 
knowledge. Therefore, the term “knowledge” can be construed as a firm 
consideration of an object as something that corresponds to reality. 
Logical knowledge, in particular, is a form of knowledge that derives from 
the rational faculty of consciousness, and it is characterized by 
indisputable and logically grounded truths (i.e., judgments about the 
reality of things). Rationality means the use of logical knowledge to attain 
goals. Logic is a theory of correct reasoning. Any relation between 
concepts is formulated by means of propositions. According to Aristotle’s 
Organon, the “backbone” of any science is a set of propositions, so that, 
starting from the very primitive principles and causes, one can proceed to 
learn the rest. Aristotle’s logic is focused on the notion of deduction 
(syllogism), which was defined by Aristotle, in the first book of his work 
entitled Prior Analytics, as follows: “A deduction is speech (logos) in 
which, certain things having been supposed, something different from 
those supposed results of necessity because of their being so”; each of the 
things “supposed” is a premise of the argument, and what “results of 
necessity” is the conclusion.  
 By the term “concept,” we mean the set of all predicates of a thing (or of a 
set of conspecific things) that express the substance of the given thing (or 
of the given set of conspecific things). In the scholarly discipline of logic, 
the “intension” of a concept is the set of all predicates of the given 
concept, or the set of all those elements due to which and by means of 
which the given concept can be known and distinguished from every other 
concept. In other words, the intension of a concept is its formal definition. 
For instance, the properties of the three angles and the three sides of a 
geometric figure constitute the intension of the concept of a triangle. 
Moreover, in the scholarly discipline of logic, “extension” indicates a 
concept’s range of applicability by naming the particular objects that it 
denotes. In other words, the extension of a concept encompasses all those 
things to which the given concept refers. For instance, the extension of the 
concept of a tree consists of all particular trees; the extension of the 
concept of a human being consists of all particular humans, etc.  
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By the term “genus” (plural: “genera”), we mean a concept whose 
extension includes other concepts, known as “species” or “kinds,” which 
fall within it. In other words, “genera” are concepts with an extension 
bigger than that of other concepts, whereas “species” or “kinds” are 
concepts with an extension smaller than that of other concepts. For 
instance, the concept of a geometric figure is a genus with regard to the 
concept of a triangle, whereas the concept of a triangle, which appertains 
to the concept of a geometric figure, is a kind with regard to the concept of 
a geometric figure.  
Through the process of “abstraction,” we decrease the intension of 
concepts and increase their extension. Thus, due to abstraction, the 
concept of a human being can be gradually generalized into the following 
concepts: “vertebrate,” “mammal,” “animal,” “living being,” and “being”; 
“being” is the most general concept, in the sense that its intension is 
minimum and its extension is maximum. “Being,” to which every other 
concept is reducible, cannot be further analyzed into other concepts. 
Concepts of such general type, which are not susceptible to further 
analysis into simpler concepts, and to which other concepts are reducible, 
are called “categories.” Aristotle, in his book Categories, attempted to 
enumerate the most general species, or kinds, into which beings in the 
world are divided. In particular, in Categories (1b25), Aristotle lists the 
following as the ten highest categories of things “said without any 
combination”: “substance” (for instance, man, horse), “quantity” (for 
instance, four-foot, five-foot), “quality” (for instance, white, grammatical), 
“relation” (for instance, double, half), “place” (for instance, in the 
Lyceum, in the market-place), “date” (for instance, yesterday, last year), 
“posture” (for instance, is lying, is sitting), “state” (for instance, has shoes 
on, has armor on), “action” (for instance, cutting, burning), and “passion” 
(for instance, being cut, being burned).    
No material object or system of objects—nor any connection or interaction 
that exists between them in material reality—is the direct object of 
mathematical study. In order for mathematical tools to be used to study the 
processes, the phenomena, and the individual objects that exist in reality, it 
is necessary to construct the corresponding mathematical models. By the 
term “mathematical model,” we mean a system of mathematical relations 
that symbolically describes the processes or the phenomena under study. 
For the construction of mathematical models, a variety of mathematical 
tools are used—such as: equations (algebraic, differential, and integral 
ones), graphs, matrices and determinants, relations of mathematical logic, 
geometric constructions, etc. In fact, the basic type of mathematical 
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activity, the fundamental problem of mathematics, is the construction, the 
study, and the application of mathematical models. 
No model can represent all the properties and all the relations of the 
original object. In other words, a model is a simplification, an approximate 
representation of the original object, and, therefore, an abstraction, but, 
simultaneously, a model highlights and describes an important pattern of 
the properties and the relations of the original object. The dialectical 
process of the knowledge of reality consists of two tasks: firstly, the 
replacement of existing models by others, which yield a more complete 
representation of the properties of the original object; and, secondly, the 
combined application of various models. 
 

Mathematical Modeling 
 

As I have already mentioned, mathematics is concerned with the 
construction of such models of objects (namely, of things, processes, and 
phenomena) that reflect the corresponding objects’ quantitative and/or 
qualitative attributes as well as their spatial and structural peculiarities. For 
instance, geometry is the scientific study of the quantitative and the 
qualitative properties of spatial forms and relations (the criteria for 
equality of triangles provide instances of qualitative geometric knowledge, 
and the computation of lengths, areas, and volumes exemplifies 
quantitative geometric knowledge). 
The constituent elements of a model are symbols and signs. Symbols are 
forms that express commonly accepted intentions and actions, and they 
can be organized into particular systems that are called codes, and the 
elements of such a code are called signs. In the context of mathematical 
modeling, the character of these signs can vary, since these signs can be 
schematic images (namely, shapes, drawings, and graphs), collections of 
numerical symbols, and elements of artificial or natural languages. 
Furthermore, symbols are subject to transformations according to specific 
symbol transformation rules. The symbols and their transformations are 
definitely interpreted in terms of the original objects. The combinations of 
symbols used and their transformations are dictated and determined by the 
properties of the original objects and by the relations selected and included 
in the corresponding model. 
Mathematical models—which, with the help of the human senses, are 
directly extracted from material objects—usually express the primary 
simplest abstractions of a quantitative and spatial character, such as, for 
instance, enumeration, dimensions, form, position in space, etc. If a human 
being relies only on the sense organs, then he/she cannot achieve deep 
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knowledge of anything. Nature, acting on the sense organs, can only 
produce in humans a limited set of sensations, impressions—namely, that 
type of knowledge which we call “empirical.” 
The accumulation of empirical data constitutes the basis of generalizations 
and abstractions. The formulation of generalizations and abstractions 
provides the intellectual setting in which the application of mathematical 
tools becomes possible and meaningful. In the course of the historical 
development of mathematics, the construction of models of increasingly 
complex systems has been achieved, including systems that consist of 
multiple abstractions. With regard to its theoretical essence, mathematics 
can be construed as a science of modeling; and, therefore, both the reality 
of the world and the reality of consciousness are fundamental to 
mathematics. 
According to such renowned mathematicians and logicians as Jacques 
Hadamard, Andrey Tikhonov, René Thom, Hermann Weyl, Ljubomir 
Iliev, Andrey Kolmogorov, and Leonid Kantorovich, the order of 
operations involved in the construction of mathematical models can be 
summarized as follows: 

1. Determining and formulating the problem as clearly as possible. 
2. Identification of the variable quantities that determine the process 

under study or are chosen for the study of the given problem.  
3. Definition of the relations between these variables and the 

parameters on which the state of the process under study depends. 
4. Formulation of a hypothesis (or hypotheses) about the nature of 

the conditions under study. 
5. Construction of the model so that its properties coincide with the 

initially defined ones. 
6. Conducting experimental tests. 
7. Checking the hypothesis accepted for the construction of the 

model, and evaluating it according to the outcome of 
experimental tests.  

8. Acceptance, rejection, or modification of the hypothesis on the 
basis of repeated experimental tests and conclusions. 

In addition, regarding mathematical modeling, it should be mentioned that 
the value of mathematical modeling is not only based on quantitative 
accuracy but also on qualitative accuracy. By the “qualitative accuracy” of 
a mathematical model, I mean its ability to explain the characteristics of 
the structure of the phenomenon under study. 
The symbolic language of mathematics is equipped with rules for handling 
concepts. In addition, the logical construction of mathematical models is 
rigorously determined in the context of, and my means of, a hypothetico-
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deductive system. In a “hypothetico-deductive” (or “axiomatic”) system, 
there are two requirements that must be met in order that we agree that a 
proof is correct: (i) acceptance of certain statements, called “axioms,” 
without proof, on the basis of their intrinsic merit, or because they are 
regarded as self-evident; and (ii) agreement on how and when one 
statement “follows logically” from another, that is, agreement on certain 
rules of reasoning. Inextricably linked to the aforementioned two 
requirements is the requirement that every person who applies 
hypothetico-deductive reasoning in a particular discourse understands the 
meaning of the words and the symbols that are used in that discourse. The 
more consistent and the more complete a hypothetico-deductive system is, 
the more its imposition is safeguarded. By the term “consistency,” we 
mean that the axioms of a hypothetico-deductive system neither contain 
nor produce contradictions. By the term “completeness,” we mean that the 
truth value of any proposition that belongs to a hypothetico-deductive 
system can be determined within the given hypothetico-deductive system 
(that is, according to the terms and the rules of the given hypothetico-
deductive system). All these are philosophical questions. 
In general, there is a close affinity between mathematics and philosophy. 
Mathematics, like philosophy, is created by consciousness. Mathematics 
provides a model of knowledge of a particular kind, and, in fact, 
philosophers have highlighted the particular nature of mathematical 
knowledge and have argued that all knowledge could possibly aspire to the 
particular nature of mathematical knowledge. According to the German 
mathematician and philosopher Friedrich Ludwig Gottlob Frege, unlike 
other kinds of knowledge, mathematical knowledge is characterized by 
rigor and objectivity, because mathematics is constituted as a logical 
system. 
 
The Nature and the Structure of Mathematical Knowledge 

 
Firstly, we have to consider mathematical Platonism, because Plato 
articulated a systematic philosophy founded on the principle of 
reasonableness in thought, rather than empirical rules, and he articulated a 
systematic theory of being (“ontology”). In fact, every philosophical 
activity is fundamentally concerned with the study of being. In the context 
of philosophy, the term “being” is almost always construed as a self-
sufficient reality that is sustained either by being a closed system or by 
being an open system. 
According to mathematical Platonism, numbers are forms, specifically, 
abstract, objectively existing objects. This thesis seems to be corroborated 
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by the fact that numbers are not intrinsic characteristics of objects, but 
they are applicable to objects, and they seem to be the contents of 
objective truths, irrespective of any contingency and any particular object 
of the sensible world. From this perspective, numbers are objects 
themselves. In particular, according to mathematical Platonism, numbers 
are a peculiar kind of objects, since they exist objectively, but they cannot 
be grasped by the senses, they are not part of the material space-time, and 
they are not subject to the laws of material space-time. Far from negating 
the thesis that numbers are objects, the fact that numbers are not subject to 
the spatio-temporal structure of our sensible world corroborates the 
Platonic thesis that the world of forms is the reality par excellence, which 
underpins the logical constitution of our sensible world, which, in Platonic 
parlance, can be regarded as a “shadow” of the world of forms. This 
reasoning underpins the Platonic argument that, whereas the knowledge 
that is provided by the senses is subject to revision, the knowledge that is 
provided by forms, such as numbers, is incorrigible; and, therefore, reason 
(“logos”), which consists of thought and language, is superior to the 
senses. This is how mathematical Platonism explains the peculiar 
characteristics of the mathematical truth—namely, the certainty, the 
structural stability, and the necessity of the mathematical truth. From 
Plato’s perspective, “truth” implies the concordance between a being or 
thing and its idea (the respective beingly being, or eternal and archetypal 
form), so that a being or thing is true if, and to the extent that, it is in 
concordance with its idea. 
Mathematical Platonism is a variety of dualistic realism. In philosophy, the 
term “realism” refers to a philosophical model that is based on objectively 
existing objects, thus giving primacy to a consciousness-independent 
world, as opposed to “idealism,” which gives primacy to the reality of 
consciousness. According to philosophical realism, the fact that experience 
furnishes consciousness with images—even unrelated to each other—of a 
reality that seems to lie outside the dominion of consciousness implies that 
the reality of the world is the cause of the particular images of the world 
that are present within consciousness. From the realist perspective, the 
principle of causality points us in the direction of the claim that the 
autonomous existence of reality is naturally and logically necessary. Even 
though the aforementioned reasoning is sound, dualistic realism, with its 
doubling of the world, leads to contradictions and logical gaps, especially 
regarding the existence of, and the relationship between, the world of 
forms and the world of “shadows,” namely, their sensible images. 
Aristotle attempted to overcome the contradictions and the logical gaps of 
Plato’s dualistic realism by reformulating dualistic realism in a way that 
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bridges the gap between the world of forms and the human mind. In 
particular, Aristotelianism highlights the structural mode of being. 
The cohesive bond between substance and form is the structure of a being. 
The deepest reality of a being is its substance, while the external aspect 
and the existential otherness of that reality are the form of the given 
being—namely, an element that animates the given being—and these two 
elements (modes of being) concur with each other in the context of the 
structural mode of being. From the perspective of structuralism, Platonic 
realism corresponds to the ante rem structuralism (“before the thing”), in 
the sense that, according to Platonism, the ideational structure of mental 
life is a real but transcendent principle vis-à-vis the mind itself and the 
sensible world, and philosophical consciousness tries to partake and 
progress in the world of forms, while Aristotelian realism corresponds to 
the in re structuralism (“in the thing”), in the sense that, according to 
Aristotelianism, structures are held to exist inasmuch as they are 
exemplified by some concrete system, and the mind itself, not the world of 
forms, is a real and transcendent principle vis-à-vis the sensible world, and 
it conceives forms as abstractions. According to Plato’s dualistic realism, 
forms are objectively existing objects, of which the objects of the sensible 
world are images, or “shadows.” According to Aristotle’s dualistic 
realism, forms are mental abstractions, the objects of the sensible world 
are material exemplifications of forms, forms are conceived by the mind, 
and the mind, rather than the world of forms itself, is transcendent to the 
sensible world. For this reason, Aristotle argued that the mind is the 
“entelechy”—that is, the program of actualization—of the body, generally, 
of the human organism. 
According to mathematical Aristotelianism, mathematics refers to truths of 
the sensible world, in the sense that, even though numbers are not sensible 
things, they are properties of sensible things—specifically, abstract entities 
which can be predicated of sensible things. In other words, numbers are 
not objects themselves, they do not exist independently of objects, but they 
are features of objects, and they exist within objects. For instance, when 
we see ten people, the number ten is a property of the given collection of 
people that we see. 
In the context of mathematical Aristotelianism, numbers are not self-
subsistent forms, objects, but still numbers are properties of other things in 
an objective way. In general, according to Aristotle and according to 
Thomas Aquinas’s variety of Aristotelianism (in the context of medieval 
scholasticism), consciousness is a passive mirror of reality, and truth refers 
to an objective correspondence between thinking consciousness and its 
object. But Descartes reversed the aforementioned relation between the 
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intellect and its object, arguing that understanding (or intellection) is the 
basic reality, and that understanding is activated by conceiving itself; 
hence, Descartes’s famous dictum: “cogito ergo sum,” meaning “I think 
therefore I am.” By assigning this active role to consciousness, Descartes 
emerged as the rigorous initiator and founder of modern philosophy. 
Gradually, modern philosophy gave rise to a new general model, which is 
known as idealism. According to modern philosophical terminology, there 
are two general models whereby philosophers interpret the world: one 
gives primacy to the reality of the world, and it is known as philosophical 
realism, whereas the other gives primacy to the reality of consciousness, 
and it is known as philosophical idealism. According to idealism, the 
nature of consciousness is not totally different from or opposite to the 
nature of extra-conscious reality. The idealists’ way of thinking can be 
summarized as follows: if the nature of reality was totally different from 
the nature of consciousness, then the human being would be unable to 
know reality. Thus, ultimately, idealism construes and studies the world 
not as something reflected in consciousness, but as an extension and a 
projection of consciousness outside itself and as part of consciousness. 
In the nineteenth century, the German mathematician and philosopher 
Friedrich Ludwig Gottlob Frege departed from the traditional realist 
philosophy of mathematics, and, in contrast to mathematical 
Aristotelianism, he argued that, even though mathematical knowledge is 
objective, numbers are not objective, consciousness-independent 
properties of other things. According to Frege, any number 𝑛 can be used 
in order to count any 𝑛-membered set, but the formulation of a claim 
concerning which number belongs to a set is determined by the way in 
which mathematical consciousness conceptualizes that set. For instance, 
consider the Tarot. The Tarot consists of 78 cards. Moreover, it has two 
distinct parts: the Major Arcana, consisting of 22 cards without suits, and 
the Minor Arcana, consisting of 56 cards divided into 4 suits of 14 cards 
each. Depending on whether we are thinking in terms of Tarot cards in 
general, or in terms of the Major Arcana Tarot cards, or in terms of the 
Minor Arcana Tarot cards, or in terms of the suits of the Minor Arcana 
Tarot cards, different numbers will belong to that particular set of cards. 
Hence, we have to decide if that particular set has the property 78, or the 
property 22, or the property 56, or the property 4. Similarly, a pair of shoes 
is one pair of shoes, but it consists of two shoes, and, therefore, we have to 
decide which number belongs to this physical object: the number one or 
the number two. Thus, according to Frege, numbers are not objective 
properties of objects, but objects acquire numbers as properties according 
to the ways in which consciousness thinks of the corresponding objects. 
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Frege’s argument about the active role of consciousness in mathematical 
creation—especially in light of Kant’s philosophy—may lead one to the 
conclusion that we have to do away with mathematical objectivity 
completely. Before explaining the way in which Frege prevented 
mathematical philosophy from sinking into arbitrary idealism, it is 
important to summarize Kant’s theses. 
Immanuel Kant—who wrote the seminal book Critique of Pure Reason 
(1781/1787) and is one of the paradigmatic representatives of the 
European Enlightenment—formulated a theory of mathematical 
philosophy that is focused on the following question: given that 
mathematical knowledge is necessarily, intrinsically true, and, 
simultaneously, it is applicable to the sensible world—since the sensible 
world seems to conform to the laws of arithmetic, which transcend the 
sensible world—how is it possible to know something about the world that 
is necessarily true, or, in other words, how can we have knowledge of the 
world independently of recourse to experience? In order to tackle this 
question, Kant distinguished between two kinds of sentences: analytically 
true sentences and synthetically true sentences. 
An analytically true sentence is necessarily true on purely logical 
grounds—that is, solely in virtue of its meaning—and, in reality, it 
elucidates meanings already implicit in the subject. For instance, the 
sentence “Pediatricians are medical doctors who specialize in the medical 
care of infants, children, adolescents, and young adults” is an analytic 
statement, because it is true by definition. By contrast, the sentence 
“Pediatricians are rich” is not necessarily true; since it is not part of the 
definition of a pediatrician that a pediatrician is rich, but it is part of the 
definition of a pediatrician that a pediatrician is a medical doctor who 
specializes in the medical care of infants, children, adolescents, and young 
adults. The sentence “Pediatricians are rich” is a synthetic statement. 
The distinction between analytic and synthetic statements is based on 
whether we are dealing with one concept or two concepts. If you say that 
“Pediatricians are rich,” you are making a synthesis of two unrelated 
concepts—namely, the concept of being a medical doctor specialized in 
pediatrics and the concept of being rich. By contrast, if you say that 
“Pediatricians are medical doctors who specialize in the medical care of 
infants, children, adolescents, and young adults,” you are not synthesizing 
two unrelated concepts, but you are analyzing a feature of one concept—
namely, the concept of being a pediatrician. 
Furthermore, Kant made another important epistemological distinction in 
order to clarify the manner in which we know things to be true—
specifically, he distinguished between a priori philosophical methods and 



 
 

 

35 

a posteriori philosophical methods. The major attribute of the a priori 
methods is that they are based on primitive hypotheses usually intuitively 
conceived and axiomatically accepted, which deductively give rise to 
series of syllogisms, which, in turn, lead to ultimate conclusions, which 
are related to the preceding propositions in a logically rigorous way. For 
instance, we know that “pediatricians are medical doctors who specialize 
in the medical care of infants, children, adolescents, and young adults” a 
priori, that is, prior to any testing and any surveying. On the other hand, a 
posteriori philosophical methods are based on empirical research. For 
instance, the truth value of the statement that “pediatricians are rich” can 
only be determined a posteriori, that is, on the basis of doing some 
empirical research. 
In view of the aforementioned Kantian epistemological distinctions, 
analytic statements are a priori, and synthetic statements are a posteriori. 
But mathematical knowledge exhibits the following peculiar feature: it is 
necessarily true, and, therefore, a priori, but, simultaneously, it is true of 
the world, and, therefore, synthetic. In fact, Kant observed the following 
peculiarity of mathematical knowledge: it is synthetic a priori. In other 
words, according to Kant, mathematical propositions, such as “1 + 2 =
3,” are synthetic statements, abstractions from the sensing of objects, and, 
yet, they are a priori, in the sense that we do not need to do any 
experiments in order to verify them. Thus, Kant came up with the 
following question: how can we know things that are synthetic a priori? In 
order to answer this question, he developed a whole system of metaphysics 
that he called transcendental idealism and expounded in his Critique of 
Pure Reason. 
Kant’s metaphysical system is founded on the thesis that we do not know, 
and cannot know, the essence of things, the things-in-themselves, which 
he called “noumena”—meaning objects or events that exist independently 
of human sense and/or perception—but we can only know things as they 
appear to consciousness, which are called “phenomena.” In Kant’s 
philosophy, a phenomenon is a faded, dissolved declaration of the 
corresponding noumenon, the manner in which the corresponding 
noumenon (thing-in-itself) appears to an observer. According to Kant, 
phenomena have been put through a kind of mental filter, which is the way 
in which consciousness perceives the world, and mathematics is that kind 
of mental filter. In particular, Kant maintains that geometry is the spatial 
form through which consciousness perceives the world, and arithmetic—
specifically, the one-dimensional sequence of numbers—is the temporal 
form through which consciousness perceives the world. Hence, according 
to Kant, we do not receive mathematics from the system of space-time 



 

 

36 

itself, but we use mathematics, our spatio-temporal intuitions and 
intellectual “glasses,” in order to understand and organize the world, and 
this is the reason why mathematics is a priori. Geometry is the way in 
which we organize space, and arithmetic is the way in which we organize 
time, and, when we combine geometry with arithmetic, we obtain the 
intellectual framework of the spatio-temporal world that we experience, 
which is relevant and meaningful because there is a structural continuity 
between the reality of the world and the reality of consciousness.  
In his Transcendental Aesthetic, Kant refers to the followers of Newton’s 
position as the “mathematical investigators” of nature, who contend that 
space and time “subsist” on their own; and he refers to the followers of 
Leibniz’s position as the “metaphysicians of nature,” who think that space 
and time “inhere” in objects and their relations. At the ontological level, 
Kant’s position is that space and time do not exist independently of human 
experience, but they are “forms of intuition” (i.e., conditions of perception 
imposed by human consciousness). In this way, he managed to reconcile 
Newton’s and Leibniz’s arguments: he agrees with Newton that space is 
an irrefutable reality for objects in experience (i.e., for the elements of the 
phenomenal world, which are the objects of scientific inquiry), but he also 
agrees with Leibniz that space is not an irrefutable reality in terms of 
things-in-themselves. At the epistemological level, unlike David Hume, 
Kant argues that the axioms of Euclidean geometry are not self-evident or 
true in any logically necessary way. For Kant, the axioms of Euclidean 
geometry are logically synthetic, that is, they may be denied without 
contradiction, and, therefore, consistent non-Euclidean geometries are 
possible (as Lobachevski, Bolyai, and Riemann actually accomplished). 
However, Kant argues that the axioms of Euclidean geometry are known a 
priori, specifically, they depend on our intuition of space, that is, space as 
we can imaginatively visualize it. 
After the publication of Kant’s philosophical works, numerous attempts 
have been made to articulate methods of philosophical research that 
synthesize idealism and positivism, or that at least combine aspects of 
idealism and positivism with each other. Kant has correctly highlighted 
and elucidated the active role of consciousness in cognition, and the 
distinction between cognition and the object of cognition. The distinction 
between cognition and the object of cognition plays a central role in the 
so-called analytic philosophy. However, analytic philosophy may lead to 
an impasse, because it urges one to repeat the distinction between 
cognition and the object of cognition ad infinitum (forever). Inherent in 
analytic philosophy is the risk of using Kantian philosophy in an abortive 
way, in the sense that the attempt to define the presuppositions of the 
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presuppositions of philosophy can continue ad infinitum, annihilating 
epistemology. To mitigate this risk, Kant resorted to a formalist view of 
idealism: Kant’s Critique is characterized by formal idealism, in the sense 
that it maintains that the form of objects is due to consciousness, but not 
their matter. Furthermore, following Wittgenstein, and in order to avoid 
the excesses of analytic philosophy, particularly, scepticism, I would say 
that, at some point, a mature philosophical-scientific mind must make a 
final, epistemologically responsible decision, instead of transforming 
philosophy into a meaningless “language game.” Wittgenstein has 
compared the sceptic with someone who looks for an object in a room and 
acts as follows: he opens a drawer and sees that it is not there; he closes 
the drawer, waits, and then he opens it again to see whether by chance the 
object is there; and he continues in this way, that is, he obsessively opens 
and closes a drawer looking for something that is not there. According to 
Wittgenstein, sceptical doubt is not true doubt, but an obsession, because 
true doubt, somehow, comes to an end. Regarding the reality of the 
external world, I should mention that the very fact that the object of 
cognition, the world, exhibits a kind of resistance to cognition (and, thus, 
consciousness has to try hard in order to know the world and impose the 
intentionality of consciousness on the word) implies that—even though, 
under certain conditions, the world is submissive to the intentionality of 
consciousness—the world is not merely a projection and an extension of 
consciousness. 
The way in which Frege attempted to do justice to the objectivity of 
mathematics and to the reality of the world was logicism, which, as I 
mentioned earlier, brings together logic and arithmetic. Logicism resorts to 
Plato’s philosophical realism regarding the objectivity of mathematics, but 
logicism differs from classical Platonism in two ways. Firstly, in contrast 
to classical Greeks, Frege and logicism in general regard arithmetic, rather 
than geometry, as the foundational branch of mathematics, because of the 
following two reasons: in the seventeenth century, Descartes’s analytic 
geometry, adapting Viète’s algebra to the study of geometric loci, showed 
that algebra can be used in order to model geometric objects in a 
systematic and rigorous way, thus establishing a correspondence between 
geometric curves and algebraic equations; and, in the nineteenth century, 
Nikolai Ivanovich Lobachevski, János Bolyai, and Bernhard Riemann 
invented rigorous and consistent alternatives to Euclidean geometry. 
Hence, for Frege and the logicists in general, the central problem in 
mathematical philosophy is to understand the meaning of a number. In 
particular, logicists endow arithmetic with the objectivity that 
characterizes Platonic forms, but they do so in an indirect way—through 
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logic—trying, in a sense, to achieve a creative synthesis between Kant’s 
transcendental idealism and Plato’s philosophical realism. The role that 
logic plays in the “school” of logicism is the second issue with regard to 
which logicism differs from classical Platonism. In particular, Frege 
thought that we can do justice to mathematical Platonism, according to 
which arithmetic is about things that are forms, if we show that 
mathematics—particularly, arithmetic—is reducible to logic, and if we 
take a Platonic view of logic; hence, the name of this “school” of 
mathematical philosophy is logicism. 
Frege fused logic and arithmetic by formulating a theory of numbers that 
is based on the concept of a class of objects and on structural linguistics. 
Hence, Frege synthesized Aristotle’s work on logic and language with 
Plato’s theory of forms. In particular, Frege thought as follows: Let us 
consider a variable 𝑥, meaning that 𝑥 is either a symbol representing an 
unspecified term of a theory, or a basic object of a theory that is 
manipulated without referring to its possible intuitive interpretation. Thus, 
given a class of sentences that have the same form, we can capture their 
common form by replacing their specific subjects with a variable 𝑥. For 
instance, given sentences such as “Plato is a philosopher,” “Aristotle is a 
philosopher,” “Kant is a philosopher,” “Frege is a philosopher,” etc., 
which have the same form, we can replace the name of the subject with a 
variable 𝑥 , thus formulating the sentence “𝑥  is a philosopher,” which 
captures the common form of the aforementioned sentences. In this way, 
we obtain a class: all the things that can satisfy the sentence “𝑥  is a 
philosopher,” whenever we replace 𝑥 with a name, belong to the class of 
philosophers. Hence, Plato, Aristotle, Kant, Frege, and any other person 
whom we could substitute for 𝑥 are members of the class of philosophers. 
According to Frege’s terminology, whereas propositions are declarative 
statements that are either true or false, such as the statement “Plato is a 
philosopher,” a statement that contains a variable 𝑥  and expresses a 
proposition as soon as a value is assigned to 𝑥 is a propositional function, 
such as the statement “𝑥 is a philosopher.” In other words, propositions 
and propositional functions differ from each other by the fact that 
propositional functions are ambiguous, in the sense that a propositional 
function contains a variable whose value is unassigned. A class is the 
extension of a propositional function; for instance, the collection of all 
philosophers constitutes the extension of the propositional function “𝑥 is a 
philosopher,” and it is a class. Frege used the so defined concept of a class 
in order to refer to numbers and study the foundations of arithmetic. 
According to Frege, numbers are classes. In his seminal book Basic Laws 
of Arithmetic (1893, 1903), Frege explained that any number 𝑛 can be 
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used in order to count any 𝑛-membered class. For instance, the number 
two can be thought of as the class of all two-membered things, namely, as 
the class of all pairs, independently of the nature of the objects that 
constitute each pair. Similarly, the number three can be thought of as the 
class of all triplets, namely, as the class of all those things which have 
three members; the number four can be thought of as the class of all 
quadruples, namely, as the class of all those things which have four 
members, etc. Collect all those things which have 𝑛 members, and that, 
according to Frege, is the number 𝑛 . Notice that this way of defining 
numbers is substantively different from the thesis that a number is a 
property of a collection of objects, because, according to Frege’s 
conception of numbers, a number is a particular kind of object, it is a class. 
Frege built a whole system of logic on the aforementioned concept of a 
class. 
In order to define the concept of a natural number, in particular, Frege 
defined, for every two-place relation 𝑅, the concept “𝑥 is an ancestor of 𝑦 
in the 𝑅-series,” and this new relation is known as the “ancestor relation 
on 𝑅.” The underlying idea can be easily grasped if we interpret Frege’s 
two-place relation 𝑅 as “𝑥 is the father of 𝑦 in the 𝑅 series.” For instance, 
if 𝑎 is the father of 𝑏, 𝑏 is the father of 𝑐, and 𝑐 is the father of 𝑑, then 
Frege’s definition of “𝑥  is an ancestor of 𝑦  in the fatherhood-series” 
ensures that 𝑎 is an ancestor of 𝑏, 𝑐, and 𝑑, that 𝑏 is an ancestor of 𝑐 and 
𝑑, and that 𝑐 is an ancestor of 𝑑. More generally, given a series of facts of 
the form 𝑎𝑅𝑏, 𝑏𝑅𝑐, and 𝑐𝑅𝑑, Frege showed that we can define a relation 
𝑅∗  as “𝑦 follows 𝑥  in the 𝑅-series.” Thus, Frege formulated a rigorous 
definition of “precedes,” and he concluded that a “natural number” is any 
number of the predecessor-series beginning with 0. 
 
Scientific Creation and the Methodology of Mathematics 

 
As I mentioned in the Preface, by the term “truth,” I mean the set of those 
presuppositions which constitute the conditions under which the 
representation of reality within consciousness (i.e., the knowledge of the 
real) is consistent with the presence of reality (i.e., with the nature of the 
real).  
By the second half of the twentieth century, the borders between the 
“schools” of logicism (which maintains that mathematical entities can be 
defined in the language of symbolic logic and implies a logical approach 
to truth), intuitionism (which maintains that mathematical entities are 
mental constructs and implies a constructivist approach to truth), and 
formalism (which maintains that mathematical entities, irrespective of any 
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question about their essence, can be studied as terms of a formal language 
modulo the equivalence relation of “provable equality”) became blurred, 
and none of the aforementioned three “schools” of mathematical 
philosophy existed separately from the others. Thus, from the middle of 
the twentieth century onward, mathematicians became preoccupied with 
new, broader epistemological debates, which, in fact, have prevailed in 
every scientific discipline (both in the natural sciences and in the social 
sciences), and they center around the following two issues: (i) the 
difference between “truth as a discovery” and “truth as an invention”; and 
(ii) the determination of the degrees of truth and the difference between 
“correctness” and “fallacy.” 
The French epistemologist Gaston Bachelard, in his books Le nouvel 
esprit scientifique (1934) and La formation de l’esprit scientifique (1938), 
pointed out that science is a mental process that aims to create concepts 
that contribute to an ever closer approach to reality. The phases through 
which consciousness passes in the context of scientific creation are the 
following: firstly, an intuitive general conception of its object; secondly, 
an analytic distinction of the individual elements that make up the given 
object, and, during this phase, a rigorous evaluation of those elements 
takes place; and, thirdly, a synthesis of the aforementioned elements, 
leading to the final interpretation of the scientific object in its entirety. 
According to Bachelard, the “scientific object” is constructed by the 
scientific consciousness, and, therefore, rather than being seen in terms of 
dualism and opposition, empiricism and rationalism complement each 
other in the context of scientific creation; and both a priori methods (or 
reason) and a posteriori methods (or dialectic) are parts of scientific 
research.  
In light of my claim that a synthesis between philosophical realism and 
idealism is required in order to formulate a proper ontology, reality is not 
merely an object whose various individual manifestations are grasped in a 
static way by a scientist’s consciousness. On the contrary, reality is an end 
towards which a scientist’s consciousness is directed in a dynamical way 
and with the aim of annihilating the distance between consciousness and 
reality. This process results in the objectification of a scientific theory 
generated by this very process, and this objectification is the essence of 
scientific creation. Therefore, science, including mathematics, is both an 
“invention” (referring to a conscious process of planning and producing 
something in order to meet a specific reason) and a “discovery” (referring 
to the provision of observational evidence and to the development of an 
initial understanding of some phenomenon usually pertaining to natural 
occurrences). 
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In the context of scientific creation, deduction, induction, and analogy are 
the methods by which a scientist’s consciousness works, depending on the 
nature of the scientific object in question. In its essence, deduction differs 
from analysis, because analysis is merely concerned with the components 
of a unity, whereas deduction, being based on a set of axioms, expresses a 
deeper causal relationship between the derived result and its reference 
term(s). Moreover, in its essence, induction differs from synthesis, because 
synthesis is an essential way of transcending certain partial data which a 
scientist’s consciousness initially takes into account together with the very 
pattern sought to be realized through synthesis, whereas induction is a 
formal variety of transcendence in the context of which consciousness 
moves, through generalizations, from a series of levels representing partial 
data to a level of unified consideration of the similarities exhibited by 
those partial data. Analogy is a mental process consisting of the transition 
from some partial data to some other partial data (by means of the 
identification of similarities or differences), and, although it does not 
provide conclusive evidence, it reinforces the element of inventiveness.  
Deduction is particularly applicable to mathematics, which presupposes 
the existence of an ideal reality that is differentiated according to the 
axioms that underpin it. However, the ideal reality of mathematics can be 
viewed in a unified way thanks to synthetic processes that allow each 
individual aspect of mathematical reality to be autonomously valid in a 
particular field, while at the same time being related to the other aspects of 
mathematical reality. When the terms of a mathematical equation are 
given a meaning that refers to empirical data, we move from pure 
mathematics to applied mathematics. Induction is particularly applicable 
to experimental (and, generally, applied) science, which presupposes the 
existence of a sensible reality that appears in the form of individual 
experiences. Consciousness transcends these experiences by integrating 
them into a larger hypothetical reality, which is based on a model created 
by consciousness, and consciousness aims to confirm this model through 
empirical tests. 
In view of the arguments that I have already put forward, truth is neither a 
pure essence nor a pure relation (or “correspondence”)—it is a dynamical 
and rational contemplation of the world and of consciousness, as 
consciousness integrates and reintegrates itself into the world. Therefore, 
truth should be construed neither as a discovery alone nor as an invention 
alone, but as the outcome of the contact and the interaction between 
consciousness and the reality of the world. The integration of 
consciousness into the world is both a volitional act and an existential 
necessity. However, when conscious beings integrate themselves into the 
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world, they do not only accept the reality of the world as a substantive 
presence, but they also attempt to understand and interpret the reality of 
the world. Even when consciousness cannot enter into and partake in the 
reality of a particular aspect of the world or of a particular situation, 
consciousness can create a pertinent concept. Hence, theoretical constructs 
play a necessary and major role in science. Moreover, Kant has 
masterfully proved that scientific laws are neither connatural to reality nor 
innate in it, but they are kinds of relations (specifically, hypothetico-
deductive systems) through which consciousness understands and 
interprets reality. During the process of scientific explanation, the 
consciousness of a scientist creates new, more complete systems of 
relations (namely, hypothetico-deductive systems) in order to improve 
one’s understanding and interpretation of reality, thus replacing older, 
scientifically degenerating systems of relations with new ones, which have 
a broader and deeper explanatory domain.  
In the context of the relations between the classical logical values “true” 
and “false” (or “untrue”), we must distinguish the “false” not only from 
the “true” but also from the “erroneous,” the “absurd,” the “irrational,” and 
the “fallacious.” The term “erroneous” means a structural and automatic 
lapse in reasoning that cannot be corrected. The term “absurd” also means 
a definite error, but, although not amenable to correction itself, it may 
constitute a criterion for correcting a series of syllogisms in which we 
deliberately place it when we use it as an instrument of reference, 
especially in the context of the form of argument that is called reductio ad 
absurdum (where we try to establish a claim by showing that the opposite 
scenario would lead to absurdity or contradiction). The term “irrational” 
means the conclusion of a series of syllogisms that are not logically 
connected to each other, and the intellectually pathological nature of each 
proposition to which the irrational is reduced has a perverse effect on the 
entire series of syllogisms that results in (converges to) the irrational.  
However, understanding the concept of the fallacious in the context of 
logic is somewhat more complex. The difference between the “fallacious” 
and the “false” can be understood if we have previously understood the 
difference between the “correct” and the “true.” The “false” is the exact 
opposite of the “correct,” but the contrast between the “true” and the 
“fallacious” is neither absolute nor insurmountable. The “fallacious” is an 
approximation of the “true,” in the sense that it lacks the element of 
correctness but approaches the “true,” tends to the “true.” The “correct” is 
the unique conclusion of the generally understood “true,” and it 
encompasses the “fallacious,” which is a deviation from the “correct” but 
is subject to correction. Fallacy means intellectual wavering with a 
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demand for truth, whereas correctness means the precise targeting of the 
truth. A fallacy prepares the consciousness to reach a truth, and the 
conception of truth as correctness refers to the culmination of the effort to 
reach a truth in an absolutely accurate manner. 
The concept of truth as correctness was introduced at the beginning of the 
twentieth century by the French mathematician Jacques Hadamard.1  In 
particular, if the equations and the data of a real system (i.e., of a physical 
or a social problem mathematically expressed) are such that (i) the model 
has a solution corresponding to the data, (ii) the solution is unique, and 
(iii) the solution is continuously dependent on the data (meaning that a 
small error in the data yields a small error in the estimation of the 
solution), then the solution is said to satisfy these three “Hadamard’s 
restrictions,” and then the equations of the model and the data give a well-
posed problem. Given the well-posed problem that corresponds to a real 
system, we have to find its solution. Because of the third Hadamard’s 
restriction (which is known as “stability”), we can use the “approximation 
principle” as a heuristic device. Hence, given the well-posed problem 𝑃, 
we search for an appropriate approximation 𝑃% of the problem 𝑃 such that 
the solution 𝑆%, containing the index 𝑛, of 𝑃% can be determined. Then the 
solution 𝑆 of 𝑃 is the limit of 𝑆% as 𝑛 tends to infinity, symbolically, 𝑆 =
𝑙𝑖𝑚%→'𝑆%. However, as the Soviet mathematician M. M. Lavrentiev, who 
was a prominent member of the Soviet Academy of Sciences (Siberian 
Department), argues in his book Some Improperly Posed Problems of 
Mathematical Physics, many real problems of mathematical physics give 
rise to problems that are not well-posed in the sense of Hadamard 
(principally, they fail to satisfy the condition of stability); and another 
prominent Soviet mathematician, Andrey N. Tikhonov, developed a 
method of regularization of “improperly posed” (or “ill-posed”) problems, 
and this method is known as the “Tikhonov regularization.” In fact, if a 
problem is not well-posed in the sense of Hadamard, then it needs to be 
reformulated for numerical treatment, and, typically, this involves 
including additional assumptions, such as appropriate continuity and 
differentiability properties of the mathematical expression of the 
corresponding well-posed problem. According to Tikhonov, a well-posed 
problem can be defined as follows: Let 𝑋 and 𝑌 be some complete metric 
spaces, and let 𝐴𝑓 be a function whose domain is 𝑋 and whose range is 𝑌. 
Consider the equation  
𝐴𝑓 = 𝑔.                                                                                                     (1) 

 
1 The concept of truth as correctness is intimately related to the concept of well-
posedness.  
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We call the problem for the solution of (1) “well-posed according to 
Tikhonov” if the following conditions are fulfilled: (i) It is a priori known 
that the solution 𝑓 exists for some class of data and belongs to some given 
closed set 𝑀 ⊂ 𝑋, symbolically, 𝑓 ∈ 𝑀. (ii) The solution is unique in a 
class of functions belonging to 𝑀. (iii) Arbitrarily small changes of the 
right-hand side 𝑔 that do not carry the solution 𝑓 out of 𝑀 correspond to 
arbitrarily small changes in the solution 𝑓. If we denote by 𝑀( the image 
of 𝑀 after the application to the space 𝑋 of the operator 𝐴, then the third 
Tikhonov’s requirement can be restated as follows: the solution of the 
equation (1) depends continuously on the right-hand side 𝑔 on the set 𝑀(. 
In other words, Tikhonov changed Hadamard’s notion of correctness by 
showing that an improperly posed problem can become well-posed by 
introducing a sufficiently “strong” norm in the data space 𝑌  or a 
sufficiently “weak” one in the space 𝑋. The mathematical concepts used in 
this definition will be completely clarified later in this book.  
Revisiting ontology, and in view of the arguments that I have already put 
forward, we conclude that the structure governing the constitution of 
objective reality cannot be understood as opposed to the structure 
governing that kind of existence which we call consciousness and which is 
linked to objective reality. The structure of physical universe, the structure 
of biological universe, and the structure of mental universe (the universe 
of consciousness) are not “one,” but are unified, and the structural 
continuity between the physical, the biological, and the mental is 
manifested in the energy field, as Pierre Teilhard de Chardin has pointed 
out, and its center of reference is consciousness. Hence, because of the 
presence of consciousness in the world, and because of the potential 
submissiveness of the world to the intentionality of consciousness, the 
fundamental ontology of the world involves two sets of considerations that 
work in tandem and are summarized in the following table: 
 
Table 0-1: The two sets of considerations that are intrinsic to the fundamental 
ontology of the world. 
 

Reality of the world Reality of consciousness 
Reality as immediacy Reality as mediacy (mentally 

mediated) 
Non-intentional action Intentional action 

Experience Abstract thinking 
Reality as a set of constraints Reality as a set of opportunities 
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Based on the aforementioned arguments, I have articulated a model of 
human creativity and historical becoming, and I have called it the 
“dialectic of rational dynamicity.” The dialectic of rational dynamicity, as 
a method for the operation of consciousness and as a model of the 
operation of reality in general, consists of the following five stages: 
Stage I: Vision and Teleology. Consciousness forms a clear intellectual 
image of an existential state that it wants to achieve, and it is clearly 
oriented towards that intellectual image. Thus, in this stage, consciousness 
determines the teleology of its action, and, by extension, it gives meaning 
to the beings and the things that exist in the world. As Edmund Husserl 
has pointed out, every intentional act has, as part of its formation, a 
correlative “meaning” (implying “thought,” or “what is thought about”), 
which is the object of the act.  
Stage II: Strategy. In general, “strategy” refers to the orientation of a 
conscious being in the long term, within its environment. Consciousness 
makes the strategic decision to act upon the reality of the world and upon 
itself in accordance with its teleology—that is, in order to bring about 
intended changes.   
Stage III: Planning. Consciousness articulates a plan: a method of 
deliberate, self-conscious activity, involving the consideration of outcomes 
before choosing among alternatives. The primary functions of planning are 
the following: (i) optimization (namely, improving efficiency of 
outcomes); (ii) balancing the agent’s teleology (which is aimed at 
restructuring reality) and the goal of maintaining the continuity of 
existence (namely, offsetting systemic failures); (iii) widening the range of 
decision-making (namely, enhancing the consciousness of choice); and 
(iv) organizing and enriching codes and networks of communication. 
Stage IV: Control. Consciousness continuously tries to maintain control 
over its action (and its consequences) in two ways: firstly, by intensifying 
its action (its intervention in the reality of the world and in itself) 
whenever its action is unreasonably sub-optimal (i.e., whenever it can 
improve its existential conditions even more, according to its strategic 
plan); secondly, by counterbalancing its original action (specifically, by 
reversing its original action and by following alternative paths of action) 
whenever the “negative externalities” of its original action,  the costs of its 
original action (for the world in general and for itself in particular), tend to 
exceed a critical value that represents the maximum existential risks that 
consciousness is determined to undertake in order to continue acting in the 
same way. Additionally, it should be mentioned that the term “dialectic,” 
in general, implies a transition from one state to another without the total 
elimination of the previous state, in the sense that the previous state leaves 
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its traces in the new one. Therefore, according to the dialectic of rational 
dynamicity, an agent of change does not bring about a totally new state, 
which would be uncontrolled by the agent of change. In general, change 
cannot go beyond certain limits without running the risk of systemic 
collapse. For this reason, the dialectic of rational dynamicity highlights the 
importance of preventing uncontrolled systemic turbulence and of 
continuously maintaining control over the consequences of our actions.  
Stage V: Development. Consciousness seeks to ensure and enhance its 
capabilities and to create favorable conditions for the continuation of its 
action in the future. However, consciousness realizes that the achievement 
of its ultimate goals is a work in progress. Thus, consciousness seeks to 
restructure the world according to the intentionality of consciousness—
without, however, jeopardizing the possibility of future interventions in 
the reality of the world. 
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Chapter 1 
Mathematical Logic 

 
By the term “deductive system,” we mean a calculus endowed with an 
interpretation of its terms. In logic, a “calculus” is a collection of symbols 
equipped with a set of rules for their manipulation. When a calculus is 
equipped with an “interpretation” of its terms, that is, with a set of rules 
that makes its terms meaningful, it becomes a deductive system. A 
deductive system is called “pure” if the rules of the interpretation are 
sufficient to establish the truth or the falsity of its constituent statements. 
The statements of a pure deductive system are called “L-determinate,” 
where L stands for the relevant formal language (the truth value of an L-
determinate statement is determined in L by an interpretation of the 
symbols in L). For instance, logic (the science of correct reasoning) is a 
pure deductive system. Therefore, truths derived from pure deductive 
systems are based on reason alone, and they are certain because they can 
never be empirically refuted. If a statement cannot be assigned a truth 
value only according to the rules of interpretation in the relevant deductive 
system, then it is called “non-L-determinate.” A non-L-determinate 
statement is called true or false not only on the basis of the rules of 
interpretation in the relevant deductive system, but also on the basis of a 
rule of disposition by reference to empirical data. Non-L-determinate 
statements for which a rule of disposition by reference to empirical data 
has been established are called “factual statements,” while the deductive 
systems in which they appear are called “applied.”  
A “scientific theory” is a deductive system (pure or applied) that explains 
generalizations (i.e., “scientific laws”) or aims to criticize and change the 
structure of the world and/or consciousness.  
In symbolic or mathematical logic, the following symbols are used: 

˄ or &: conjunction (“and”); 
˅: disjunction (“or”); 
¬: negation (“not”); 
→ or ⇒: material implication (“if . . . then . . .”); 
↔ or ⇔: biconditional (“if and only if”); 
∀: universal quantification (“for every”); 
∃: “there exists”; 
∃!: “there exists exactly one”; 
∄: “there does not exist”; 
𝑃(𝑥): predicate letter (meaning that 𝑥 (an object) has property 𝑃); 
|: “such that”; 
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⊢: turnstile (𝑥 ⊢ y means that 𝑥 “proves” (i.e., syntactically entails) 𝑦; 
a sentence 𝜑 is “deducible” from a set of sentences 𝛴, expressed 
𝛴 ⊢ 𝜑, if there exists a finite chain of sentences 𝜓), 𝜓", 𝜓#, … , 𝜓% 
where 𝜓%  is 𝜑  and each previous sentence in the chain either 
belongs to 𝛴, or follows from one of the logical axioms, or can be 
inferred from previous sentences; ⊬ denotes the negation of ⊢); 

⊨: double turnstile (𝑥 ⊨ y means that 𝑥  “models” (i.e., semantically 
entails) 𝑦; a sentence 𝜑 is a “consequence” (i.e., an ordered list) of 
a set of sentences 𝛴 , expressed 𝛴 ⊨ 𝜑, if every model of 𝛴  is a 
model of 𝜑); 

𝐵 ⊆ 𝐴: 𝐵 is a “subset” of 𝐴, meaning that every element of a set 𝐵 is 
an element of a set 𝐴; 

𝐵 ⊂ 𝐴: 𝐵 is a “proper subset” of 𝐴, meaning that 𝐵 ⊆ 𝐴 and there is at 
least one element of 𝐴 that is not an element of 𝐵; 

𝑥 ≤ 𝑦: 𝑥 is less than or equal to 𝑦; 
𝑥 < 𝑦: 𝑥 is strictly less than 𝑦; 
𝑥 ≥ 𝑦: 𝑥 is greater than or equal to 𝑦; 
𝑥 > 𝑦: 𝑥 is strictly greater than 𝑦; 
𝑥%: this operation is called “exponentiation” (pronounced as “𝑥 raised 

to the power of 𝑛”), and it means that 𝑥 is multiplied by itself 𝑛 
times, where 𝑛 = 0,1,2,3, …; 𝑥) = 1, 𝑥" = 𝑥 , 𝑥# = 𝑥 ∙ 𝑥 , 𝑥* = 𝑥 ∙
𝑥 ∙ 𝑥, etc.; 

𝑥" %+ : this operation is called the “𝑛th root,” and it is the number whose 
𝑛 th power equals the given number (𝑛 ≠ 0 ); 𝑥" #+ = √𝑥  is the 
square root, 𝑥" *+ = √𝑥!  is the third root, etc.; 

( ) : brackets; they are used for convenience in grouping terms 
together (there are specific rules for removing brackets); 

∅: the empty set; 
℘(𝑋): the power set of a set 𝑋. The “power set” of a set 𝑋 is the set of 

all the subsets of 𝑋, including the empty set and 𝑋 itself. If a set has 
𝑛 elements, then the number of its subsets is 2%, and the number of 
its proper subsets is 2% − 1. For instance, if 𝐴 = {𝑎, 𝑏}, then its 
power set is e∅, {𝑎}, {𝑏}, {𝑎, 𝑏}f, and its proper subsets are ∅, {𝑎}, 
and {𝑏}. 

Sometimes, for emphasis, instead of the equality sign, namely, =, we use 
the symbol ≡, which, in this case, means “identically equal.” 
The English mathematician and philosopher George Boole (1815–64) 
realized that arguments expressed in an ordinary language (e.g., in 
ordinary English) can be expressed in the notation of mathematical logic 
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and then studied in the context of “propositional calculus.” For instance, 
consider the following argument: 

• If you want to learn mathematics, then you must study 
methodically. 

• If you must study methodically, then you must be taught an 
effective method of studying.  

• Therefore, if you want to learn mathematics, then you must be 
taught an effective method of studying. 

The aforementioned argument involves various propositions, which we 
may present by letters as follows: 
𝑃: You want to learn mathematics.  
𝑄: You must study methodically. 
𝑅: You must be taught an effective method of studying.  
These propositions can be “true” or “false.” The aforementioned argument 
can be formalized as follows: 

𝑃 ⇒ 𝑄 
𝑄 ⇒ 𝑅 
---------- 
𝑃 ⇒ 𝑅 

where the two propositions above the dashed line are the “premises,” and 
the one below the dashed line is the “conclusion.” The reasoning process 
that leads from premises to a conclusion is called a “deductive process” or 
just a “deduction.” A “theorem” is a formula inferred by means of a rule of 
inference in a finite number of steps from axioms and previously inferred 
formulae. Those propositions where truth value is dependent on the values 
of the variables in them are called “predicates” (hence, we talk about 
“predicate calculus”).  
It is important to distinguish between the terms “validity” and “truth” as 
they are used in logic. An argument, a reasoning process, or a deduction is 
said to be valid (i.e., logically correct) if the truth of the conclusion 
follows from the truth of the premises. Notice that, if the premises are both 
true, then the conclusion is logically necessarily true, too. Therefore, with 
one or more factually incorrect premises, an argument may still be valid, 
although its conclusion may be false. Furthermore, a valid argument based 
on false premises does not necessarily lead to a false conclusion. In other 
words, there is a significant difference between logical (i.e., procedural) 
correctness (“validity”) and factual correctness. If an argument is valid 
(i.e., logically correct), and if its premises are true (i.e., if the facts on 
which it is based are true), then it is said to be “sound.” In logic, we focus 
on the validity of arguments rather than on their soundness, and this fact 
explains the “instrumental” role of logic in philosophy and science.  



 

 

50 

In the context of logic, truth is a structural issue. Given a language 𝐿 (i.e., 
a collection of symbols, letters, or words with arbitrary meanings that are 
governed by rules and are used for communication), a structure 𝑆 is an 
ordered pair 〈𝐷, 𝐼〉 where: 𝐷 is a non-empty set denoting the domain of 
discourse (it is a non-empty set of any entities), and 𝐼 is an interpretation, 
that is, a rule that assigns to each individual element of 𝐿 an element of 𝐷, 
and to each 𝑛-place predicate of 𝐿 a subset of 𝐷% (where 𝐷% denotes the 
set of 𝑛-tuples taken from 𝐷). 
A “Boolean algebra” is the six-tuple 
〈𝐴, ˄, ˅, ¬, 0, 1〉,  
consisting of a set 𝐴  equipped with two binary operations: ˄  (called 
“meet” or “and”) and ˅ (called “join” or “or”), a unary operation ¬ (called 
“complement” or “not”), and two elements 0 and 1 in 𝐴 (called “bottom” 
and “top,” respectively, and denoted by the symbols ⊥ 𝑎𝑛𝑑⊤ , 
respectively), such that the truth value of a true sentence is 1, the truth 
value of a false sentence is 0, and, for all elements 𝑎, 𝑏, and 𝑐 of 𝐴, the 
following axioms hold: 

i. Associativity:  
𝑎˅(𝑏˅𝑐) = (𝑎˅𝑏)˅𝑐; 	𝑎˄(𝑏˄𝑐) = (𝑎˄𝑏)˄𝑐. 

ii. Commutativity: 
𝑎˅𝑏 = 𝑏˅𝑎; 	𝑎˄𝑏 = 𝑏˄𝑎. 

iii. Absorption: 
𝑎˅(𝑎˄𝑏) = 𝑎; 	𝑎˄(𝑎˅𝑏) = 𝑎. 

iv. Identity: 
𝑎˅0 = 𝑎; 𝑎˄1 = 𝑎. 

v. Distributivity: 
𝑎˅(𝑏˄𝑐) = (𝑎˅𝑏)˄(𝑎˅𝑐); 	𝑎˄(𝑏˅𝑐) = (𝑎˄𝑏)˅(𝑎˄𝑐). 

vi. Complements: 
𝑎˅¬𝑎 = 1 and 𝑎˄¬𝑎 = 0.  

For instance, the 2 -element Boolean algebra has only two elements, 
namely, 0 (or “False”) and 1 (or “True”), and it is defined by the rules 
mentioned in Table 1-1. 
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Table 1-1: Truth tables of a 2-element Boolean Algebra. 
𝑎 𝑏 𝑎˄𝑏 𝑎˅𝑏 𝑎 ¬𝑎 

0 0 0 0 0 1 
1 0 0 1 1 0 
0 1 0 1 
1 1 1 1 
 
Let 𝑼 = {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒎, … }  be the original alphabet consisting of 
variables (arguments). A “Boolean function” is a rule that maps each 
argument in its domain to exactly one value in its range where the 
allowable values of range and the allowable values of domain are just one 
of two variables, namely, “true” (symbolized by 𝟏 ) and “false” 
(symbolized by 𝟎). In order to define any Boolean function, we must 
specify its value for each possible value of its inputs. For instance, the 
Boolean functions “not” (¬), “and” (˄), and “or” (˅) are defined as 
follows:  

𝑵𝑶𝑻(𝒙) = {
𝟏	𝒊𝒇	𝒙	𝒊𝒔	𝟎
𝟎	𝒊𝒇	𝒙	𝒊𝒔	𝟏 

 
𝑨𝑵𝑫(𝒙, 𝒚) = �𝟏	𝒊𝒇	𝒃𝒐𝒕𝒉	𝒙	𝒂𝒏𝒅	𝒚	𝒂𝒓𝒆	𝟏𝟎	𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

 
𝑶𝑹(𝒙, 𝒚) = �𝟏	𝒊𝒇	𝒂𝒕	𝒍𝒆𝒂𝒔𝒕	𝒐𝒏𝒆	𝒐𝒇	𝒙	𝒂𝒏𝒅	𝒚	𝒊𝒔	𝟏𝟎	𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

 
(the corresponding “truth tables” are shown in Table 1-1). 
 

De Morgan’s Laws 
 

The following pair of transformation rules is known as De Morgan’s laws 
(named after the nineteenth-century British mathematician Augustus De 
Morgan), and it is originally due to Aristotle: 
The negation of a disjunction is the conjunction of the negations: 
𝒏𝒐𝒕(𝑨	𝒐𝒓	𝑩) = (𝒏𝒐𝒕𝑨)𝒂𝒏𝒅(𝒏𝒐𝒕𝑩). 
The negation of a conjunction is the disjunction of the negations: 
𝒏𝒐𝒕(𝑨	𝒂𝒏𝒅	𝑩) = (𝒏𝒐𝒕𝑨)𝒐𝒓(𝒏𝒐𝒕𝑩). 
 

Basic Principles of Predicate Calculus 
 

As I have already mentioned, George Boole developed a purely symbolic 
system for deduction in a rigorous language of predicates (or relations, or 
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properties), and, thus, Predicate Calculus (henceforth, PC) emerged.  The 
formal system PC involves the following:  
 

i. The alphabet of PC: a countable set of variables (or arguments): 
𝑣", 𝑣# , 𝑣*, …  and a two-place predicate letter 𝑃 ; two logical 
connectives: ¬ and ˄; one quantifier symbol:	∃; three improper 
symbols: the left parenthesis, the comma, and the right 
parenthesis, namely, ( , ), but quite often we may also use 
brackets [ and ] as well as the symbol | standing for “such that.” 

ii. These symbols are used in order to build the (well-formed) 
formulae of PC, according to the following rules: 
a. If 𝑥, 𝑦 are individual variables, then 𝑃(𝑥, 𝑦) is a formula of 

PC.  
b. If 𝜑,𝜓 are formulae of PC, then so are (𝜑˄ψ) as well as ¬𝜑 

and ¬𝜓.  
c. If 𝑥 is an individual variable and 𝜑 is a formula, then so is 

∃𝑥𝜑.  
d. Something is a formula of PC only by virtue of the 

aforementioned conditions (a), (b), and (c).  
Remark: The alphabet contains only the logical symbols 	¬ , ˄ , and ∃, 
because the other usual symbols can be defined in terms of these three as 
follows:   
(𝜑˅𝜓) is defined as ¬(¬𝜑˄¬𝜓), 
(𝜑 → 𝜓) is defined as ¬(𝜑˄¬𝜓), 
(𝜑 ↔ 𝜓) is defined as ((𝜑 → 𝜓)˄(𝜓 → 𝜑)), and  
∀𝑥𝜑 is defined as ¬∃𝑥¬𝜑.  
 
A variable is said to be “bounded” if it is determined by a quantifier; 
otherwise, it is said to be “free.” For instance, in the formula ∃𝑥𝑃(𝑥, 𝑦), 𝑥 
is bounded, and 𝑦 is free. If a formula of PC contains no free variables, 
then it is said to be a “sentence.”  
By an “interpretation,” we mean the task of giving a certain meaning to the 
undefined terms of a formal system. Consider, for instance, the following 
sentences of PC: 

i. ∀𝑥∀𝑦(𝑃(𝑥, 𝑦) → 𝑃(𝑥, 𝑦)), 
ii. ((𝑃(𝑥, 𝑦)˄𝑃(𝑦, 𝑧)) → 𝑃(𝑥, 𝑧)), and  
iii. ∀𝑦∃𝑥𝑃(𝑥, 𝑦).  

If we interpret 𝑃 as the ancestor relation over the domain of all (living and 
dead) people (and if we assume that such a relation is biologically 
determined in a definite way), then: the sentence i means that, “if 𝑥 is an 
ancestor of 𝑦, then 𝑥 is an ancestor of 𝑦, for every 𝑥 and 𝑦,” namely, it is a 



 
 

 

53 

tautology; the sentence ii means that, “if 𝑥 is an ancestor of 𝑦, and if 𝑦 is 
an ancestor of 𝑧, then 𝑥 is an ancestor of 𝑧”; the sentence iii means that, 
“for every 𝑦, there exists an ancestor 𝑥.” Thus, the sentences i, ii, and iii 
are true. However, if we interpret 𝑃 as < (“strictly less than”) over the 
natural numbers, then the sentence iii is false. Moreover, if we interpret 𝑃 
as “the father of” over the domain of human beings, then the sentence ii is 
false. We can easily notice that the sentence i will remain true for any 
interpretation of 𝑃; such sentences of PC are said to be “universally valid” 
(and they are tautological in character). 
A “formal system” is obtained by choosing a finite set of axioms (or 
schemes of axioms, i.e., selected formulae) and a finite set of rules of 
inference in a given language. In the case of PC, we have the following 
axioms and the following rule of inference ( 𝜑,𝜓, 𝜒  are formulae, 
𝑥, 𝑦, 𝑦", … , 𝑦%, … are variables, and 𝜑(𝑦) is the result of substituting 𝑦 for 
all free occurrences of 𝑥 in 𝜑(𝑥)): 
 
Axioms of Predicate Calculus: 

i. ∀𝑦"…∀𝑦%	(𝜑 → (𝜓 → 𝜑)). 
ii. ∀𝑦"…∀𝑦%	(�𝜑 → (𝜓 → 𝜒)� → �(𝜑 → 𝜓) → (𝜑 → 𝜒)�). 
iii. ∀𝑦"…∀𝑦%	((¬𝜑 → ¬𝜓) → �(¬𝜑 → 𝜓) → 𝜑�).  
iv. ∀𝑦"…∀𝑦%	(∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)), provided that 𝜑 has no 

free occurrence of 𝑥. 
v. ∀𝑦"…∀𝑦%	((𝜑 → 𝜓) → (∀𝑦"…∀𝑦%𝜑 → ∀𝑦"…∀𝑦%𝜓)). 
vi. ∀𝑦"…∀𝑦%	(∀𝑥𝜑(𝑥) → 𝜑(𝑦)), provided that, as we substitute the 

free occurrences of 𝑥 in 𝜑(𝑥) with 𝑦, the 𝑦’s are free in 𝜑(𝑦), 
that is, they are not determined by quantifiers already occurring 
in 𝜑. 

The rule of inference for predicate calculus is modus ponens (“method of 
affirming,” or proof by affirming the antecedent), which has the following 
form: from 𝜑  and (𝜑 → 𝜓) , infer 𝜓 . In other words, if a conditional 
statement (“if 𝜑 then 𝜓”) is accepted, and the antecedent (𝜑) holds, then 
the consequent (𝜓) may be inferred.  
Remark: Another very famous and important rule of inference (logical 
argument) is modus tollens (“method of denying,” or proof by 
contrapositive), which has the following form: from ¬𝜓  and (𝜑 → 𝜓) , 
infer ¬𝜑. 
A “theorem” is a formula inferred by means of a rule of inference in a 
finite number of steps from axioms and previously inferred formulae. 
Hence, we are faced with the problem of determining that finite set of 
axioms (or schemes of axioms) from which the rule of inference will give 
only true sentences.  
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Formalism, Structuralism, and Mathematical Modeling 

 
The formalist approach to mathematics maintains that, in order to analyze 
a mathematical text, it suffices to study its formal devices, mainly, its 
syntax. Hence, according to formalism, mathematical statements are 
statements about the consequences of the manipulation of strings (i.e., 
alphanumeric sequences of symbols, usually presented in the form of 
equations) using established rules of inference (by a “rule of inference,” 
we mean a logical form consisting of a function that takes premises, 
analyzes their syntax, and returns a conclusion). In other words, according 
to formalism, mathematics does not consist of propositions representing an 
abstract sector of reality, but it is actually a game of symbols, without 
bringing with it more ontological commitments than, for instance, chess.  
In the 1930s, the great Austrian mathematician and logician Kurt Gödel 
undertook to evaluate the logical rigor of formalism. Broadly speaking, 
Gödel considered a statement of the type 
𝑃 = “This statement is false,” 
which leads to the following complicated situation: if 𝑃 = “This statement 
is false” is true, then it is false, but the sentence asserts that it is false, and, 
if it is, indeed, false, then it must be true, and so on. The earliest study of 
problems pertaining to self-reference in logic is due to the seventh-century 
B.C.E. Greek philosopher and logician Epimenides, who formulated the 
classical “liar paradox.” Gödel’s Incompleteness Theorem shows that such 
complicated situations can occur in any theory that is consistent and 
comprehensive enough to contain elementary arithmetic as the latter has 
been encoded by Peano’s axioms for natural numbers (see Chapter 2). 
Consequently, logic is necessary and capable of organizing every 
mathematical and, generally, scientific theory, but logic is not sufficient to 
completely organize itself. According to Gödel, human consciousness, in 
general, and thought processes, in particular, are not merely algorithmic. 
Gödel established the following argument mathematically: Either the 
human mind (even within the realm of pure mathematics) infinitely 
surpasses any finite machine (algorithmic process), or else there exist 
absolutely undecidable arithmetic propositions (see: Shanker, ed., Gödel’s 
Theorem in Focus). 
Formalism rightly stresses the importance of syntax and, particularly, of 
logical consistency, but it cannot stand as a general theory of the 
epistemology of mathematics or any other scientific discipline. Therefore, 
we have to turn from formalism to structuralism. Structuralism is 
concerned with the analysis of the underlying structures in a text. The 
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structure of a mathematical text can be explained and described as follows: 
Let 𝐶 denote the set of all basic conceptual objects (i.e., the “universe” of 
concepts), 𝑅 the set of all basic conceptual relations, and 𝐴 the set of the 
axioms of a structure. Then the corresponding structure is denoted by 
𝒮(𝐶, 𝑅, 𝐴). A segment of a structure is a set of concepts, definitions, and 
judgments of the given structure, it satisfies the axioms of the given 
structure as well as some additional conditions, and it is denoted by 
𝒮̅(𝐶,� 𝑅,� 𝐴̅). Suppose that a phenomenon of the sensible world has been 
described by a structure 𝒮(𝐶, 𝑅, 𝐴), or by a segment of this structure. Both 
the phenomenon and its mathematical model can be regarded as two 
isomorphic models, since the original phenomenon is initially modeled by 
our perception of it. More precisely, it is modeled by the initial reference 
of our consciousness to it, and its mathematical model is 𝒮(𝐶, 𝑅, 𝐴) or a 
segment of 𝒮(𝐶, 𝑅, 𝐴).  
The creation of isomorphisms between mathematics and other scientific 
disciplines or human activities is called mathematical modeling. Thus, 
mathematical modeling consists of two stages: (i) the formulation of the 
mathematical model of the object that one studies―that is, the 
transformation of the given problem into a mathematical one―and (ii) the 
solution to the corresponding mathematical problem, namely, the 
processing of the information that is contained in the given problem by 
means of mathematics and mathematical informatics. 
Regarding the logical-mathematical modeling of problems that belong to 
the realm of the social sciences, in particular, the value-system of the 
society in which behavior is studied must somehow find its place in the 
framework of action employed in the relevant analysis (see: Parsons, The 
Structure of Social Action). The French philosopher Louis Lavelle (one of 
the greatest French metaphysicians of the twentieth century) has argued 
that every value is an object of a desire and of a judgment. Thus, in the 
philosophy of the social sciences, by the term “values,” we mean needs 
that arise in consciousness and must be addressed by consciousness. For 
instance, needs to know, to reap, to sustain, to socialize, to individuate, to 
control, to act, and so on. Consciousness selects some concrete values-
needs which it projects onto the world, thus transforming them into 
historical objects, and, finally, the values that have been historically 
objectified (specifically, have become social and institutional events) 
influence consciousness, shaping the subject’s existential conditions. 
The transition from the natural sciences to the social sciences is an 
upward-moving process known as “emergentism.” The specific nature of 
the social sciences clearly emerges when we examine them from an 
ontological point of view. In his book Le Regole dell’Azione Sociale 
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(Milano: Il Saggiatore, 1983), Giuliano Di Bernardo (specifically, in the 
chapter entitled “La fondazione del sociale”) shows that social reality is 
constructed by humanity through “constitutive rules.” In particular, Di 
Bernardo (ibid) maintains that, based on constitutive rules, language, and 
the collective self, social reality has a dual ontology: one that is “visible,” 
observable, made up of objects from the external world, such as houses, 
monuments, and money; the other is “invisible,” made up, respectively, of 
housing regulations, the aesthetics of monuments, and the significance of 
money. 
As Giuliano Di Bernardo maintains in his book The Epistemological 
Foundation of Sociology (p. 48), “values and norms are closely related to 
action,”, and, indeed, “values, norms, and action are a unit, which can only 
be broken down analytically, in order to gain a better understanding of the 
different parts of which it consists.” Furthermore, Giuliano Di Bernardo 
(ibid, p. 50), referring to the “construction of social reality through 
constitutive rules,” succinctly maintains that “the social being (fact) is 
constituted not only by the visible ontology (of physics and biology) but 
also by the invisible ontology (of the normative).” 
The consciousness of existence that not only functions as a witness or an 
observer, but also functions as a judge is what we call “moral 
consciousness.” The logic of moral consciousness, that is, the logic of 
ethics, is called “deontic logic” (the word “deontic” derives from the 
Greek word “deon,” which means “what is binding” or “proper”). Ethics is 
concerned with what good as a concept is and with what we should and 
should not do. Deontic logic is concerned with the manner in which we 
can represent those things that we should and should not do logically. 
Some formal analogies between deontic notions and “pure” (alethic) 
modalities (“necessity,” “possibility,” and “impossibility”) were studied 
during the Middle Ages (especially in the context of fourteenth-century 
Aristotelianism) in terms of the following equivalences (where the 
sentential operator 𝑂  denotes the concept of obligation, the sentential 
operator 𝑃  denotes the concept of permission, the sentential operator 𝐹 
denotes the concept of prohibition, and 𝑝 is the corresponding sentence):  

i. 𝑃(𝑝) ↔ ¬O(¬𝑝), 
ii. 𝑂(𝑝) ↔ ¬𝑃(¬𝑝), 
iii. 𝑂(𝑝) ↔ 𝐹(¬𝑝), 
iv. 𝐹(𝑝) ↔ 𝑂(¬𝑝). 

In his book Elementa juris naturalis, Gottfried Wilhelm Leibniz 
developed the first modern system of deontic logic based on modal logic, 
and he called the deontic categories of the obligatory (debitum), the 
permitted (licitum), and the prohibited (illicitum) “modalities of law” (juris 
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modalia). The system of “standard deontic logic” developed by the 
Finnish philosopher Georg Henrik von Wright (1916–2003) can be 
axiomatized by adding the following axioms to the standard 
axiomatization of classical propositional calculus (modal logic): 

i. (⊨ 𝑝) → �⊨ 𝑂(𝑝)�, meaning that, “if 𝑝 is a tautology, then it 
ought to be that 𝑝” (i.e., contradictions are not permitted); 

ii. 𝑂(𝑝 → 𝑞) → �𝑂(𝑝) → 𝑂(𝑞)�, meaning that, “if it ought to 
be that 𝑝 implies 𝑞, then, if it ought to be that 𝑝, it ought to 
be that 𝑞.” 

iii. 𝑂(𝑝) → 𝑃(𝑝), meaning that, “if it ought to be that 𝑝, then it 
is permitted that 𝑝” (equivalently, “if it is not permitted that 
𝑝, then it is not obligatory that 𝑝”). 

The sentential operator 𝐹(𝑝), meaning “it is forbidden that 𝑝,” can be 
formally defined as 𝑂(¬𝑝) or as ¬𝑃(𝑝). 
In general, deontic logic builds a bridge between logical rigor and ethics. 
For a systematic study of deontic logic, one should read the following 
books by Giuliano Di Bernardo: Introduzione alla logica dei sistemi 
normativi, Bologna: Il Mulino, 1972; Le regole dell’azione sociale, 
Milano: Il Saggiatore, 1983; and Normative Structures of the Social 
World, Amsterdam: Rodopi, 1988.  
 

Proof: A Theme in Need of a Focus 
 

In its broadest sense, science is a system of behavior by means of which 
humans become masters of their environment. For this reason, no human 
society can exist without science. In a narrower sense, science is not so 
much a system of behavior as a system of knowledge which, specifically, 
aims to conceptualize, describe, and interpret the phenomena of the 
macrocosm and the microcosm according to a clearly determined and 
robust method, as well as to create the necessary intellectual tools for 
understanding the aforementioned phenomena, logic, and mathematics. 
Science builds knowledge through logic and testable explanations and 
predictions. Thus, science contrasts prejudice, superstition, personal 
opinion, subjective political beliefs, and, generally, irrational passions. 
In mathematics, a “proof” is a verification of a proposition by a chain of 
logical deductions from a set of axioms. As already explained above, by a 
“proposition,” we mean a statement that is either true or false; by a 
“predicate,” we mean a proposition whose truth value depends on the 
value of a variable; and, by an “axiom,” we mean a proposition that is 
assumed to be true (because we think that it is reasonable, that is, worthy 
enough to be declared true). We can choose any propositions as axioms, 



 

 

58 

provided, however, that the axiomatic system that we create is consistent 
and complete: a set of axioms is “consistent” if no proposition (in the 
given axiomatic system) can be proved to be both true and false, and a set 
of axioms is “complete” if it can be used to prove that every proposition 
(in the given axiomatic system) is either true or false (and, hence, in such 
an axiomatic system, every problem becomes solvable). However, as I 
have already mentioned, Kurt Gödel, in the 1930s, proved that there is no 
such axiomatic system (if it is to contain arithmetic), and, therefore, we 
must make compromises as to the range of validity and the explanatory 
power of each axiomatic system, but we must always follow the rules of 
logic in order to avoid contradictions.  
The first systematization of logic is due to the ancient Greek philosopher 
and scientist Aristotle, and, for this reason, the phrase “Aristotelian logic” 
is still commonly used. Aristotle’s works on logic were grouped together 
by ancient commentators under the title Organon (“Instrument”). In 
particular, the Organon comprises the following logical treatises written 
by Aristotle: (i) Categories, (ii) On Interpretation, (iii) Prior Analytics, 
(iv) Posterior Analytics, (v) Topics, and (vi) On Sophistical Refutations. 
The title Organon, meaning instrument, implies that logic is an instrument 
and a method used by philosophy and science, and, in particular, according 
to both Aristotle and the later Peripatetics, the ultimate purpose of correct 
reasoning is to create correct social relationships and to enable people to 
correctly communicate the results of philosophical and scientific research 
with each other. In the third century B.C.E., the Greek Stoic philosopher 
and logician Chrysippus founded a propositional calculus, studying 
implication, conjunction, and disjunction, and, in the early twentieth 
century, the Austrian philosopher Ludwig Wittgenstein brilliantly studied 
the problems of communication in a comprehensive and systematic way.  
Logic underpins “mathematical proof.” As Steve Halperin (Introduction to 
Proof in Analysis, p. 9) has pointedly argued, by the term “mathematical 
proof,” one should understand “a sequence of statements which establish 
that certain assumptions (the hypotheses) imply that a certain statement 
(the conclusion) is true,” and the statements that constitute a proof must 
satisfy the following requirements: (i) “each is clear and unambiguous”; 
(ii) “each is true, and its truth follows immediately from the truth of the 
preceding statements and the hypotheses”; and (iii) “the final statement is 
the conclusion.” Thus, in the context of a mathematical proof, we may use 
several techniques, such as direct proof (involving arguing step by step, 
starting from what we know until we have demonstrated the truth of some 
conclusion), mathematical induction, counterexamples (since a single 
counterexample suffices to prove that a statement claiming necessity and 
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universality is wrong), reductio ad absurdum (i.e., the form of argument 
that attempts to prove a statement by proving that the negation of the given 
statement leads to absurdity or contradiction), proof by contraposition (i.e., 
inferring a conditional statement from its contrapositive; the contrapositive 
of the statement “if 𝐴, then 𝐵” being the statement “if not 𝐵, then not 𝐴”), 
etc. In addition, the concept of a mathematical proof is inextricably linked 
to the concept of a definition, that is, to a deep and rigorous understanding 
of the essence of the object under consideration.  
In ancient Greece, Socrates, Plato, and Aristotle developed a way of 
thinking that is based on “universal definitions.” The classical Greek way 
of thinking consists of understanding the whole as a whole and of thinking 
upon thinking itself, thus leading contemplation to a level that supersedes 
mere practical thinking and spontaneity. This way of thinking opens the 
mind to the world of philosophy, scientific rigor, and genuine strategy.  
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Chapter 2 

The Structure of Number Sets, Arithmetic, 
and Algebra  

 
The attempts of nineteenth-century mathematicians to found mathematical 
analysis in a rigorous way were based on real numbers, which also needed 
a rigorous foundation. Numbers are abstract objects, concepts. 
Simultaneously, they are intimately related to the world, since we organize 
the world with them (that is, we count, we measure, and we form scientific 
theories with numbers). In order to understand the concept of a number, 
we have to keep in mind that what we count are not “things,” but “sets of 
things.” 
The history of set theory and of non-numerical mathematics, in general, 
can be traced back to the era of classical Greece, but the first systematic 
inquiry into the foundations of set theory was due to the German 
mathematician Georg Ferdinand Ludwig Philipp Cantor (1845–1918). 
However, before Cantor, George Peacock (1791–1858), Augustus De 
Morgan (1806–71), and George Boole (1815–64) had already made 
significant contributions to the formalization of non-numerical mathematics. 
According to Cantor, by the term “set,” we should understand a well-
defined gathering together into a whole of definite, distinguishable objects 
of perception or of our thought that are called elements of the set. By the 
term “well-defined,” Cantor means that, given any object and any set, the 
given object is either an element of the given set or not an element of the 
given set. By the terms “definite” and “distinguishable,” Cantor means that 
no two elements of a set are the same.  
The empty set is denoted by ∅. The empty set has no elements. If a set has 
only one element, then it is called a “singleton.” 
If every element of a set 𝐵 is an element of a set 𝐴, then 𝐵 is said to be a 
“subset” of 𝐴, and we write 𝐵 ⊆ 𝐴. Every set is a subset of itself. If 𝐴 is an 
arbitrary set, then ∅ ⊆ 𝐴; that is, the empty set is a subset of every set. 
Two sets 𝐴 and 𝐵 are “equal” if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, and then 
we write 𝐴 = 𝐵. If two sets 𝐴 and 𝐵 satisfy the condition 𝐵 ⊆ 𝐴 and there 
is at least one element of 𝐴 that is not an element of 𝐵, then 𝐵 is said to be 
a “proper subset” of 𝐴, and we write 𝐵 ⊂ 𝐴. If 𝐵 ⊆ 𝐴 or 𝐵 ⊂ 𝐴, then 𝐴 is 
said to be a “superset” of 𝐵. When in a particular situation all the sets 
under consideration are subsets of a fixed set, this fixed set, which is the 
superset of every set under consideration, is called the “universal set,” or 
the “universe of discourse.” 
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If the elements of a set are sets themselves, then the set is called a “set of 
sets,” “family of sets,” “collection of sets,” or “class of sets.” For instance, 
𝒞 = e{𝑥}, {𝑦, 𝑧}f is a class of sets (notice that 𝑥  is something different 
from {𝑥}).  
If 𝐴 and 𝐵 are two arbitrary sets, then we define their 

i. “union”:  
𝐴 ∪ 𝐵 =
{𝑒𝑣𝑒𝑟𝑦	𝑥	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑥	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑜𝑓	𝐴	𝑎𝑛𝑑	𝐵}; 
and 

ii. “intersection”:  
𝐴 ∩ 𝐵 = {𝑒𝑣𝑒𝑟𝑦	𝑥	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑥	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑏𝑜𝑡ℎ	𝐴	𝑎𝑛𝑑	𝐵}.  

Two sets are called “(relatively) disjoint” if their intersection is the empty 
set. 
However, in 1901, the British philosopher and mathematician Bertrand 
Russell proved that every set theory that contains an unrestricted 
comprehension principle leads to contradictions. In other words, the 
“universal set” is not a set. The aforementioned contradictory situation is 
known as Russell’s paradox.  
Russell’s Paradox: Let 𝑈 be the collection of all sets: 
𝑈 = {𝑥|𝑥	𝑖𝑠	𝑎	𝑠𝑒𝑡}. 
Then 𝑈 is not a set.  
We can prove Russell’s paradox by reductio ad absurdum. Assume, for 
the sake of contradiction, that 𝑈  is a set. However, any ordinary 
mathematical set (e.g., of numbers, functions, etc.) is not a member of 
itself and can be naturally regarded as a member of a smaller universe of 
sets. In particular, let 𝑉  be an arbitrary set and 𝑉 ∉ 𝑉 . Then, by the 
definition of 𝑈, 𝑉 ∈ 𝑈. Moreover, because 𝑈 is a set, either 𝑈 ∈ 𝑈 or 𝑈 ∉
𝑈. If 𝑈 ∉ 𝑈, then, because 𝑉 ∈ 𝑈, it follows that 𝑈 ∈ 𝑈. But, if 𝑈 ∈ 𝑈, 
then, again because 𝑉 ∈ 𝑈, where 𝑉 ∉ 𝑉, it follows that 𝑈 ∉ 𝑈. Therefore, 
in both of these cases, we reach a contradiction, and, in this way, we prove 
that 𝑈 is not a set (𝑈 is called “Russell’s class”).■ 
The German mathematician, logician, and philosopher Friedrich Ludwig 
Gottlob Frege (1848–1925) believed that the foundational problems of 
mathematics could be solved and overcome by reformulating Aristotelian 
logic in a “Platonic” way, in order, in this way, to equip mathematics with 
epistemologically and ontologically robust underpinnings. Thus, Frege 
argued that mathematical truths are reducible to logical truths, and that 
logic is equivalent to Plato’s world of ideas. In order to understand the 
manner in which Frege attempted to reduce all mathematics to logic and to 
a rigorous conception of set theory, we have to understand the manner in 
which he defined the concept of a number as a set of mutually equivalent 
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sets. In particular, Frege has explained that any number 𝑛 can be used in 
order to count any 𝑛-membered set. For instance, the number two can be 
thought of as the set of all 2-membered sets, or as the set of all pairs, 
independently of the nature of the objects that constitute each pair. 
Similarly, the number three can be thought of as the set of all triplets, the 
number four can be thought of as the set of all quadruples, and so on. 
In particular, in order to define the concept of a natural number 
(0,1,2,3, … , 𝑛, 𝑛 + 1,…), Frege defined, for every 2-place relation 𝑅, the 
concept “𝑥 is an ancestor of 𝑦 in the 𝑅-series,” and this new relation is 
known as the “ancestor relation on 𝑅.” The underlying idea can be easily 
grasped if we interpret Frege’s 2-place relation 𝑅 as “𝑥 is the father of 𝑦 in 
the 𝑅-series.” For instance, if 𝑎 is the father of 𝑏, 𝑏 is the father of 𝑐, and 𝑐 
is the father of 𝑑, then Frege’s definition of “𝑥 is an ancestor of 𝑦 in the 
fatherhood-series” ensures that 𝑎 is an ancestor of 𝑏, 𝑐, and 𝑑, that 𝑏 is an 
ancestor of 𝑐 and 𝑑, and that 𝑐 is an ancestor of 𝑑. More generally, given a 
series of facts of the form 𝑎𝑅𝑏, 𝑏𝑅𝑐, and 𝑐𝑅𝑑, Frege showed that we can 
define a relation 𝑅∗  as “ 𝑦  follows 𝑥  in the 𝑅 -series.” Thus, Frege 
formulated a rigorous definition of “precedes,” and he concluded that a 
“natural number” is any number of the predecessor-series beginning with 
0.  
Using the concept of a “predecessor,” the American mathematician John 
von Neumann (1903–57) has proposed an even more accurate definition of 
a “natural number.” According to von Neumann, instead of defining a 
natural number 𝑛 as the set of all 𝑛-membered sets, a natural number 𝑛 
should be defined as a particular 𝑛-membered set―more specifically, as 
the set of its predecessors. For instance, the number two having two 
predecessors, zero and one, we can think of the number two as the set 
{0,1}, where zero has no predecessor. Therefore, zero can be thought of as 
the empty set, denoted by ∅. The number one has only one predecessor, 
zero. Therefore, we can think of the number one as {∅}, namely, as the 
singleton of the empty set. Thus, von Neumann formulated the modern 
definition of “ordinal numbers.” In particular, given the “successor 
operation,” which is defined as  
𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟(𝑛) = 𝑛 ∪ {𝑛}, 
the set of von Neumann natural numbers, namely, the ordinal numbers, 
denoted by 𝜔, is defined as follows: 

i. ∅ ∈ 𝜔. 
ii. If 𝑛 ∈ 𝜔, then 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟(𝑛) ∈ 𝜔. 
iii. Nothing belongs to 𝜔  unless it can be constructed using the 

preceding rules. 
Thus, we obtain the following definitions: 
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0 = ∅. 
1 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(0) = ∅ ∪ {∅} = {∅} = {0}. 
2 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(1) = {∅} ∪ e{∅}f = e∅, {∅}f = {0,1}. 
3 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(2) = e∅, {∅}f ∪ �e∅, {∅}f¬ = �∅, {∅}, e∅, {∅}f¬ = {0,1,2}. 
⋮ 
 
The set-theoretical approach to modern mathematics is necessarily based 
on the acceptance of the following axioms (see: Halmos, Naive Set 
Theory): 
Axiom 1 (“Axiom of Extensionality”): For every set 𝐴 and for every set 𝐵, 
𝐴 = 𝐵 if and only if, for every element 𝑥, it holds that 𝑥 ∈ 𝐴 if and only if 
𝑥 ∈ 𝐵. 
Axiom 2 (“Axiom of Foundation”): Infinite descending membership 
chains of sets (𝑋" ∋ 𝑋# ∋ 𝑋* ∋ ⋯) are forbidden; that is, we cannot have a 
set 𝑋" that has an element 𝑋# that has an element 𝑋*, and so on, forever. 
Any descending membership chain of sets, where each term of the chain 
belongs to a previous term of the given chain, must be finite (and the last 
element of any such chain must be the empty set). 
Axiom 3 (“Axiom of Specification”): If 𝜑(𝑥) is a formula, whose truth 
value (“True” or “False”) depends on 𝑥, then, for every set 𝐴, there exists 
a set 𝐵 such that, for every element 𝑥, it holds that 𝑥 ∈ 𝐵 if and only if 𝑥 ∈
𝐴 and 𝜑(𝑥) is true. In other words, given a set 𝐴, the “container” 𝐵 whose 
elements are the elements of 𝐴 that satisfy 𝜑(𝑥) is a set (this axiom, by 
forbidding unrestricted comprehension, shields modern mathematics 
against Russell’s paradox).  
Axiom 4 (“Axiom of Pairing”): For every set 𝐴 and for every set 𝐵, there 
exists a set 𝐶 such that, for every 𝑥, it holds that 𝑥 ∈ 𝐶 if and only if 𝑥 ∈ 𝐴 
or 𝑥 ∈ 𝐵 (meaning that any two things in mathematics can also be paired 
up). In other words, for any sets 𝐴 and 𝐵, there exists a set {𝐴, 𝐵} that 
contains exactly 𝐴 and 𝐵. 
Axiom 5 (“Axiom of Union”): Given any set 𝑋 whose elements are sets, 
we can create the set whose elements are all the members of all the sets 
that belong to 𝑋. 
Axiom 6 (“Axiom of Replacement”): We can take a set 𝑋 and form another 
set by replacing the elements of 𝑋 with other sets according to any definite 
rule. 
Moreover, later in this chapter, I shall refer to the “Axiom of Choice,” 
which allows us to perform a lot of operations on infinite sets that mirror 
things that are intuitively obvious on finite sets.  
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Let 𝑋 be a set of elements 𝑎, 𝑏, … Suppose that there is a binary relation 
expressed by 𝑎 ≺ 𝑏, defined between certain pairs (𝑎, 𝑏) of elements of 𝑋, 
and satisfying the following properties: 
𝑎 ≺ 𝑎; 
if  𝑎 ≺ 𝑏 and 𝑏 ≺ 𝑎, then 𝑎 = 𝑏; 
if 𝑎 ≺ 𝑏 and 𝑏 ≺ 𝑐, then 𝑎 ≺ 𝑐 (transitivity). 
Then 𝑋 is said to be “partially ordered” (or “semi-ordered”) by the relation 
≺.  
Let 𝑋 be a partially ordered set with elements 𝑎, 𝑏, … If 𝑎 ≺ 𝑐 and 𝑏 ≺ 𝑐, 
then 𝑐 is said to be an “upper bound” for 𝑎 and 𝑏. If, furthermore, 𝑐 ≺ 𝑑 
whenever 𝑑  is an upper bound for 𝑎  and 𝑏 , we call 𝑐  the “least upper 
bound,” or the “supremum,” of 𝑎  and 𝑏 , and we write 𝑠𝑢𝑝(𝑎, 𝑏). This 
element of 𝑋 is unique if it exists. In a similar way, we define the “greatest 
lower bound,” or the “infimum,” of 𝑎  and 𝑏 , and we denote it by 
𝑖𝑛𝑓(𝑎, 𝑏).  
A partially ordered set 𝑋  is said to be “linearly ordered” (or “totally 
ordered”) if, for every pair (𝑎, 𝑏) in 𝑋 , either 𝑎 ≺ 𝑏  or 𝑏 ≺ 𝑎  holds. A 
subset of a partially ordered set 𝑋 is itself partially ordered by the relation 
that partially orders 𝑋; and the subset may even be linearly ordered by this 
relation. If 𝑋  is a partially ordered set and 𝐴 is a subset of 𝑋 , then an 
element 𝑚 ∈ 𝑋 is said to be an upper bound of 𝐴 if 𝑎 ≺ 𝑚 for every 𝑎 ∈
𝐴. An element 𝑚 ∈ 𝑋 is said to be “maximal” if the relations 𝑚 ∈ 𝑋 and 
𝑚 ≺ 𝑥 imply that 𝑚 = 𝑥 (the maximum is the largest number of the set, 
while the supremum is the smallest upper bound of the set). In a similar 
way, we define a “minimal element.” 
 

The Number Sets ℕ,	ℤ,	ℚ,	ℚ∼, and ℝ 
 

In this section, we shall study the structure of the number sets ℕ,	ℤ,	ℚ,	ℚ∼, 
and ℝ. 
 

The Natural Numbers 
 

ℕ: the “natural numbers,” namely, the positive integers 1,2,3, …, which are 
used to count objects, and 0. For any natural numbers 𝑚, 𝑛, and 𝑘, the 
following equalities hold true: 

i. 𝑚+ 𝑛 = 𝑛 +𝑚, 
ii. 𝑚+ (𝑛 + 𝑘) = (𝑚 + 𝑛) + 𝑘, 
iii. 𝑚𝑛 = 𝑛𝑚, 
iv. 𝑚(𝑛𝑘) = (𝑚𝑛)𝑘, 
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v. 𝑚(𝑛 + 𝑘) = 𝑚𝑛 +𝑚𝑘, 
vi. 𝑚 ∙ 1 = 𝑚. 

Equalities (i) and (iii) express the “commutative law” of addition and 
multiplication respectively; equalities (ii) and (iv) express the “associative 
law” of addition and multiplication respectively; and equality (v) is known 
as the “distributive law” of multiplication over addition. The 
aforementioned laws underlie all computations. If a natural number 𝑚 is 
divisible by a natural number 𝑛, then 𝑚 is said to be a “multiple” of the 
number 𝑛, and 𝑛, in turn, is said to be the “divisor” of the number 𝑚. If 𝑚 
is a multiple of the number 𝑛, then there is a natural number 𝑘 such that 
𝑚 = 𝑘𝑛. For instance, 18 is divisible by 3, and we write 18 = 6 ∙ 3. In 
this case, 𝑚 = 18 (the “dividend”), 𝑛 = 3 (the “divisor”), and 𝑘 = 6 (the 
“quotient”). If a natural number 𝑚 is not exactly divisible by a natural 
number 𝑛, that is, if there is no natural number 𝑘 such that 𝑘𝑛 = 𝑚, then 
we consider “division with a remainder.” For instance, 33 divided by 2 
equals 16 (“partial quotient”) with a remainder of 1, and therefore 33 =
16 ∙ 2 + 1.  
For any two natural numbers 𝑎 and 𝑏, there exists a unique natural number 
𝑛 such that 𝑎 ∙ 𝑛 = 𝑏 if and only if 𝑎 is a divisor of 𝑏, and then we write 
𝑛 = 𝑏 ÷ 𝑎 ≡ 0

1
. “Even numbers” are divisible by 2 without remainders, 

whereas “odd numbers” are not evenly divisible by 2. Notice that odd 
numbers end in the digit 1, 3, 5, 7, or 9, whereas all the numbers ending 
with 0, 2, 4, 6, or 8 are even numbers. 
The greatest common divisor (denoted by 𝑔𝑐𝑑) of two natural numbers 𝑎 
and 𝑏  is the largest natural number that divides both 𝑎  and 𝑏 , and the 
Euclidean Algorithm for computing 𝑔𝑐𝑑(𝑎, 𝑏) is as follows:   

i. If 𝑎 = 0, then 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑏. 
ii. If 𝑏 = 0, then 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑎. 
iii. If 𝑎 and 𝑏 are both non-zero natural numbers (𝑎 > 𝑏), then we 

write 𝑎 in quotient remainder form, namely, 𝑎 = 𝑏 ∙ 𝑞 + 𝑟, and, 
subsequently, we compute 𝑔𝑐𝑑(𝑏, 𝑟)  using the Euclidean 
Algorithm since 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑔𝑐𝑑(𝑏, 𝑟). For instance, if 𝑎 = 280 
and 𝑏 = 120, then we can compute 𝑔𝑐𝑑(𝑎, 𝑏) as follows: firstly, 
we use long division to find that #2)

"#)
=

2	𝑤𝑖𝑡ℎ	𝑎	𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑜𝑓	40 , which can be written as 280 =
120 × 2 + 40 ; secondly, we compute 𝑔𝑐𝑑(120,40) =
40	𝑤𝑖𝑡ℎ	𝑎	𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑜𝑓	0; and, therefore, 𝑔𝑐𝑑(280,120) = 40.  

Let 𝑎 and 𝑏 be both non-zero natural numbers. Moreover, let 𝑙𝑐𝑚(𝑎, 𝑏) 
denote the least common multiple of 𝑎  and 𝑏  (i.e., 𝑙𝑐𝑚(𝑎, 𝑏)  is the 
smallest natural number that is evenly divisible by both 𝑎 and 𝑏). Then  
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𝑔𝑐𝑑(𝑎, 𝑏) = 1∙0
456(1,0)

⇔ 𝑙𝑐𝑚(𝑎, 𝑏) = 1∙0
:5;(1,0)

. 
If a natural number has only two divisors, a unity (one) and the number 
itself, then it is called a “prime number”; if it has more than two divisors, 
then it is called a “composite number.” For instance, 2, 3, 5, and 7 are 
prime numbers, but 9 is not a prime number (9	is a composite number, 
because the divisors of 9 are 1, 3, and 9). Notice that 2 is the only even 
prime number, and that, except for 2 and 5, all prime numbers end in the 
digit 1, 3, 7, or 9. All numbers have prime factors. For instance, the prime 
factors of 10 are 2 and 5, since 10 = 2" × 5"; the prime factors of 11 are 
1  and 11 , since 11 = 1" × 11" ; the prime factors of 100  are 2  and 5 , 
since 100 = 2# × 5#, etc. 
The Italian mathematician and glottologist Giuseppe Peano (1858–1932) 
has organized the natural numbers as an axiomatic system on the basis of 
the following axioms, known as the “Peano axioms”: 

i. 0 is a natural number, symbolically: 0 ∈ ℕ. 
ii. If 𝑛  is a natural number, then the successor of 𝑛  (i.e., 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑛) = 𝑛 + 1) is also a natural number. 
iii. If two natural numbers have the same successor, then the two 

natural numbers are identical. 
iv. 0 is not the successor of any natural number.  
v. “Induction Axiom”: If 𝑋  is a set containing both 0  and the 

successor of every natural number belonging to 𝑋 , then every 
natural number belongs to 𝑋.  

The “Induction Axiom” gives rise to and underpins the principle of 
“Mathematical Induction,” which is a mathematical proof technique for 
propositions: Suppose that 𝑃  is a proposition defined on the natural 
numbers ℕ, such that: 

i. 𝑃(1) is true, that is, 𝑃 holds true for 1;  
ii. 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true. 

Then 𝑃 is true for every natural number. In this case, 𝑃 is the “inductive 
hypothesis.” By completing the aforementioned two steps of mathematical 
induction, we prove that 𝑃 is true for every natural number. 
Example: Let 𝑃  be the proposition that the sum of the first 𝑛  natural 
numbers is 
"
#
𝑛(𝑛 + 1) , namely: 𝑃(𝑛) = 1 + 2 + 3 +⋯+ 𝑛 = "

#
𝑛(𝑛 + 1) . We can 

prove that 𝑃 is true for every natural number 𝑛 ∈ ℕ using mathematical 
induction as follows: 
Basis step: The proposition holds for 𝑛 = 1, because 1 = "

#
(1)(1 + 1). 

Hence, 𝑃(1) is true. 
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Induction step: We assume that 𝑃(𝑛) is true, and we add 𝑛 + 1 to both 
sides of	𝑃(𝑛), obtaining  

1 + 2 + 3 +⋯+ 𝑛 + (𝑛 + 1) = "
#
𝑛(𝑛 + 1) + (𝑛 + 1) =

"
#
[𝑛(𝑛 + 1) + 2(𝑛 + 1)] = "

#
[(𝑛 + 1)(𝑛 + 2)], 

which is 𝑃(𝑛 + 1). Hence, 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true. By the 
principle of mathematical induction, 𝑃 is true for every natural number 
𝑛 ∈ ℕ.  
 
The Fundamental Theorem of Arithmetic: Every natural number greater 
than 1 can be uniquely represented as a product of prime numbers, up to 
the order of the factors. This theorem can be derived from Book VII, 
propositions 30, 31, and 32, and Book IX, proposition 14, of Euclid’s 
Elements. In other words, this theorem states that every natural number 
𝑛 > 1  can be represented in exactly one way as a product of prime 
numbers: 

𝑛 = 𝑝"
%"𝑝#

%# …𝑝<
%$ =À 𝑝=

%%
<

=>"
 

where 𝑝" < 𝑝# < ⋯ < 𝑝< are prime numbers, and 𝑛= are natural numbers 
greater than zero. This representation is commonly known as the 
“canonical representation of a natural number” (it can be extended to 
include 1 by the convention that the “empty product” is equal to 1; the 
“empty product” corresponds to 𝑘 = 0). 
Proof: The existence of prime factorization can be proved using 
mathematical induction: In the basis step, we see that the statement is true 
for 𝑛 = 2, since 2 is a prime number. Suppose that the statement is true for 
all 𝑛 such that 1 < 𝑛 < 𝑘, so that we can write every 𝑛 (where 1 < 𝑛 < 𝑘) 
as a product of primes. We can prove that the statement is true for 𝑛 = 𝑘 
as follows: If 𝑘 is prime, then the case is obvious. If 𝑘 is not prime, then it 
is a composite number, and we can factor it as follows: 
𝑘 = 𝑥 × 𝑦, where 1 < 𝑥, 𝑦 < 𝑘. 
Hence, by induction, we can argue that 𝑥  and 𝑦  can be written as the 
product of primes, meaning that 𝑘 can also be written as the product of 
primes.  
The uniqueness of prime factorization can be proved by reductio ad 
absurdum, using Euclid’s Lemma, which states that, if a prime 𝑝 divides 
the product 𝑎𝑏 of two natural numbers 𝑎 and 𝑏, then 𝑝 must divide at least 
one of those natural numbers 𝑎 or 𝑏 (Euclid’s Lemma can be proved using 
mathematical induction). For the sake of contradiction, suppose that there 
exist two distinct prime factorizations for the same natural number 𝑛 (>
1), so that: 
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𝑛 = 𝑝"
%"𝑝#

%# …𝑝<
%$ = 𝑞"

6"𝑞#
6# …𝑞?

6&.                                                       (1) 
Moreover, suppose that 𝑛 (> 1) is the least natural number that has two 
distict prime factorizations. Notice that 

𝑛 = 𝑝"
%"𝑝#

%# …𝑝<
%$ = 𝑞"

6"𝑞#
6# …𝑞?

6& 
implies that 𝑝"  divides 𝑞"

6"𝑞#
6# …𝑞?

6&  ( 𝑝"  divides the left side, so it 
divides the right side); and, therefore, by Euclid’s Lemma, 𝑝"  divides 
some 𝑞=. Without loss of generality, let that 𝑞= be 𝑞". Because both 𝑝" and 
𝑞" are primes, the fact that 𝑝" divides 𝑞" implies that 𝑝" = 𝑞". Since 𝑝" =
𝑞", we can delete 𝑝" and 𝑞" in equation (1), so that now (1) gives us two 
distinct factorizations of some natural number strictly smaller than 𝑛 , 
contradicting the assumed minimality of 𝑛; quod erat demonstrandum 
 
A set is said to be “countable” (or “denumerable”) if you can make a list 
of its members, and, by a “list,” we mean that you can find a first member, 
a second member, a third member, and so on, and, thus, assign to each 
member a natural number of its own, perhaps going on forever. Obviously, 
the natural numbers are countable (you can assign each natural number to 
itself). 
 

The Integral Numbers 
 

ℤ: the “integral numbers,” or the negative integers, zero, and the positive 
integers:  

…− 3,−2,−1,0,1,2,3, … 
The notation ℤ  for the set of integers derives from the German word 
“Zahlen,” which means “numbers.” 
From the perspective of ancient mathematicians, numbers are things by 
means of which we count, but modern mathematical analysis, founded on 
Cartesianism, understands numbers mainly as positions on the number 
line. Let us draw a straight line 𝑙 and mark on it a point 0 that will be taken 
as the origin. Then we choose a unit segment 0𝑃, where 𝑃 is a natural 
number that lies to the right of 0, and, in this way, we specify the positive 
direction. In other words, the unit segment 0𝑃 determines the direction of 
the number line and corresponds to the positive unity +1 (or simply 1). 
Let us, for instance, take the number 4. Laying off the unit segment from 
the point 0 in the given direction four times, we obtain the point 𝑄 that 
corresponds to the number 4. Let us now lay off four unit segments from 
the zero point in the direction opposite to the specified. We then get the 
point 𝑄@, which is symmetric to the point 𝑄 about the origin 0. The point 
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𝑄@ corresponds to the number −4. Thus, the numbers 4 and −4 are said to 
be “opposite.” By analogy, we can define any other integer (positive or 
negative). In general, the numbers situated on the number line 𝑙  in the 
specified direction are said to be “positive,” whereas the numbers located 
on the number line in the direction opposite to the given one are said to be 
“negative.” Hence, the natural numbers and their opposites (the opposite 
of the number zero being the same number) form together the set of 
integral numbers (integers), which is denoted by ℤ.  
If a point 𝑋 of the line 𝑙 corresponds to some number 𝑟, then this number 
is said to be the “coordinate of the point 𝑋,” and, in this case, we write 
𝑋(𝑟).  
The “absolute value” of the number 𝑟  is denoted by |𝑟| . The absolute 
value of any positive number is the number itself. The absolute value of 
any negative number is equal to its opposite number. The absolute value of 
the number zero is zero. 
The sum of two negative numbers is a negative number. In order to find 
the absolute value of a sum, it is necessary to add together the absolute 
values of the addends. The sum of two numbers having unlike signs is a 
number that has the same sign as the addend with greatest absolute value; 
and, in order to find the absolute value of their sum, it is necessary to 
subtract the smaller value from the larger one (so that, for instance, 5 +
(−3) = 5 − 3 = 2). 
In order to subtract one number from another, it is necessary to add to the 
minuend a number that is the opposite of the subtrahend.  
The product (resp. quotient) of two negative numbers is a positive number. 
The product (resp. quotient) of two numbers having unlike signs is a 
negative number. In order to find the absolute value of a product (resp. 
quotient), it is necessary to multiply (resp. divide) the absolute values of 
these numbers. 
When we divide two integers, we get an equation of the following form: 
1
0
= 𝑞	𝑤𝑖𝑡ℎ	𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟	𝑟, 

where 𝑎 is the dividend, 𝑏 is the divisor, 𝑞  is the quotient, and 𝑟 is the 
remainder. Sometimes, we are only interested in the remainder in the 
division of 𝑎 by 𝑏, and, for these cases, there is an operator called the 
“modulus operator” (abbreviated as mod). If the difference of two integers 
𝑎  and 𝑏  is divisible by 𝑛 , then 𝑎  and 𝑏  are said to be congruent with 
respect to the modulus 𝑛, and this is symbolically expressed as follows: 

𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑛) 
(and then we read “𝑎  is congruent to 𝑏  modulo 𝑛”), and each of the 
numbers 𝑎  and 𝑏  is said to be a residue (𝑚𝑜𝑑𝑛)  of the other (the 
“modulus” is the remainder of the division of one number by another; for 
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instance, 9 divided by 4 equals 2 and there is a remainder of 1, so that we 
write 9 ≡ 4 = 1 , whereas, for instance, 𝑘 ≡ 𝑘 = 0  for all 𝑘 ∈ ℕ). Our 
intuition for the integers 𝑚𝑜𝑑𝑛  should be a circle with the integers 0 
through 𝑛 − 1 arranged on it. Notice that: 

𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑛) ⇔ 𝑛|𝑏 − 𝑎 
where 𝑛|𝑏 − 𝑎 means that 𝑛 divides 𝑏 − 𝑎, in which case 𝑎 and 𝑏 have the 
same remainder when we divide them by 𝑛 (this notation and much of the 
elementary theory of congruences are due to the German mathematician 
Carl Friedrich Gauss). For instance, 5 ≡ 2(𝑚𝑜𝑑3) because 3|5 − 2; and 
4 ≡ −1(𝑚𝑜𝑑5) because 5|4 − (−1). 
Fundamental principles of the theory of congruences: 
I. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑛) and 𝑎 ≡ 𝑐(𝑚𝑜𝑑𝑛), then 𝑏 ≡ 𝑐(𝑚𝑜𝑑𝑛). 
II. If 𝑎 ≡ 𝑎@, 𝑏 ≡ 𝑏@, 𝑐 ≡ 𝑐@, 𝑒𝑡𝑐. (𝑚𝑜𝑑𝑛) , then 𝑎 ± 𝑏 ± 𝑐 ±⋯ ≡ 𝑎@ ±
𝑏@ ± 𝑐@ ±⋯(𝑚𝑜𝑑𝑛). 
III. If 𝑎 ≡ 𝑎@(𝑚𝑜𝑑𝑛), then 𝑘𝑎 ≡ 𝑘𝑎@(𝑚𝑜𝑑𝑛). 
IV. If 𝑎 ≡ 𝑎@(𝑚𝑜𝑑𝑛) and 𝑏 ≡ 𝑏@(𝑚𝑜𝑑𝑛), then 𝑎𝑏 ≡ 𝑎@𝑏@(𝑚𝑜𝑑𝑛). 
V. If 𝑎 ≡ 𝑎@, 𝑏 ≡ 𝑏@, 𝑐 ≡ 𝑐@, 𝑒𝑡𝑐. (𝑚𝑜𝑑𝑛), then 𝑎𝑏𝑐 … ≡ 𝑎@𝑏@𝑐@…(𝑚𝑜𝑑𝑛).  
VI. If 𝑘𝑎 ≡ 𝑘𝑏(𝑚𝑜𝑑𝑛) , then 𝑎 ≡ 𝑏 Ã𝑚𝑜𝑑 %

;
Ä  where 𝑑  is the greatest 

common divisor of 𝑘 and 𝑛.  
By a “linear congruence,” we mean a congruence of the form 
𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑛), where 𝑎, 𝑏, 𝑛 ∈ ℤ and 𝑛 > 0.                                         (1) 
A solution to (1) is an integer 𝑥 that satisfies (1) and is a least residue 
(𝑚𝑜𝑑𝑛)  (that is, 0 ≤ 𝑥 ≤ 𝑛 − 1 ). The congruence relation (1) has a 
solution if the (“unknown”) integers 𝑥  (where 0 ≤ 𝑥 ≤ 𝑛 − 1 ) and 𝑘 
satisfy the equation 
𝑎𝑥 = 𝑏 + 𝑘𝑛                                                                                              (2) 
(keep in mind that, in congruences, we work only with integers). 
Moreover, notice that 
𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑛) ⇔ 𝑎𝑥 − 𝑛𝑦 = 𝑏, 
where 𝑎𝑥 − 𝑛𝑦 = 𝑏 is the corresponding linear Diophantine equation (by 
a “Diophantine equation,” we mean an equation involving only sums, 
products, and powers in which all the constants are integers and the only 
solutions of interest are integers; they are named in honor of the third-
century C.E. Greek mathematician Diophantus, who developed a 
systematic theory of such equations). The linear congruence (1) has a 
solution precisely when 𝑔𝑐𝑑(𝑎, 𝑛)|𝑏 , that is, precisely when 𝑏  is a 
multiple of 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛), and, in this case, (1) is equivalent to  
1
;
𝑥 ≡ 0

;
Ã𝑚𝑜𝑑 %

;
Ä. 

We shall prove this theorem and its ramifications shortly.  
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If 𝑔𝑐𝑑(𝑎, 𝑛) = 𝑑|𝑏, then (1) has a solution 𝑥), and, given a solution 𝑥), 
we can construct infinitely many solutions to (1) of the form 
𝑥 = 𝑥) + 𝜆

%
;
, where 𝜆 is any integer. If 𝑥) is one solution to (1), then all 

the solutions to (1) are described by  
𝑥 ≡ 𝑥) Ã𝑚𝑜𝑑

𝑛
𝑑Ä 

where 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛).  
Example 1: Consider the linear congruence 
4𝑥 ≡ 8(𝑚𝑜𝑑5). 
In this case (where 𝑎 = 4 and 𝑛 = 5), we are allowed to divide both sides 
by 4, because 𝑔𝑐𝑑(4,5) = 1. Thus,  
4𝑥 ≡ 8(𝑚𝑜𝑑5) ⇒ A

A
𝑥 ≡ 2

A
(𝑚𝑜𝑑5) ⇒ 𝑥 ≡ 2(𝑚𝑜𝑑5), 

so that, according to the above definition of a linear congruence 
(specifically, according to relation (2)), 𝑥 = 2 + 5𝑘. 
Example 2: Consider the linear congruence  
4𝑥 ≡ 2(𝑚𝑜𝑑5). 
In this case, we cannot divide both sides by 4, because #

A
 is not an integral 

number, and, therefore, it is not allowed in linear congruences. In this 
case, we can work as follows: Since 4𝑥  can be treated as 2(2𝑥) , and 
𝑔𝑐𝑑(2,5) = 1, we can divide both sides by 2 to obtain: 
2𝑥 ≡ 1(𝑚𝑜𝑑5),  
so that, according to the above definition of a linear congruence 
(specifically, according to relation (2)), 2𝑥 = 1 + 5𝑛 ⇔ 𝑥 = "BC%

#
; and we 

have: if 𝑛 ≥ 0, then possible values of 𝑥 are "
#
, 3, ""

#
, 8, #"

#
, 13, …, whereas, 

if 𝑛 < 0 , then possible values of 𝑥  are −2,− D
#
, −7,− "D

#
, …  If we are 

looking for integral values of 𝑥 , then possible solutions include 
(3,8,13,… ) and (−2,−7,−12,… ). 
 
The linear congruence 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑛) has a solution (for 𝑥) if and only if 
𝑔𝑐𝑑(𝑎, 𝑛)  divides 𝑏 , in which case the congruence has 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛) 
incongruent solutions.  
Proof: Let 𝑥) be a solution to the given linear congruence, so that 
𝑎𝑥) ≡ 𝑏(𝑚𝑜𝑑𝑛).                                                                                       (1) 
Due to (1), 𝑛 divides 𝑎𝑥) − 𝑏; symbolically, 𝑛|𝑎𝑥) − 𝑏.                         (2) 
By the definition of divisibility, (2) implies that 
𝑎𝑥) − 𝑏 = 𝑛𝑦 for some integral number 𝑦. Therefore, 
𝑎𝑥) − 𝑛𝑦 = 𝑏.                                                                                           (3) 
Equation (3) implies that 𝑏 can be written as a linear combination of 𝑎 and 
𝑛 , and, for this reason, 𝑏  is a multiple of 𝑔𝑐𝑑(𝑎, 𝑛) , meaning that 
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𝑔𝑐𝑑(𝑎, 𝑛)  divides 𝑏 , as required. Now, we shall prove the reverse as 
follows: 
Suppose that 𝑔𝑐𝑑(𝑎, 𝑛)|𝑏 , and let 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛) . Hence, 𝑏 = 𝑑𝑘  for 
some integral number 𝑘. Let us consider two integral numbers 𝑥) and 𝑦) 
such that  
𝑎𝑥) − 𝑛𝑦) = 𝑑.                                                                                         (4) 
If we multiply both sides of equation (4) by 𝑘, then we obtain: 
𝑎(𝑘𝑥)) − 𝑛(𝑘𝑦)) = 𝑑𝑘 = 𝑏.                                                                    (5) 
If we set 𝑘𝑥) = 𝑥" and 𝑘𝑦) = 𝑦", then (5) becomes 
𝑎𝑥" = 𝑏 + 𝑛𝑦" ⇒ 𝑎𝑥" − 𝑏 = 𝑛𝑦" ⇒ 𝑛|𝑎𝑥" − 𝑏. 
Because 𝑛 divides 𝑎𝑥" − 𝑏, it holds that 𝑎𝑥" ≡ 𝑏(𝑚𝑜𝑑𝑛), where 𝑥" is the 
solution to the given congruence; quod erat demonstrandum. 
Finally, we have to prove that, given the solution 𝑥), the linear congruence 
has 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛) incongruent solutions. In other words, we know that 
𝑎𝑥) ≡ 𝑏(𝑚𝑜𝑑𝑛). Let 
𝑥6 = 𝑥) +𝑚Ã%

;
Ä,                                                                                     (6) 

where 0 ≤ 𝑚 ≤ 𝑑 − 1 , and, as before, 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛) . These are the 
required 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛) incongruent solutions to the given congruence. To 
show that they are indeed solutions to the given linear congruence, we 
work as follows: We multiply (6) by 𝑎 to obtain: 
𝑎𝑥6 = 𝑎𝑥) +𝑚

1
;
𝑛. 

Notice that 𝑑 is a divisor of 𝑎, and, thus, 1
;
 is an integral number, so that, 

given that 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑛), we obtain: 
𝑎𝑥6 = 𝑎𝑥) +𝑚

1
;
𝑛 ≡ 𝑏(𝑚𝑜𝑑𝑛), 

meaning that all of these 𝑥6 ’s are indeed solutions to our original 
congruence, 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑛) . We can show that these solutions are 
incongruent as follows: Suppose that  
𝑥= ≡ 𝑥?(𝑚𝑜𝑑𝑛).                                                                                         (7) 
We shall show that this implies that 𝑖 = 𝑗. Equations (6) and (7) imply that 
𝑥) + 𝑖 Ã

𝑛
𝑑Ä ≡ 𝑥) + 𝑗 Ã

𝑛
𝑑Ä
(𝑚𝑜𝑑𝑛) ⇒ 𝑖 Ã

𝑛
𝑑Ä ≡ 𝑗 Ã

𝑛
𝑑Ä
(𝑚𝑜𝑑𝑛) ⇒ (𝑖 − 𝑗) Ã

𝑛
𝑑Ä

= 𝑛𝑝 
(i.e., a multiple of 𝑛), meaning that =E?

;
 is an integral number. Given that 

0 ≤ 𝑚 ≤ 𝑑 − 1 and =E?
;

 is an integral number, it holds that 𝑖 − 𝑗 = 0 ⇔
𝑖 = 𝑗 , meaning that the only case in which the solutions 𝑥=  and 𝑥?  are 
congruent modulo 𝑛 is when they are the same (i.e., when 𝑖 = 𝑗); ; quod 
erat demonstrandum. 
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Remark: The above theorem provides a criterion by which we can decide 
whether a linear congruence has solutions and how many solutions it has, 
and, in fact, the structure of the proof of this theorem shows us the way in 
which we can find the solutions to a linear congruence (provided that it 
has solutions).  
 
Fermat’s Little Theorem: If 𝑝 is a prime, and if 𝑎 is any integer prime to 𝑝, 
so that 𝑔𝑐𝑑(𝑎, 𝑝) = 1, then 

𝑎FE" ≡ 1(𝑚𝑜𝑑𝑝) 
(thus, this theorem, also known as “Fermat’s Little Theorem,” provides an 
important primality test). 
Proof: Let us consider the numbers 𝑎, 2𝑎, 3𝑎,… , (𝑝 − 1)𝑎, 𝑝𝑎. All of these 
numbers are incongruent to each other modulo 𝑝, as can be easily shown 
by reductio ad absurdum, and, therefore, their residues modulo 𝑝 form the 
set {0,1, … , 𝑝 − 1}. Hence,  
𝑎 ∙ 2𝑎 ∙ 3𝑎 ∙ … ∙ (𝑝 − 1)𝑎 ≡ [1 ∙ 2 ∙ 3 ∙ … ∙ (𝑝 − 1)](𝑚𝑜𝑑𝑝)⇔ 	𝑎 ∙ 2𝑎 ∙ 3𝑎 ∙
… ∙ (𝑝 − 1)𝑎 ≡ (𝑝 − 1)! (𝑚𝑜𝑑𝑝) ⇔ 𝑎FE"(𝑝 − 1)! ≡ (𝑝 − 1)! (𝑚𝑜𝑑𝑝), 
and, dividing both sides by (𝑝 − 1)! , which is prime to 𝑝 , we obtain 
𝑎FE" ≡ 1(𝑚𝑜𝑑𝑝), quod erat demonstrandum.  
Fermat’s Little Theorem implies the following “primality test”: given an 
integer 𝑛, we can test whether it is prime by checking whether 𝑎%E" ≡
1(𝑚𝑜𝑑𝑛) for any integer 𝑎 not divisible by 𝑛. If this congruence holds, 
then 𝑛 is likely to be prime; this is a necessary but not sufficient condition. 
For instance, in order to test if 23 is a prime number, we need to calculate 
𝑎## ≡ 1(𝑚𝑜𝑑23) for different integral values of 𝑎, and, indeed, we shall 
always get the 22 nd power of 𝑎  to be congruent to 1  modulo 23 . 
Howerver, for instance, the number 561  passes the aforementioned 
primality test (that is, satisfies Fermat’s Little Theorem), in the sense that 
𝑎CG) ≡ 1(𝑚𝑜𝑑561), but it is a composite number (561 = 3 × 11 × 17). 
The composite numbers that pass the aforementioned primality test (that 
is, satisfy Fermat’s Little Theorem) are called “Carmichael numbers” 
(named after the American mathematician Robert Daniel Carmichael). 
Number theory and, especially, prime numbers have important 
applications in cryptography. In the context of cryptography, there is a 
plaintext (i.e., an intelligible message) that is converted into a ciphertext 
(i.e., an unintelligible message) according to an encryption algorithm, and 
this ciphertext is transmitted on the internet and is received by a receiver 
who will use the decryption algorithm (which is the opposite to the 
encryption algorithm) in order to convert the ciphertext into the original 
plaintext. Thus, in cryptography, the computer converts information into a 
single number (representing one’s message), say 𝑚 . In order to be 
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computationally secure, many encryption algorithms are based on prime 
numbers because of the following reason: generally, multiplying two large 
prime numbers can be very fast, but it is very difficult to do the reverse (it 
is extremely computer-intensive to find the prime factors of large 
numbers). 
 

The Rational Numbers 
 

ℚ: the “rational numbers,” namely, the set of all numbers of the form F
H
 

such that the numbers 𝑝  and 𝑞  are integers, 𝑞 ≠ 0 , and the greatest 
common divisor (𝑔𝑐𝑑) of the integers 𝑝 and 𝑞 is ±1 (that is, 𝑝 and 𝑞 are 
relatively prime integers). In other words, the integral and the fractional 
numbers (both positive and negative) form together the set of rational 
numbers, which is denoted by ℚ. The notation ℚ for the set of rational 
numbers derives from the Italian word “quoziente,” which means 
“quotient.” 
By the term “common fraction,” we refer to a number of the form 6

%
, 

where 𝑚 and 𝑛 are integral numbers, and 𝑛 ≠ 0. The number 𝑚 is called 
the “numerator” of the fraction, and the number 𝑛  is called the 
“denominator” of the fraction. In particular, 𝑛 may be equal to 1. In this 
case, we usually write 𝑚  rather than 6

"
. In other words, any integral 

number can be represented in the form of a common fraction whose 
denominator is 1. 
Two fractions 1

0
 and 5

;
 are regarded to be equal if 𝑎𝑑 = 𝑏𝑐 . The “basic 

property of fractions” states the following: the fractions 1
0

 and 16
06

 are 
equal. Therefore, if the numerator and the denominator of a given fraction 
are multiplied or divided by the same positive integer, then an equivalent 
fraction is obtained (namely: 1

0
= 16

06
). Taking advantage of the basic 

property of fractions, we may sometimes replace a given fraction with 
another equivalent fraction but with a smaller numerator and a smaller 
denominator by dividing all common factors out of the numerator and the 
denominator. This operation is called “reduction of a fraction to its lowest 
terms,” or simply “reduction of a fraction.” In general, reduction of a 
fraction is always possible if its numerator and denominator are not 
relatively prime numbers. If the numerator and the denominator are 
relatively prime numbers, then the fraction is called “irreducible.”  
The addition of common fractions is defined in the following way: 
1
0
+ 5

;
= 1;B05

0;
. 
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The subtraction of common fractions is defined in the following way: 
1
0
− 5

;
= 1;E05

0;
. 

The multiplication of common fractions is defined in the following way: 
1
0
∙ 5
;
= 15

0;
. 

The division of common fractions is defined in the following way: 
1
0
÷ 5

;
= 1 0⁄

5 ;⁄
= 1;

05
.  

A fraction 6
%

 is called a “proper fraction” if its numerator is less than the 
denominator; and it is called an “improper fraction” if its numerator is 
greater than the denominator.  
Let us consider an improper fraction 6

%
. Since 𝑚 is greater than 𝑛, there are 

two numbers 𝑝 and 𝑟 (with 𝑟 less than 𝑛) such that 𝑚 = 𝑝𝑛 + 𝑟, so that: 
6
%
= F%BJ

%
= F%

%
+ J

%
= 𝑝 + J

%
. Since the remainder is always less than the 

divisor, J
%
 is a proper fraction. Hence, we have succeeded in representing 

the improper fraction 6
%

 in the form of a sum of a natural number 𝑝 and a 
proper fraction J

%
. This operation is called the “reduction of an improper 

fraction to a mixed number.” A number consisting of an integer and a 
fraction is called a “mixed number.” For instance, in order to locate the 
mixed number 3 "

2
 on the number line, we think as follows: laying off the 

unit segment (0𝑃 = +1 ) from the point zero in the given (positive) 
direction three times and then "

2
th part of this unit segment, we obtain the 

point 𝑄 that exactly corresponds to the mixed number 3 "
2
 (the coordinate 

of the point 𝑄 is 3 "
2
).  

 
The Irrational Numbers 

 
ℚ∼ : the “irrational numbers,” or the set of all numbers that cannot be 
written as the quotient of two relatively prime integers. For instance, we 
can prove that √2 ∈ ℚ∼ by reductio ad absurdum as follows: For the sake 
of contradiction, suppose that √2 = F

H
 where 𝑝, 𝑞 ∈ ℤ , the greatest 

common divisor of the integers 𝑝 and 𝑞 is ±1, and 𝑞 ≠ 0. Then 
√2 = F

H
⇒ 2 = F#

H#
⇒ 𝑝# = 2𝑞# ⇒ 𝑝 = 2𝑘, 

where 𝑘 is an appropriate integer; therefore 4𝑘# = 2𝑞# ⇒ 𝑞# = 2𝑘#; but 
then the greatest common divisor of the integers 𝑝  and 𝑞  is 2 , which 
contradicts the hypothesis. 
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The German mathematician Richard Dedekind (1831–1916) observed that 
there exist infinitely many points on the straight number line 𝐿  that 
correspond to no rational number. Thus, the domain of rational numbers is 
insufficient if we want to arithmetically follow up all phenomena on the 
straight line. Therefore, new numbers must be created in such a way that 
the domain of all numbers will gain the same “completeness” or 
“continuity” as the straight line. In fact, Dedekind observed that there exist 
infinitely many cuts that are not produced by rational numbers. For 
instance, as shown in Figure 2-1, construct a square 𝑂𝐴𝐵𝐶  on the unit 
segment 𝑂𝐶  (i.e., the length of 𝑂𝐶  is equal to one) and lay off in the 
positive direction a line segment 𝑂𝐷 equal in length to the diagonal 𝑂𝐵; 
then (according to the Pythagorean Theorem, which we shall study 
shortly) it is clear that 𝐷 is a point that does not correspond to any rational 
number―it, in fact, corresponds to √2.  
 
Figure 2-1: Irrational numbers. 
 

 
 
The history of irrational numbers goes back to the Pythagorean 
mathematicians, who had demonstrated that there exist lengths 
incommensurable with a given unit of length. In the seventh century 
B.C.E., Thales of Miletus (a Greek mathematician, astronomer, and 
philosopher from Miletus, in Ionia, Asia Minor) officially initiated a new 
approach to mathematics. In contrast to the mathematics of other 
civilizations, such as the Babylonians and the Egyptians, Thales’s 
approach to mathematics is based on the thesis that scientific propositions 
are not recipes for practical tasks―that is, techniques whose validity is 
determined by the method of trial and error―but they should be explained 
and proved. In other words, Thales attempted to endow mathematics with 
rigor―which, in this case, means logical validity.   
In the context of Thales’s rigorous mathematics, by the term “line 
segment,” we mean a part of a line that is bounded by two distinct 
endpoints, and contains every point on the line between the endpoints. Let 
us consider the line segments 𝑎", 𝑎#, 𝑎*, … , 𝑎%  and the non-zero line 
segments 𝑏", 𝑏#, 𝑏*, … , 𝑏% . The line segments 𝑎", 𝑎#, 𝑎*, … , 𝑎%  are said to 
be “proportional” to 𝑏", 𝑏#, 𝑏*, … , 𝑏%, respectively, if 
1"
0"
= 1#

0#
= 1!

0!
= ⋯ = 1'

0'
. 



 
 

 

77 

Thus, two arbitrary line segments 𝑎 and 𝑐 are proportional to two other 
arbitrary line segments 𝑏 and 𝑑, respectively, if and only if 𝑏 and 𝑑 are 
non-zero, and it holds that  
1
0
= 5

;
.                                                                                                         (1)    (1) 

Any equality between two ratios, such as (1), is said to be a “proportion” 
with terms 𝑎, 𝑏, 𝑐, and 𝑑, as shown above. 
Assume that 𝐴𝐵 is a non-zero straight line segment, and that 𝑃 is a point 
on 𝐴𝐵. Then we say that the point 𝑃 “divides internally” the straight line 
segment 𝐴𝐵 in a ratio 𝜆, where 𝜆 ≥ 0, if it holds that  
K(
KL
= 𝜆. 

If this is the case, then  
K(

K(BKL
= M

MB"
⇔ 𝑃𝐴 = M

MB"
𝐴𝐵, which implies the uniqueness of 𝑃. 

Similarly, we say that a point 𝑄  “divides externally” the straight line 
segment 𝐴𝐵  in a ratio 𝜆 , where 𝜆 > 0 , if the points 𝐴 , 𝐵 , and 𝑄  are 
collinear, 𝑄 is external to 𝐴𝐵, and it holds that  
N(
NL
= 𝜆. 

If this is the case, then N(
|N(ENL|

= M
|ME"|

 (given that 𝑄𝐴 ≠ 𝑄𝐵, it holds that 
𝜆 ≠ 1), so that  
𝑄𝐴 = M

|ME"|
 AB, which implies the uniqueness of 𝑄. 

Thales’s Theorem: If parallel straight lines intersect two straight lines, 
then they define proportional straight line segments on them. For instance, 
if parallel straight lines 𝑙" , 𝑙# , and 𝑙*  intersect straight lines 𝑎  and 𝑎@  at 
points 𝐴, 𝐵, 𝐶 and 𝐴@, 𝐵@, 𝐶@ respectively, as shown in Figure 2-2, then 
(L
((L(

= (P
((P(

= LP
L(P(
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Figure 2-2: Thales’s Theorem. 
 

 
 
Corollary 1: Every straight line that is parallel to the bases of a trapezoid 
divides, internally or externally, the non-parallel sides of the given 
trapezoid in equal ratios. 
Corollary 2: Every straight line that is parallel to one side of a triangle 
divides, internally or externally, the other two sides of the given triangle in 
equal ratios.  
Corollary 3: If two triangles have a common angle, and if they have 
parallel opposite sides, then they are said to be in Thales position, and then 
they are similar triangles and have proportional sides. 
In the sixth century B.C.E., Pythagoras and his school (the so-called 
“Pythagoreans”) endorsed Thales’s approach to mathematics. From the 
Pythagorean perspective of mathematics, the relations between the objects 
of the world (e.g., magnitudes) correspond to the relations between natural 
(and, generally, integral) numbers. However, it was soon realized that 
things are not so simple, since it was realized that there exist magnitudes 
that do not have a common measure. According to the Pythagoreans, two 
objects (magnitudes) are “commensurable” (that is, they have a common 
measure) if and only if there is a magnitude of the same kind that is 
contained an integral number of times in both of them. In other words, two 
magnitudes are “commensurable” if and only if their ratio is a rational 
number. However, the Pythagoreans encountered “incommensurable” 
magnitudes: magnitudes whose ratio is an irrational number. For instance, 
as shown in Figure 2-1, the length of a diagonal of a unit square (i.e., of a 
square with sides measuring 1  unit) is, according to the Pythagorean 
Theorem, equal to √2, which is an irrational number. Similarly, a circle’s 
circumference and its diameter are incommensurable (that is, 𝜋, the ratio 
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of a circle’s circumference to its diameter, is an irrational number). The 
awareness that there exist incommensurable magnitudes compelled ancient 
Greek mathematicians to inquire into the relations between 
incommensurable magnitudes. This event marked a major crisis in ancient 
mathematics. 
According to ancient Greek mathematicians, quantities (magnitudes) are 
continuous and uniform objects, which are best represented by straight line 
segments. Their division into parts, or their measurement in terms of a 
“unit of measurement” (i.e., a definite magnitude of a quantity), 
meanwhile, represents the notion of discreteness. Ancient Greek 
mathematicians used the term “ratio of magnitudes” in order to refer to the 
relation between two magnitudes that can be measured in terms of a 
common unit of measurement. Thus, the ancient Greek concept of a ratio 
is most similar to the more abstract modern concept of a number. In the 
context of ancient Greek mathematics, the objects of mathematics were 
quantities (represented by straight line segments), and the ratio between 
two quantities was a meta-object, or something that was used in order to 
study mathematical objects without being treated as a mathematical object 
itself. In other words, in the context of ancient Greek mathematics, a ratio 
(a number) was construed as a measuring relationship between two 
quantities, and such a measuring relationship could be built up (and, 
hence, proved) in finitely many steps, using a common unit of 
measurement. Nevertheless, the discovery of incommensurable ratios 
demonstrated that a ratio could not be interpreted as a measuring 
relationship in the aforementioned way. In fact, as a result of the discovery 
of incommensurable ratios, the concept of a ratio (or a number) acquired 
its conceptual autonomy, and, instead of being treated as a meta-object, it 
started being treated as an object of mathematics. Therefore, ancient Greek 
mathematicians had to transcend the system of mathematics that was based 
on commensurable ratios. Notice that a commensurable ratio could easily 
become an object of mathematical theory, since it is a rational number, 
and, therefore, it can be constructed in finitely many steps, whereas the 
decimal representation of an irrational number neither terminates nor 
infinitely repeats but extends forever without regular repetition. 
In the fourth century C.E., Theon, one of the most important Greek 
mathematicians and commentators of Euclid’s and Ptolemy’s works, 
attempted to solve the problems that were generated as a result of the 
aforementioned crisis in the foundations of ancient Greek mathematics. In 
particular, Theon started from an extremely small (infinitesimal) unit 
square such that the ratio between any of its sides and any of its diagonals 
is equal to 1 (given that it is infinitely small); symbolically, if 𝑎" is the 
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length of any of the sides of the given infinitesimal unit square, and if 𝛿" is 
the length of any of the diagonals of the given infinitesimal unit square, 
then Q"

1"
= 1 (rather than √2). Subsequently, Theon formulated a recursive 

sequence of squares defined by the following rule: 
𝑎% = 𝛿%E" + 𝑎%E" and 𝛿% = 2𝑎%E" + 𝛿%E", 
so that the ratio between a diagonal and a side of a unit square approaches 
its actual value, that is, 
Q'
1'
→ √2 . The aforementioned recursive sequence yields 

"
"
, *
#
, R
C
, "R
"#
, A"
#D
, DD
R)
, …  beginning with Q"

1"
= "

"
, and, thus, Theon’s rule 

provides an algorithm for successive approximations to the square root of 
2. Theon explained that he started from the case in which Q"

1"
= 1 because, 

just as the sperm of a living organism encompasses subsequent properties 
of the given organism, any ratio “spermatically” (i.e., at the infinitesimal 
level) encompasses the unit. 
Theon’s aforementioned reasoning is underpinned by Aristotle’s concept 
of a “potential infinity.” The concept of modern mathematics that is 
semantically most similar to Aristotle’s concept of a “potential infinity” is 
the convergence of a sequence of natural numbers. Thus, from the 
perspective of ancient Greek mathematics, infinity is not a being (i.e., it is 
not an actual state); it cannot be simultaneously considered in its whole 
extension, but it can only be considered as a becoming (i.e., a process). In 
this way, the concept of an infinite approach helps us to overcome the 
contradiction between incommensurable ratios and commensurable ratios, 
since we can think of an incommensurable ratio infinitely approaching a 
commensurable ratio (and vice versa). Similarly, the concept of an infinite 
approach helps us to overcome the contradiction between broken lines and 
curves, as well as the contradiction between continuity and discreteness. 
This reasoning is endorsed by Euclid; in his Elements, he does not 
consider infinitely extended straight lines, but he always works with 
straight line segments which, as he says, can be extended as much as one 
needs.  
However, several intellectuals have used infinite processes in a way that is 
not rigorous. For instance, they have attempted to compute the length of 
the circumference of a circle by considering an inscribed polygon whose 
number of sides increases indefinitely. Therefore, the length of each side 
of such a polygon decreases indefinitely, so that a triangle whose base is a 
side of the given polygon and whose vertex (i.e., the “top” corner opposite 
its base) is the center of the given circle could become such that its base 
coincides with the given circle’s circumference. To what extent is such a 
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shape a triangle, and beyond which point does an arc become a chord? 
One may argue that these changes happen when a straight line segment 
becomes infinitely small, but then one may counter-argue that, by 
becoming infinitely small, a straight line segment is not “something” any 
more, and it becomes “nothing.” Hence, how is it possible that an infinite 
series of “nothing” (“no-things”) gives “something,” such as a circle? The 
aforementioned example indicates the problems that are generated as a 
result of the use of infinite processes in computations. 
The aforementioned crisis in the foundations of mathematics was 
overcome by Eudoxus’s theory of proportions and by the method of 
exhaustion, which derives from Eudoxus’s theory of proportions, and it 
was used by Archimedes. The method of exhaustion was originally 
developed in the fifth century B.C.E. by the Athenian intellectual 
Antiphon, and it was put in a rigorous scientific setting shortly afterwards 
by the Greek mathematician and astronomer Eudoxus of Cnidus, who used 
it in order to calculate areas and volumes. The Greek mathematician 
Euclid (the acknowledged father of “Euclidean geometry”) and the Greek 
mathematician, physicist, and engineer Archimedes made extensive use of 
the method of exhaustion in order to prove several mathematical 
propositions. For instance, Archimedes used the method of exhaustion in 
order to compute the area of a circle by approximating the area of a circle 
from above and below by circumscribing and inscribing regular polygons 
of an increasingly larger number of sides (so that sides become 
“infinitesimals,” or infinitely small): each of the polygons is a union of 
triangles, so it is easily verified that the area of a circle of radius 𝑟 and 
circumference 𝐶 is equal to the area of a triangle whose altitude is equal to 
𝑟 and whose base is equal to 𝐶 = 2𝜋𝑟. Then, given that the area of a 
triangle is equal to half of the product of its base and altitude, we obtain 
the formula for the computation of the area of a circle: "

#
(𝑟𝐶) =

"
#
(𝑟2𝜋𝑟) = 𝜋𝑟#. Moreover, Archimedes was able to calculate the length of 

various tangents to the spiral (i.e., to a curve emanating from a point 
moving farther away as it revolves around the point).  
Archimedes was very careful in the use of infinite processes; he 
approximated 𝜋  by using the fact that the circumference of a circle is 
bounded by the perimeter of an inscribed polygon and by the perimeter of 
a circumscribed polygon. According to Eudoxus and Archimedes, there is 
always a ratio between any two magnitudes, and we can always make any 
magnitude smaller or greater than a given magnitude, so that the ratio 
between two magnitudes 𝑎  and 𝑏 is the same as the ratio between two 
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other magnitudes 𝑐 and 𝑑 if and only if, for any natural numbers 𝑚 and 𝑛, 
it holds that 
𝑚𝑎 ⪌ 𝑛𝑏 ⇒ 𝑚𝑐 ⪌ 𝑛𝑑,                                                                              (2) 
meaning that both of these ratios are characterized by the same placement 
property (i.e., ordering) with regard to other numbers. In (2), the equality 
sign (=) refers to commensurable ratios, whereas the inequality signs (≷) 
refer to incommensurable ratios. These ideas of Eudoxus and Archimedes 
indicate that ancient Greek mathematicians discovered not only 
incommensurable magnitudes but also incommensurable numbers. 
Eudoxus’s aforementioned theory of proportions underpins Archimedes’s 
method of exhaustion for solving geometric problems, and Archimedes’s 
method of exhaustion underpins modern infinitesimal calculus.  
It is important to notice that the way in which Eudoxus solved the problem 
of the existence of incommensurable ratios (specifically, his attempt to 
study the conundrum of irrationality that appears to exist in elementary 
geometry in a scientifically rigorous way) marks a shift away from the 
traditional constructivist approach to mathematics towards formalism. In 
other words, Eudoxus does not explain what a ratio is (as a mathematical 
object), but he states only when two ratios are similar to each other. The 
constructivist approach to mathematics allows us to determine what an 
object is by being able to construct it, whereas the formalist approach to 
mathematics is not concerned with the substance of the mathematical 
object under consideration, and is concerned only with the relations 
between the mathematical object under consideration and other 
mathematical objects. Moreover, the ideas of Eudoxus and Archimedes are 
conceptually very similar to Dedekind’s cuts. 
Fusing geometry and arithmetic is an arduous task. In order to understand 
the difficulties that originate from fusing geometry and arithmetic, let us 
consider, for instance, the famous irrational number √2 , which was 
discovered by Pythagoreans when they attempted to compute the length of 
a diagonal of a unit square.  
The Pythagoreans realized that the diagonal of a unit square is not 
commensurable with the side of the given square, but, by keeping 
geometry and arithmetic separate from each other (that is, by refusing to 
identify numbers with lengths of straight line segments), ancient Greek 
mathematicians could argue as follows: given a straight line segment 
whose length is one, we can construct a straight line segment whose length 
is √2  (as shown in Figure 2-1). In general, irrational numbers are 
geometrically constructible (and, hence, geometrically explicable and 
manageable), even though, from the perspective of arithmetic, irrational 
numbers are ideal quantities, in the sense that the calculation of irrational 
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numbers (such as √2) is an infinite process (namely, irrational numbers 
have infinitely many decimal digits).  
On the other hand, having endorsed the Cartesian approach to 
mathematics, mathematicians in the nineteenth century realized that they 
had to clarify some still ambiguous fundamental concepts (such as that of 
a real number), to formulate new methods of doing mathematics in a 
logically rigorous way, and to create a rigorous theory of the arithmetic 
continuum―specifically, a rigorous theory of real numbers and their 
arithmetic.  
 

The Real Numbers 
 

ℝ: the “real numbers,” or the set that is formed by the union of the set ℚ 
of all rational numbers and the set ℚ∼  of all irrational numbers; 
symbolically: ℝ = ℚ∪ℚ~. 
Based on and following the methodology of the fifth volume of Euclid’s 
Elements (that is, the mathematical work of Eudoxus), Richard Dedekind 
formulated the modern theory of real numbers. He began with the 
following three properties of rational numbers:  

i. If 𝑎 > 𝑏 and 𝑏 > 𝑐, then 𝑎 > 𝑐. 
ii. If 𝑎  and 𝑐  are two distinct (rational) numbers, then there exist 

infinitely many distinct numbers lying between 𝑎 and 𝑐. 
iii. If 𝑎  is any definite (rational) number, then all numbers of the 

system ℚ fall into two classes, 𝐴" and 𝐴#, each of which contains 
infinitely many individuals; 𝐴" contains all numbers 𝑎" that are <
𝑎, while 𝐴# contains all numbers 𝑎# that are > 𝑎; the number 𝑎 
itself may be assigned at will to 𝐴" or 𝐴#, being, respectively, the 
greatest number of 𝐴" or the least number of 𝐴#.  

Then Dedekind stated three properties of the points on a straight number 
line 𝐿: 

i. If 𝑝 lies to the right of 𝑞 and 𝑞 to the right of 𝑟, then 𝑝 lies to the 
right of 𝑟; and 𝑞 is said to lie between 𝑝 and 𝑟. 

ii. If 𝑝 and 𝑟 are two distinct points, then there always exist infinitely 
many points lying between 𝑝 and 𝑟.  

iii. If 𝑝 is a definite point on 𝐿 , then all points on 𝐿  fall into two 
classes, 𝑃"  and 𝑃# , each of which contains infinitely many 
individuals; 𝑃" contains all the points 𝑝" that lie to the left of 𝑝, 
while 𝑃# contains all the points 𝑝# that lie to the right of 𝑝; the 
point 𝑝 itself may be assigned at will to 𝑃"  or 𝑃# . In any case, 
every point of 𝑃" lies to the left of every point of 𝑃#. 
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Each such division (or partition) of the set ℚ  of all rational numbers 
defines a “cut,” called the “Dedekind’s cut.” However, after having 
observed that every rational number effects a “cut” in the set of rationals, 
Dedekind considered the inverse question: if, by a given criterion, the set 
of rationals is divided into two subsets 𝐴 and 𝐵 so that every number in 𝐴 
is less than every number in 𝐵, is there always a greatest rational in 𝐴 or a 
smallest rational in 𝐵? Dedekind immediately realized that the number 
line should be “continuous,” or unbroken, in the intuitive sense. Like 
Eudoxus and Cantor before him, he developed theoretical concepts for the 
purpose of filling the gaps in the ordered set of rationals so that the final 
geometric picture is a continuous, straight number line. However, the 
answer to the last question is in the negative: when 𝐴 has no maximum 
rational and 𝐵  has no minimum rational, there is, indeed, a gap in the 
rational series (or a puncture in the number line) which must be filled. In 
that case, the cut (𝐴, 𝐵) is said to define (or to be) an irrational number (as 
shown, for instance, in Figure 2-1). Hence, the set ℝ of all real numbers is 
called the “(arithmetic or geometric) continuum” or the “straight line of 
real numbers.” 
In modern mathematical notation, the set of all real numbers 𝑥 such that 
𝑎 ≤ 𝑥 ≤ 𝑏 is said to be a “closed interval,” denoted by [𝑎, 𝑏], of the real 
line ℝ, while the set of all real numbers 𝑥 such that 𝑎 < 𝑥 < 𝑏 (which 
does not include its endpoints) is said to be an “open interval,” denoted by 
(𝑎, 𝑏), of the real line ℝ. The intervals [𝑎, 𝑏) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥 < 𝑏} and 
(𝑎, 𝑏] = {𝑥 ∈ ℝ|𝑎 < 𝑥 ≤ 𝑏}  are neither open nor closed, but they are 
sometimes called “half-open” or “half-closed.” Notice that (𝑎, 𝑎) = ∅, and 
[𝑎, 𝑎] = {𝑎}. Moreover, we define the intervals: 
(𝑎,∞) = {𝑥 ∈ ℝ|𝑎 < 𝑥}, 
[𝑎,∞) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥}, 
(−∞, 𝑎) = {𝑥 ∈ ℝ|𝑥 < 𝑎}, 
(−∞, 𝑎] = {𝑥 ∈ ℝ|𝑥 ≤ 𝑎}.  
By the term “interval,” we generally mean a set of points with the property 
that, if 𝑥 and 𝑦 are distinct points of the set, every point between 𝑥 and 𝑦 
is also a point of the set (if the points 𝑥  and 𝑦  are included, then the 
interval is closed; otherwise, it is open). 
A real number 𝑏 is said to be an “upper bound” of a non-empty subset 𝑆 of 
ℝ if every member of the set 𝑆 is less than or equal to the number 𝑏, 
symbolically, if 𝑥 ≤ 𝑏	∀𝑥 ∈ 𝑆 . If this is the case, then 𝑆  is said to be 
“bounded from above.” For instance, if 𝑆 = {2,4,6,8,10}, then 10 is an 
upper bound of 𝑆, and every real number greater than 10 is also an upper 
bound of 𝑆 . Notice that, if a set is bounded from above, then it has 
infinitely many upper bounds, and that an upper bound of such a set need 
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not be a member of the given set. For instance, the number 10 is an upper 
bound of the open interval (2,10), but 10 ∉ (2,10). On the other hand, the 
set ℕ of all natural numbers has no upper bound.  
The least of all upper bounds of a set is said to be the “least upper bound” 
(often denoted by 𝑙. 𝑢. 𝑏.), or the “supremum” (often denoted by 𝑠𝑢𝑝). 
Hence, a real number 𝑏 is defined to be the 𝑙. 𝑢. 𝑏. of a set 𝑆 if 𝑏 is an 
upper bound of 𝑆  (i.e., 𝑥 ≤ 𝑏	∀𝑥 ∈ 𝑆 ), and if , given any other upper 
bound 𝑐 of 𝑆, 𝑏 < 𝑐; and then we write 𝑠𝑢𝑝(𝑆) = 𝑏. For instance, if 𝑆 =
{2,4,6,8,10}, then 𝑠𝑢𝑝(𝑆) = 10. On the other hand, the set ℕ of all natural 
numbers has no supremum. The supremum, when it exists, is unique for a 
set. 
A real number 𝑎 is said to be a “lower bound” of a non-empty subset 𝑆 of 
ℝ if every member of the set 𝑆 is greater than or equal to the number 𝑎, 
symbolically, if 𝑥 ≥ 𝑎	∀𝑥 ∈ 𝑆 . If this is the case, then 𝑆  is said to be 
“bounded from below.” For instance, if 𝑆 = {2,4,6,8,10}, then 2 is a lower 
bound of 𝑆, and every real number less than 2 is also a lower bound of 𝑆. 
Notice that, if a set is bounded from below, then it has infinitely many 
lower bounds, and that a lower bound of such a set need not be a member 
of the given set. For instance, the number 2 is a lower bound of the open 
interval (2,10), but 2 ∉ (2,10). On the other hand, the set ℤ of all integral 
numbers has no lower bound.  
The greatest of all lower bounds of a set is said to be the “greatest lower 
bound” (often denoted by 𝑔. 𝑙. 𝑏.), or the “infimum” (often denoted by 
𝑖𝑛𝑓). Hence, a real number 𝑎 is defined to be the 𝑔. 𝑙. 𝑏. of a set 𝑆 if 𝑎 is a 
lower bound of 𝑆  (i.e., 𝑥 ≥ 𝑎	∀𝑥 ∈ 𝑆 ), and if , given any other lower 
bound 𝑑 of 𝑆, 𝑎 > 𝑑; and then we write 𝑖𝑛𝑓(𝑆) = 𝑎. For instance, if 𝑆 =
{2,4,6,8,10}, then 𝑖𝑛𝑓(𝑆) = 2. On the other hand, the set ℤ of all integral 
numbers has no infimum. The infimum, when it exists, is unique for a set. 
A set is said to be “bounded” if it is both bounded from above and 
bounded from below. In other words, a set 𝑆 is bounded if there exist two 
real numbers 𝑎 and 𝑏 such that 𝑎 ≤ 𝑥 ≤ 𝑏	∀𝑥 ∈ 𝑆. If this is the case, then 
𝑥 ∈ [𝑎, 𝑏]	∀𝑥 ∈ 𝑆, meaning that, for any bounded set 𝑆, there exist two 
real numbers 𝑎 and 𝑏 such that 𝑆 ⊆ [𝑎, 𝑏].  
Notice that the empty set, ∅, is a subset of every set, and, ∀𝑎, 𝑏 ∈ ℝ, ∅ ⊆
[𝑎, 𝑏]. Therefore, ∅ is a bounded set. Because of the fact that ∅ ⊆ [𝑎, 𝑏] 
for any real numbers 𝑎 and 𝑏, every real number is a lower bound of ∅, 
and every real number is an upper bound of ∅, meaning that ∅ does not 
have a supremum or an infimum.  
Moreover, notice that, for an arbitrary singleton 𝐴 = {𝑥},	𝑠𝑢𝑝(𝐴) = 𝑥 =
𝑖𝑛𝑓(𝐴). Thus, every singleton is a bounded set in which 𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚 =
𝑖𝑛𝑓𝑖𝑚𝑢𝑚. 
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If the supremum of a set belongs to the given set, then it is said to be the 
“maximum element” of the given set. If the infimum of a set belongs to 
the given set, then it is said to be the “minimum element” of the given set. 
For instance, 5 is the maximum element of the set (closed interval) [−3,5], 
and −3  is the minimum element of this set. However, the set (open 
interval) (−3,5)  does not have a maximum element or a minimum 
element. 
Assume that 𝜀  is a positive real number―that is, 𝜀 > 0 . Moreover, 
consider the open interval 𝑁 = (𝑝 − 𝜀, 𝑝 + 𝜀) . Hence, 𝑝 ∈ (𝑎, 𝑏) ⊆
(𝑝 − 𝜀, 𝑝 + 𝜀). If this is the case, then (𝑝 − 𝜀, 𝑝 + 𝜀) is called the “ 𝜀-
neighborhood” of the point 𝑝, and it is denoted by 𝛮T(𝑝). In other words, 
the 𝜀-neighborhood of a point 𝑝 on the real line is the set of all those real 
numbers which are within an 𝜀 distance of 𝑝 on either side of it; 𝑝 is the 
midpoint or the center of 𝛮T(𝑝); and 𝜀 is the radius of 𝛮T(𝑝). In other 
words, a subset 𝑁 of ℝ is said to be a neighborhood of a real number 𝑝 if 
there exists an open interval (𝑎, 𝑏) containing 𝑝 and itslf contained in 𝑁, 
symbolically, 𝑝 ∈ (𝑎, 𝑏) ⊆ 𝑁. Then the set ℕ of all natural numbers, the ℤ 
of all integers, the set ℚ of all rational numbers, and the set ℚ∼  of all 
irrational numbers are not neighborhoods of any of their elements, 
whereas the set ℝ of all real numbers itself is a neighborhood of each of its 
elements. 
We shall use the notation 𝑁T′ (𝑝)  in order to denote the “deleted 
neighborhood,” consisting of 𝛮T(𝑝) with the point 𝑝 deleted. In terms of 
the real line ℝ, a deleted neighborhood is an interval on ℝ with the center 
point removed.  
Given a set 𝑆, a real number 𝑝 is said to be an “interior point” of 𝑆 if 𝑆 is a 
neighborhood of 𝑝; symbolically: if 𝑝 ∈ (𝑎, 𝑏) ⊆ 𝑆. Obviously, an interior 
point of a set 𝑆 belongs to 𝑆. The set of all interior points of a given set 𝑆 
is called the “interior” of 𝑆, and it is denoted by 𝐼𝑛𝑡(𝑆). In general, a point 
𝑝 ∈ ℝ% is said to be an “interior point” of 𝑈 if some neighborhood (open 
ball)	𝛮T(𝑝) with center 𝑝 is contained in 𝑈.  For instance, if 𝑆 = [2,5], 
then R

#
 is an interior point of 𝑆, whereas neither 2 nor 5 is an interior point 

of 𝑆, because [2,5] is not a neighborhood of 2 and 5. The interior of the 
closed interval [2,5]  is the open interval (2,5) . The points of the 
“boundary” of a set 𝑆  are those points on the edge of 𝑆  separating the 
interior of 𝑆 from its exterior; and, more formally, we can say that a point 
𝑝 is a “boundary point” of a set 𝑆 if and only if every neighborhood of 𝑝 
contains at least one point that belongs to 𝑆 and one point that does not 
belong to 𝑆. 
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A real number 𝑝  is called a “closure point” of a set 𝑆 ⊆ ℝ  if every 
neighborhood of 𝑝 contains a point of 𝑆. The set of all closure points of 𝑆 
is called the “closure” of 𝑆, and it is denoted by 𝐶𝑙𝑠(𝑆). Therefore, every 
point of 𝑆 ⊆ ℝ is a closure point of 𝑆.  
A real number 𝑝 is called an “accumulation point,” a “limit point,” or a 
“cluster point” of 𝑆 if every deleted neighborhood of 𝑝 contains at least 
one point of 𝑆 ; symbolically: if 𝑆 ∩ 𝑁T@(𝑝) ≠ ∅	∀𝜀 > 0 (in other words, 
every neighborhood of 𝑝 contains at least one point of 𝑆 other than 𝑝). For 
instance, if 𝐴 = [𝑎, 𝑏]  and 𝐵 = (𝑎, 𝑏) , then every member of 𝐴  is an 
accumulation point of 𝐴  and of 𝐵 , since, for instance, ∀𝜀 > 0 , the 
neighborhood (𝑎 − 𝜀, 𝑎 + 𝜀) of 𝑎 contains infinitely many elements of 𝐴 
and of 𝐵. Moreover, every real number is an accumulation point of the set 
ℚ of all rational numbers as well as of the set ℝ of all real numbers, since, 
for instance, given an arbitrary real number 𝑝,	∀𝜀 > 0, the neighborhood 
(𝑝 − 𝜀, 𝑝 + 𝜀) contains infinitely many real numbers as well as infinitely 
many rational numbers. On the other hand, the set ℕ  of all natural 
numbers, the set ℤ of all integral numbers, and the empty set have no 
accumulation point. Furthermore, no finite set has any accumulation point, 
because, if, for instance, 𝐴 = {𝑎", 𝑎#, 𝑎*, … , 𝑎%}, and if 𝑝 is an arbitrary 
real number, we can construct a sufficiently small neighborhood 𝑁 with 
center 𝑝  such that 𝑁  contains no point of 𝐴 ; therefore, 	𝑝 , which is an 
arbitrary real number, is not an accumulation point of 𝐴. 
Every accumulation point of a set is also a closure point of that set, but not 
conversely. For instance, given the set 𝐴 = {"

%
|𝑛 ∈ ℕ − {0}Ï, 0 = 𝑖𝑛𝑓(𝐴) 

and 0 ∉ 𝐴, and, therefore, 0 is an accumulation point of 𝐴, but 1 is a 
closure point of 𝐴  without being an accumulation point of 𝐴 , since a 
neighborhood (1 − 𝜀, 1 + 𝜀), where 𝜀 > 0, does not contain a member of 
𝐴 other than 1. 
The following theorem, known as the Bolzano–Weierstrass Theorem, can 
be easily deduced from the principles of the Dedekind’s cuts: 
Bolzano–Weierstrass Theorem: If a set 𝑆 contains infinitely many points 
of the real line, and if it is entirely contained in an open interval (𝑎, 𝑏), 
then at least one point of that interval is a point of accumulation of 𝑆. In 
other words, every bounded infinite set of real numbers has at least one 
accumulation point. Indeed, if we define a Dedekind’s cut (𝑃", 𝑃#) with 
𝑎 ∈ 𝑃" and 𝑏 ∈ 𝑃#, then there is a poit 𝜉 such that, however small be 𝜀, 
𝜉 − 𝜀 ∈ 𝑃"  and 𝜉 + 𝜀 ∈ 𝑃# , so that the interval (𝜉 − 𝜀, 𝜉 + 𝜀)  contains 
infinitely many points of 𝑆, and, therefore, 𝜉 is a point of accumulation of 
𝑆; in fact, this point may coincide with 𝑎 or 𝑏, as, for instance, when 𝑎 =
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0, 𝑏 = 1, and 𝑆 consists of the points 1, "
#
, "
*
, …, in which case 0 is the sole 

point of accumulation. 
The Bolzano–Weierstrass Theorem is important, because, by guaranteeing 
the sufficiency of the density of ℝ, it provides a rigorous way of proving 
the convergence of infinite sequences of real numbers. Bernard Bolzano 
(1781–1848), an Italian-Czech mathematician, philosopher, theologian, 
and Catholic priest, and Karl Weierstrass (1815–97), a German 
mathematician, were pioneering advocates of rigor in mathematical 
analysis.  
We can think of infinity in two ways: either as an indefinite quantity 
whose size has exceeded all limits or as a definite quantity that we imagine 
growing continuously, but the latter always remains less than what we call 
actual infinity. Thus, we come up with two types of infinity: one is 
absolute and static, corresponding to the notion of an indefinite quantity, 
and the other is dynamical, corresponding to a definite yet potentially 
continuously growing quantity. Furthermore, it is important to understand 
the difference between infinity per se and an infinite quantity. Infinity per 
se is an idea of pure reason, whereas an infinite quantity is a constructive 
concept based on the idea of infinity. Infinity per se does not coincide with 
any empirical (or theoretical) quantity, but it is a critical intellectual 
capability that enables us to characterize any particular quantity as finite 
by conceiving a quantitative space that contains the entire finite and is 
based on the notion of transcendence. The negation of the finite—and, 
more precisely, the conception of a process of transcending any particular 
quantity—refers us to the idea of infinity. Whereas infinity qua infinity is 
an idea of pure reason, an infinite quantity manifests itself through several 
concepts, so that, for instance, we refer to the infinite quantity (or the 
infinite size) of the natural numbers, of a line, of a plane, of a geometric 
space, etc. 
A “real number” is a quantity 𝑥 that has a “decimal expansion”: 
𝑥 = 𝑛 + 0. 𝑑"𝑑#𝑑*…, 
where 𝑛 is an integer, each 𝑑=  is a digit between 0 and 9 (𝑖 = 1,2,3, …), 
and no infinite sequence of 9’s appears (0.999… with an infinite sequence 
of 9 ’s is exactly the same number as 1 ). The aforementioned 
representation implies that 
𝑛 + ;"

")
+ ;#

"))
+⋯+ ;$

")$
≤ 𝑥 < 𝑛 + ;"

")
+ ;#

"))
+⋯+ ;$

")$
+ "

")$
, 

for all positive integers 𝑘.  
Exponents, factorials, and logarithms: Let 𝑎 be a real number. Then the 
product 𝑎 ∙ 𝑎 ∙ 𝑎 …  (𝑛  times) is denoted by 𝑎% , where 𝑛  is called the 
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“exponent,” and 𝑎 is called the “base.” Therefore, the following properties 
of exponents hold ∀𝑎, 𝑏 ∈ ℝ: 

i. 𝑎%𝑎6 = 𝑎%B6, 
ii. (𝑎%)6 = 𝑎%6, 
iii. 1'

1)
= 𝑎%E6, 

iv. 𝑎) = 1, and 
v. Ã1

0
Ä
%
= 1'

0'
. 

A “factorial” is a function in mathematics denoted with the symbol ! that 
multiplies a positive integer 𝑛 by every number that precedes it:  
𝑛! = 𝑛 ∙ (𝑛 − 1) ∙ (𝑛 − 2) ∙ … ∙ 2 ∙ 1.  
For instance, 4! = 4 ∙ 3 ∙ 2 ∙ 1 = 24 . Notice that 0! = 1 , and 1! = 1 . In 
other words, 𝑛! (“𝑛 factorial”) is the product of all natural numbers from 1 
to 𝑛.  
The number of “permutations” (ordered arrangements) of 𝑛  elements 
taken 𝑚 at a time is 𝑃6% =

%!
(%E6)!

, and the number of “combinations” of 𝑛 

elements taken 𝑚 at a time is 𝐶6% =
%!

(%E6)!6!
= K)'

6!
. Notice that the term 

“permutation” means the number of ways we can arrange a set of objects 
in a specific order (in this case, the order of the objects matters), whereas 
the term “combination” means the number of ways we can select a subset 
of objects from a larger set without taking the order of the objects into 
consideration. For instance, consider a group of 10 persons. If we want to 
form a subgroup, a subcommittee, of 3 persons from this group, then this 
is a combination problem (since the order we select persons for the 
subcommittee doesn’t change the subcommittee we form), and, therefore, 
we apply the formula 𝐶*") =

")!
(")E*)!*!

= 120 (there are 120 ways to select 
a group of 3 persons from a group of 10 persons). If we want to select a 
President, a Vice President, and a Secretary from this group (of 10 
persons), then this is a permutation problem (since the order we select 
them changes the role that they perform), and, therefore, we apply the 
formula 𝑃*") =

")!
(")E*)!

= 720 (there are 720 ways to select a President, a 
Vice President, and a Secretary from a group of 10 persons). But if we 
simply want to find the number of ways that a group of 10 persons can 
arrange themselves in a row of 10 chairs, then the answer is 10! (the 10 
persons can arrange themselves in a row in 10! ways). 
Intimately related to the concepts of an exponent and an index is the 
concept of a logarithm, which is the inverse function to exponentiation. 
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The “logarithm” of a number 𝑎 is the exponent to which another fixed 
number, the base 𝑏, must be raised to produce the number 𝑎; symbolically: 
𝑙𝑜𝑔0𝑎 = 𝑥 ⇔ 𝑏V = 𝑎, 
where 𝑏 and 𝑎 are positive numbers with 𝑏 ≠ 1.  
For instance, 𝑙𝑜𝑔")1,000 = 3, since 10* = 1,000, and 𝑙𝑜𝑔*81 = 4, since 
3A = 81 . The method of logarithms was originally developed by the 
Scottish mathematician, physicist, and astronomer John Napier (1550–
1617), who published his book Mirifici Logarithmorum Canonis 
Descriptio (Description of the Wonderful Rule of Logarithms) in 1614. 
The following properties of the logarithm can be easily verified (since they 
derive from the properties of exponents): 

i. 𝑙𝑜𝑔0(𝑥𝑦) = 𝑙𝑜𝑔0𝑥 + 𝑙𝑜𝑔0𝑦, 
ii. 𝑙𝑜𝑔0 Ã

V
W
Ä = 𝑙𝑜𝑔0𝑥 − 𝑙𝑜𝑔0𝑦, 

iii. 𝑙𝑜𝑔0𝑥< = 𝑘𝑙𝑜𝑔0𝑥, 
iv. 𝑙𝑜𝑔01 = 0, 
v. 𝑙𝑜𝑔0𝑏V = 𝑥 = 𝑏4X:*V, 

where 𝑏, 𝑥, 𝑦 are positive, with 𝑏 ≠ 1, and 𝑘 any real number.  
Equation-solving principle: If 𝑥, 𝑦, and 𝑏 are positive real numbers with 
𝑏 ≠ 1, then  
𝑥 = y ⇒ 𝑙𝑜𝑔0𝑥 = 𝑙𝑜𝑔0𝑦, and, conversely,  
𝑙𝑜𝑔0𝑥 = 𝑙𝑜𝑔0𝑦 ⇒ 𝑥 = 𝑦. 
Therefore, we can solve exponential equations (i.e., equations in which the 
unknown is in the exponent) by taking the logarithm of both sides of the 
equation. For instance, let us solve the exponential equation 5#V = 21 for 
𝑥 , using 𝑙𝑜𝑔  base of 10: 5#V = 21 ⇒ 𝑙𝑜𝑔(5#V) = 𝑙𝑜𝑔21 ⇒ 2𝑥 ∙ 𝑙𝑜𝑔5 =

𝑙𝑜𝑔21 ⇒ 2𝑥 = 4X:#"
4X:C

⇒ 𝑥 =
+,-#"
+,-.

#
≈ 0.9458. 

Change of base rule: We may change a logarithm in one base to a 
logarithm in another base according to the following rule: 
𝑙𝑜𝑔0𝑥 =

4X:/V
4X:/0

. 
The number 𝑒  and the “natural logarithm”: Now, let us consider 
exponential expressions that represent phenomena that change 
continuously, such as the concept of compound interest. By the term 
“compound interest,” we mean the interest calculated on the principal (the 
invested/borrowed initial sum) and the interest accumulated over the 
corresponding period of time (i.e., compound interest differs from simple 
interest, where interest is not added to the principal when we calculate the 
interest during the next period of time). Let 𝑃  denote the principal, 𝑟 
denote the interest rate, 𝑛  denote the number of times interest is 
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compounded per year, 𝑡 denote time (in years), and 𝐴 denote the amount 
(including principal and interest) of an investment or a loan. Then: 

𝐴 = 𝑃 Ã1 +
𝑟
𝑛Ä

%Y
 

(this is the formula of compound interest). For instance, using the formula 
of compound interest, let us examine the return on an $1 investment for 
one year at an investment rate of 100%. Moreover, progressively, we shall 
compound our investment more frequently and observe the result (we 
chose 𝑃 = $1 and 𝑟 = 100% in order to illustrate the situation with the 
easiest numbers). Therefore, if compounded: 

annually (𝑛 = 1), then 𝐴 = Ã1 + "
"
Ä
"
= $2.00; 

semiannually (𝑛 = 2), then 𝐴 = Ã1 + "
#
Ä
#
= $2.25; 

quarterly (𝑛 = 4), then 𝐴 = Ã1 + "
A
Ä
A
≈ $2.441; 

monthly (𝑛 = 12), then 𝐴 = Ã1 + "
"#
Ä
"#
≈ $2.613; 

daily (𝑛 = 365), then 𝐴 = Ã1 + "
*GC
Ä
*GC

≈ $2.714; 

hourly (𝑛 = 8,760), then 𝐴 = Ã1 + "
2,RG)

Ä
2,RG)

≈ $2.718. 
The problem of compound interest was systematically investigated by the 
Swiss mathematician Jacob Bernoulli (1655–1705), who observed that, in 
the above situation, as 𝑛  increases (that is, as compounding intervals 
become smaller), Ã1 + "

%
Ä
%

 approaches a limit (the “force of interest”), 
specifically, it approaches an irrational number that is denoted by the letter 
𝑒 , in order to honor the Swiss mathematician Leonhard Euler. Notice 
that 	𝑒 = ∑ "

%!
'
%>) = "

)!
+ "

"!
+ "

#!
+ "

*!
+⋯ ≈ 2.718 , meaning that, with 

continuous compounding, the value of the aforementioned investment will 
reach approximately $2.718. Euler proved that the number 𝑒 is irrational 
by showing that its simple continued fraction expansion is infinite (by a 
“continued fraction,” we mean an expression obtained through an iterative 
process of representing a number as the sum of its integral part and the 
reciprocal of another number, then writing this other number as the sum of 
its integral part and another reciprocal, etc.). 
In case the base 𝑏 = 𝑒 = ∑ "

%!
'
%>) ≈ 2.718, which is known as “Euler’s 

number,” then 𝑙𝑜𝑔Z𝑎 is written as 𝑙𝑛𝑎, and it is said to be the “natural 
logarithm” of 𝑎. Notice that 𝑙𝑜𝑔Z𝑎 = 𝑙𝑛𝑎 is called the “natural logarithm” 
because many processes can be described mathematically using it; such as: 
the rate at which your money will grow if you apply an interest rate 
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continuously over a period of time; the population of a colony of rabbits 
that reproduce at a constant rate; the population of seeds in a sun flower; 
the decay rate of a radioactive isotope; etc. 
 

Ordered Pairs and the Cartesian Product 
 

The Fundamental Property of Ordered Pairs: For any ordered pairs 
(𝑤, 𝑥)𝑎𝑛𝑑	(𝑦, 𝑧), it holds that:  
(𝑤, 𝑥) = (𝑦, 𝑧) ⇔ 𝑤 = 𝑦	&	𝑥 = 𝑧, 
and, in this case, the two ordered pairs are called “equal.” 
The “Cartesian product” (also known as the “direct product”) 𝐴 × 𝐵 of 
two sets 𝐴  and 𝐵  is the set of all ordered pairs (𝑎, 𝑏)  such that 𝑎 ∈
𝐴	𝑎𝑛𝑑	𝑏 ∈ 𝐵; symbolically: 
𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴	&	𝑏 ∈ 𝐵}.  
For instance, if 𝐴 = {1,2}  and 𝐵 = {1,3} , then the Cartesian product 
𝐴 × 𝐵  is the set {(1,1), (1,3), (2,1), (2,3)} . In general, the Cartesian 
product of the sets 𝐴", 𝐴#, … , 𝐴%, denoted by 𝐴" × 𝐴# ×…× 𝐴% is the set 
of all ordered 𝑛-tuples of the form (𝑎", 𝑎#, … , 𝑎%), where 𝑎= is an element 
of 𝐴=(𝑖 = 1,2, … , 𝑛). 
Remark: It is easily checked that, for any sets 𝐴, 𝐵, and 𝐶, we have: 
𝐴 × (𝐵 ∪ 𝐶) = (𝐴 × 𝐵) ∪ (𝐴 × 𝐶), 
𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶). 
If 𝐴 = ∅ or 𝐵 = ∅, then 𝐴 × 𝐵 = ∅.  
𝐴 × 𝐵 = 𝐵 × 𝐴 ⇔ 𝐴 = 𝐵. 
Let 𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎	&	𝑏	𝑎𝑟𝑒	𝑟𝑒𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟𝑠}. Then 𝐴 × 𝐵 is the set of 
all points in a plane whose coordinates are (𝑎, 𝑏) . Thus, 𝐴 × 𝐵  is the 
Cartesian plane 
ℝ# = ℝ×ℝ, 
as shown, for instance, in Figure 2-3. In this case, each point 𝑃 in the 
plane represents an ordered pair (𝑎, 𝑏) of real numbers, and vice versa. In 
other words, the vertical line through 𝑃  meets the 𝑥-axis at 𝑎 , and the 
horizontal line through 𝑃 meets the 𝑦-axis at 𝑏. Thus, we can understand 
the relationship between set theory, mathematical analysis, and geometry. 
In other words, a two-dimensional coordinate system consists of the 
horizontal axis (namely, the 𝑥-axis) and the vertical axis (namely, the 𝑦-
axis), and the intersection of the two axes is the origin 𝑂(0,0)  of the 
coordinate system (by the term “axis,” we mean a straight line with respect 
to which a body or structure is symmetrical). By analogy, we can define an 
𝑛-dimensional coordinate system for any 𝑛 ≥ 2 (𝑛 = 2,3,4,5, …), using 𝑛 
axes of reference at right angles to each other. 
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Figure 2-3: Cartesian coordinates. 
 
A. The Cartesian plane ℝ!  (source: Wikimedia Commons: Author: K. Bolino; 
https://commons.wikimedia.org/wiki/File:Cartesian-coordinate-system_v2.svg). 
 

 
 
B. The Cartesian space ℝ"  (source: Wikimedia Commons: Author: Jhncls; 
https://commons.wikimedia.org/wiki/File:Coordinaten.svg). 
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As noted above, the set ℝ of all real numbers is called the real line, or the 
continuum. A set of pairs of real numbers is called a “number plane,” and 
it is denoted by ℝ#. As already mentioned, the set ℝ can be represented 
geometrically as a horizontal number line. A geometric representation of 
the set ℝ#  is the coordinate plane 𝑥𝑂𝑦 , defined as two perpendicular 
number lines with a common origin 𝑂 and the same scale (the number of 
units represented by a unit length along an axis is called the “scale”). The 
point 𝑂(0,0) is called the “origin of coordinates.” If 𝑃) is a point in the 
coordinate plane, then, by projecting it on the coordinate lines 𝑂𝑥 and 𝑂𝑦, 
we find the coordinates of the projections 𝑥) and 𝑦) (notice: if you drop a 
perpendicular from a point to a line or plane, then the point you reach on 
that line or plane is called the projection of the point onto the line or 
plane). The coordinates are called, respectively, the “abscissa” (i.e., the 𝑥-
coordinate) and the “ordinate” (i.e., the 𝑦-coordinate) of the point 𝑃), and 
the straight lines 𝑂𝑥 and 𝑂𝑦 are respectively called the “axis of abscissas” 
and the “axis of ordinates”. Hence, to the point 𝑃) there corresponds one 
pair of numbers (𝑥), 𝑦)); conversely, given a pair of numbers (𝑥), 𝑦)), we 
mark the points 𝑥)  and 𝑦)  on the coordinate lines (axes) 𝑂𝑥  and 𝑂𝑦 , 
respectively, and, drawing through these points straight lines parallel to the 
coordinate lines (axes) 𝑂𝑥 and 𝑂𝑦, we find the point of their intersection 
𝑃). By analogy, we work in ℝ%.  
In general, the use of coordinate systems implies that space itself is 
encoded by 𝑛-tuples (i.e., by sequences, ordered lists, of 𝑛 numbers), and, 
specifically, that the two-dimensional space, the “plane,” is encoded by 
pairs of numbers, so that the conception of space becomes subordinate to 
the conception of arithmetic. 
The “absolute value” (also known as the “modulus” or the “magnitude”) 
of a real number 𝑥 is denoted by |𝑥|, and it is defined as follows: 

|𝑥| = {
𝑥	𝑖𝑓𝑥 ≥ 0
−𝑥	𝑖𝑓𝑥 < 0. 

Therefore, the absolute value of any real number is always non-negative, 
and it may be thought of as that real number’s distance from zero along the 
real line (“arithmetic continuum”). The aforementioned definition implies 
the following: 

i. |𝑥| is the distance between the point 𝑥 and zero (i.e., the “origin”) 
on the real line. Hence, for instance, |𝑥| < 2  means that the 
distance between 𝑥 and the origin is less than 2, so that 𝑥 lies 
between −2  and +2  on the real line, that is, −2 < 𝑥 < 2 . In 
general, whenever |𝑥| < 𝑎, it holds that −𝑎 < 𝑥 < 𝑎. Moreover, 
√𝑥# = |𝑥|. 
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ii. |𝑥| = |−𝑥|  (“evenness,” namely, “reflection symmetry” of the 
graph). 

iii. |𝑥| ≥ 𝑥 and |𝑥| ≥ −𝑥. 
Notice that |𝑥| = |𝑦| does not necessarily imply that 𝑥 = 𝑦. 
The absolute value of any real number has the following properties: 

i. |𝑥𝑦| = |𝑥||𝑦|, and, generally, 
|𝑥"𝑥#…𝑥%| = |𝑥"||𝑥#| … |𝑥%|. 
ii. |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|  (triangle inequality: its geometric 

interpretation is that, for any triangle, the sum of the lengths of 
any two sides is greater than or equal to the length of the 
remaining side; equality only happens in the degenerate case 
when the sides are collinear and the triangle has zero area), and, 
generally, 

|𝑥" + 𝑥# +⋯+𝑥%| ≤ |𝑥"| + |𝑥#| + ⋯+ |𝑥%| (subadditivity). 
iii. |𝑥 − 𝑦| ≥ |𝑥| − |𝑦|. 
iv. |𝑥| − |𝑦| ≤ Ö|𝑥| − |𝑦|Ö ≤ |𝑥 − 𝑦| (reverse triangle inequality).  
v. |𝑥 − 𝑦| < 𝑘 ⇒ 𝑦 − 𝑘 < 𝑥 < 𝑦 + 𝑘. 

The concept of an absolute value was originally articulated by the French 
mathematician Jean-Robert Argand (1768–1822), who used the French 
term “module” (meaning “unit of measure”), which was borrowed into 
English as the Latin equivalent “modulus.” The notation |𝑥|  was 
introduced by the German mathematician Karl Weierstrass (1815–97). 
 

Relations and Functions between Sets 
 

Let 𝐴 and 𝐵  be two arbitrary sets. Then a “relation” between 𝐴 and 𝐵 , 
denoted by 𝑅, is defined to be a subset of the Cartesian product 𝐴 × 𝐵; 
symbolically: 𝑅 ⊆ 𝐴 × 𝐵. The “domain” of relation 𝑅 is defined by 𝐷[ =
{𝑎|(𝑎, 𝑏) ∈ 𝑅} , and the “range” of relation 𝑅  is defined by 𝑅[ =
{𝑏|(𝑎, 𝑏) ∈ 𝑅}. If 𝑅 is a relation from 𝐴 to 𝐵, then the relation from 𝐵 to 𝐴 
is called the “inverse” of 𝑅, and it is defined by 𝑅E" = {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝑅}. 
A relational proposition is often denoted by 𝑎𝑅𝑏, where 𝑅 relates a term 𝑎 
to a term 𝑏. Hence, a relation of two terms proceeds, somehow, from one 
to the other. 
If 𝑅" is a relation from a set 𝐴 to a set 𝐵, and if 𝑅# is a relation from 𝐵 to a 
set 𝐶, then their “composition” denoted by 𝑅"		⃘	𝑅# is a relation from 𝐴 to 
𝐶, symbolically: 
𝑅"		⃘	𝑅# = {(𝑎, 𝑐) ∈ 𝐴 × 𝐶|𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝑅"	&		(𝑏, 𝑐) ∈
𝑅#	𝑤𝑖𝑡ℎ	𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶}. 
If 𝑅"  and 𝑅#  are relations such that 𝑅" ⊆ 𝑅# , then 𝑅#  is said to be an 
“extension” of 𝑅", and 𝑅" is said to be a “restriction” of 𝑅#. 
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A relation 𝑅 on a set 𝐴 is “reflexive” if (𝑎, 𝑎) is an element of 𝑅 for every 
𝑎 ∈ 𝐴; it is “symmetric” if (𝑎, 𝑏) is an element of 𝑅 whenever (𝑏, 𝑎) is an 
element of 𝑅; and it is “transitive” if (𝑎, 𝑐) is an element of 𝑅 whenever 
(𝑎, 𝑏)  and (𝑏, 𝑐)  are elements of 𝑅 . A relation 𝑅  on a set 𝐴  is 
“antisymmetric” if, whenever 𝑎  and 𝑏  are distinct, then (𝑎, 𝑏)  is an 
element of 𝑅 only if (𝑏, 𝑎) is not an element of 𝑅. For instance, if 𝐴 =
{𝑢, 𝑣, 𝑤} and 𝑅 is a relation on 𝐴, then: 
𝑅 = {(𝑢, 𝑣), (𝑣, 𝑢), (𝑢, 𝑢), (𝑣, 𝑣), (𝑣, 𝑤), (𝑤,𝑤)} is a reflexive relation on 
𝐴; 
𝑅 = {(𝑢, 𝑣), (𝑣, 𝑢), (𝑤,𝑤)} is a symmetric relation on 𝐴;  
𝑅 = {(𝑢, 𝑣), (𝑣, 𝑤)(𝑢,𝑤), (𝑣, 𝑣)} is a transitive relation on 𝐴; 
𝑅 = {(𝑢,𝑤), (𝑣, 𝑣), (𝑢, 𝑣), (𝑢, 𝑢)} is an antisymmetric relation on 𝐴. 
Let 𝐴  and 𝐵  be two arbitrary sets. A relation 𝑓 ⊆ 𝐴 × 𝐵  is called a 
“function,” “mapping,” or “transformation,” denoted by 𝑓: 𝐴 → 𝐵 , if it 
assigns to each element 𝑎 ∈ 𝐴 exactly one element 𝑏 ∈ 𝐵 . The set 𝐴 is 
called the “domain” of the function 𝑓 and is denoted by 𝐷], while the set 𝐵 
is called the “codomain” of the function 𝑓. The set of all elements of 𝐵 
that are related to the elements of 𝐴  via 𝑓  is called the “range” (or 
“codomain”) of the function 𝑓, and it is denoted by 𝑅], meaning that the 
range of 𝑓 is the image of 𝐴 by 𝑓: 
𝑓(𝐴) = {𝑓(𝑎)|𝑎 ∈ 𝐴}. 
Notice that the Axiom of Replacement, to which I referred earlier in this 
chapter, allows us to construct new sets from old ones by specifying a rule 
for generating the elements of the new set. Now, we shall state the Axiom 
of Choice. 
The Axiom of Choice: Let 𝑋 = {𝐴= , 𝑖 ∈ 𝐼} be a non-empty family of non-
empty pairwise disjoint sets. Then there exists a set 𝐴 consisting of exactly 
one element from each 𝐴=. In other words, there exists a function 𝑓 defined 
on 𝑋 with the property that, for each 𝐴= ∈ 𝑋, 𝑓(𝐴=) ∈ 𝐴=; and the function 
𝑓 is then called a “choice function.” 
The acceptance of this axiom by mathematicians guarantees the existence 
of mathematical objects that are obtained by a series of choices. Thus, the 
Axiom of Choice can be viewed as an extension of a finite process 
(choosing objects from sets) to infinite settings. The Axiom of Choice was 
originally formulated in 1904 by the German logician and mathematician 
Ernst Zermelo in order to ensure that, whenever infinite sets play a role, 
the formulation of theorems is simple and relevant to the sets under 
consideration.  
By the term “graph” of a function 𝑓: 𝐴 → 𝐵, we mean the set {𝑥, 𝑓(𝑥)}, 
where 𝑥 ∈ 𝐴. In other words, the “graph” of a function 𝑓(𝑥) is the set of 
all points in a coordinate system that correspond to ordered pairs in 𝑓(𝑥). 
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Vertical line test: Imagine a vertical line sweeping across a graph. Assume 
that the vertical line at any position intersects the graph in more than one 
point. Then the graph is not the graph of a function. 
If 𝑐 is a positive constant, then: 

i. The graph of 𝑦 = 𝑓(𝑥) + 𝑐 is the graph of 𝑓 raised by 𝑐 units. 
ii. The graph of 𝑦 = 𝑓(𝑥) − 𝑐 is the graph of 𝑓 lowered by 𝑐 units. 
iii. The graph of 𝑦 = 𝑓(𝑥 + 𝑐) is the graph of 𝑓 shifted 𝑐 units to the 

left. In fact, if we analyze the 𝑥-values, we can see a pattern, and 
we realize that the new 𝑥 that we need in order to obtain 𝑓(0) is 
the one that makes 𝑓(𝑥 + 𝑐) = 𝑓(0) , namely, −𝑐 . We can 
generalize this result as follows: 

 𝑓(𝑥%Z^ + 𝑐) = 𝑓(𝑥) ⇒ 𝑥%Z^ + 𝑐 = 𝑥 ⇒ 𝑥%Z^ = 𝑥 − 𝑐, 
 meaning that the new 𝑥-values are the old 𝑥-values translated – 𝑐 

units (that is, 𝑐 units to the left, since that direction is the negative 
direction).  

iv. The graph of 𝑦 = 𝑓(𝑥 − 𝑐) is the graph of 𝑓 shifted 𝑐 units to the 
right. 

The graph of 𝑦 = −𝑓(𝑥) is the graph of 𝑓 reflected about the 𝑥-axis. 
If 𝑐 > 1, then the graph of 𝑦 = 𝑐𝑓(𝑥) is the graph of 𝑓  stretched by a 
factor of 𝑐. If 0 < 𝑐 < 1, then the graph of 𝑦 = 𝑐𝑓(𝑥) is the graph of 𝑓 
flattened out by a factor of 𝑐. 
Operations with functions: 

i. (𝑓 ± 𝑔)(𝑥) = 𝑓(𝑥) ± 𝑔(𝑥). 
ii. (𝑓 ∙ 𝑔)(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥). 
iii. Ã]

:
Ä (𝑥) = ](V)

:(V)
, 𝑔(𝑥) ≠ 0. 

iv. Composite functions of functions 𝑓 and 𝑔:  
(𝑔		⃘𝑓)(𝑥) = 𝑔�𝑓(𝑥)� and 
(𝑓		⃘𝑔)(𝑥) = 𝑓�𝑔(𝑥)�. 

Two functions 𝑓: 𝐴 → 𝐵  and 𝑔: 𝐴 → 𝐵  are called “equal” if 𝑓(𝑥) =
𝑔(𝑥), ∀𝑥 ∈ 𝐴, and they are called “different” if there is at least one 𝑥) ∈ 𝐴 
such that 𝑓(𝑥)) ≠ 𝑔(𝑥)). 
A function 𝑓  is said to be “odd” if 𝑓(−𝑥) = −𝑓(𝑥) for every 𝑥  in the 
domain of 𝑓. The graph of an odd function has symmetry about the origin. 
For instance, 𝑦 = 𝑥* is an odd function. A function 𝑓 is said to be “even” 
if 𝑓(−𝑥) = 𝑓(𝑥) for every 𝑥 in the domain of 𝑓. The graph of an even 
function has symmetry about the 𝑦-axis. For instance, 𝑦 = |𝑥| is an even 
function. 
A function 𝑓: 𝑋 → 𝑌  is called “one-to-one” (or “injective,” or an 
“injection,” or a “monomorphism”) if  
𝑓(𝑥") = 𝑓(𝑥#) ⇒ 𝑥" = 𝑥#, ∀𝑥", 𝑥# ∈ 𝑋; 
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that is, a function is “one-to-one” if each 𝑥 value in the domain is assigned 
a different 𝑦 value, so that no two ordered pairs have the same second 
component. If more than one element of 𝑋 has the same 𝑓-image in 𝑌, 
then the function 𝑓: 𝑋 → 𝑌 is said to be “many-to-one.” 
Horizontal line test: Imagine a horizontal line sweeping down the graph of 
a function. Assume that the horizontal line at any position intersects the 
graph in more than one point. Then the function is not one-to-one, and its 
inverse is not a function.  
A function 𝑓: 𝑋 → 𝑌 is called “into” if there exists at least one element of 
𝑌 that is not the 𝑓-image of an element of 𝑋. In other words, for any into 
function 𝑓: 𝑋 → 𝑌 , the range set 𝑓(𝑋)  is a proper subset of 𝑌 ; 
symbolically, 𝑓(𝑋) ⊂ 𝑌.  
If the range of a function 𝑓 is the whole codomain of 𝑓, then 𝑓 is said to be 
“onto” (or “surjective,” or a “surjection,” or an “epimorphism”). In other 
words, for any onto function 𝑓: 𝑋 → 𝑌, 𝑓(𝑋) = 𝑌.  
If a function is both one-to-one and onto, then it is called “bijective,” or a 
“bijection,” or an “one-to-one correspondence.”  
For instance: 

i. If 𝐴  is a subset of 𝑋 , then the restriction to 𝐴  of the identity 
mapping 𝑖𝑑V, defined by 𝐴 ∋ 𝑥 → 𝑥 ∈ 𝐴, is an injection 𝑗(, called 
the “natural injection.” 

ii. The identity mapping of any set is bijective. 
iii. The function 𝑓: 𝑋 × 𝑌 → 𝑌 × 𝑋 defined by (𝑥, 𝑦) → (𝑦, 𝑥), where 

𝑥 ∈ 𝑋	𝑎𝑛𝑑	𝑦 ∈ 𝑌, is bijective.  
iv. The function 𝑓(𝑥) = 𝑥# , where 𝑥 ∈ ℝ , is not injective, since 

𝑓(−𝑥) = 𝑓(𝑥) = 𝑥# , but the restriction to ℝB  (the set of all 
positive real numbers) of 𝑓 is injective.  

v. 𝑓:ℝ → ℝ  defined by 𝑓(𝑥) = 𝑥*  is an one-to-one and onto 
mapping, that is, a bijection from ℝ to ℝ.  

Inverse functions: By the “inverse function” of a function 𝑓, we mean a 
function that undoes the operation of 𝑓, and it is denoted by 𝑓E" . The 
inverse of 𝑓 exists if and only if 𝑓 is bijective. Given a function 𝑓: 𝑋 → 𝑌, 
its inverse 𝑓E": 𝑌 → 𝑋 assigns each element 𝑦 ∈ 𝑌 to the unique element 
𝑥 ∈ 𝑋  such that 𝑓(𝑥) = 𝑦 . In other words, two functions with exactly 
reverse assignments are said to be “inverse functions.” Thus, a function 
𝑓: 𝑋 → 𝑌  is “invertible” if there exists a function 𝑔: 𝑌 → 𝑋  such that 
𝑔�𝑓(𝑥)� = 𝑥 for all 𝑥 ∈ 𝑋 and 𝑓�𝑔(𝑦)� = 𝑦 for all 𝑦 ∈ 𝑌; and then the 
function 𝑔 is called the inverse of 𝑓. Given an one-to-one function 𝑦 =
𝑓(𝑥), you can find its inverse function as follows: (i) Interchange 𝑥 and 𝑦 
in this equation. (ii) Solve the resulting equation for 𝑦, and then replace 𝑦 
with 𝑓E". (iii) Define the domain of  𝑓E" to be equal to the range of 𝑓. For 
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instance: if 𝑓(𝑥) = 𝑥 + 𝑎 , then 𝑓E"(𝑦) = 𝑦 − 𝑎 ; if 𝑓(𝑥) = 𝑎 − 𝑥 , then 
𝑓E"(𝑦) = 𝑎 − 𝑦; if 𝑓(𝑥) = 𝑚𝑥, then 𝑓E"(𝑦) = W

6
 provided that 𝑚 ≠ 0; if 

𝑓(𝑥) = 𝑥< , then 𝑓E"(𝑦) = Ù𝑦$ = 𝑦" <⁄  with 𝑥, 𝑦 ≥ 0  if 𝑘  is even, and 
integer 𝑘 > 0; and, if 𝑓(𝑥) = 𝑎V, then 𝑓E"(𝑦) = 𝑙𝑜𝑔1𝑦, where 𝑦 > 0, and 
𝑎 > 0. 
 

Sequences and Series 
 

A “sequence” is a function whose domain is the set of positive integers 
(i.e., 1,2,3, …). The functional values (i.e., the range elements) are called 
the terms of the sequence. In other words, a sequence is a set of numbers 
arranged in a definite order. Sequences test our logical skills and play an 
important role in the study of functions, spaces, and other mathematical 
structures, using the convergence properties of sequences.  
Arithmetic progression: An “arithmetic progression” is a sequence of 
numbers in which each term after the first is found by adding a constant to 
the preceding term. This constant is called the “common difference” and is 
symbolized by 𝑑 . Thus, the formula for the 𝑛 th term in an arithmetic 
progression with first term 𝑎" and common difference 𝑑 is: 
𝑎% = 𝑎" + (𝑛 − 1)𝑑. 
Geometric progression: A “geometric progression” is a sequence of 
numbers in which each term after the first is found by multiplying the 
preceding term by a constant. This constant is called the “common ratio” 
and is symbolized by 𝑟. Thus, the formula for the 𝑛th term in a geometric 
progression with first term 𝑎" and common ratio 𝑟 is: 
𝑎% = 𝑎"𝑟%E". 
Arithmetic and geometric series: Associated with any sequence  
𝑎", 𝑎#, 𝑎*, … is a “series”  

𝑎" + 𝑎# + 𝑎* +⋯ 
which is the sum of all the terms in the sequence. A series that is 
associated with an arithmetic progression is called an “arithmetic series.” 
A series that is associated with a geometric progression is called a 
“geometric series.” 
The sum of the first 𝑛  terms of an arithmetic series is given as the 
following formula: 
𝑆% =

%
#
(𝑎" + 𝑎%) =

%
#
[2𝑎" + (𝑛 − 1)𝑑]. 

The sum of the first 𝑛 terms of a geometric series is given as the following 
formula: 
𝑆% =

1"E1"J'

"EJ
= 1"E1'J

"EJ
= 1"(J'E")

JE"
. 
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Infinite sequences: Let us consider an infinite list of numbers: 𝑎", 𝑎#, 𝑎*, … 
This infinite list can be symbolized as follows:  

{𝑎%}%>"'  
(𝑛 goes from 1 to infinity); and this is what we call an “infinite sequence”  
(for simplicity and if there is no likelihood of confusion, we may 
symbolize a sequence by (𝑎%), or, sometimes, even simply by 𝑎%). If the 
numbers in a sequence  {𝑎%}%>"'  get arbitrarily close to some fixed number 
𝑎, then we say that this sequence tends to the limit 𝑎, and we write 
𝑎% → 𝑎 as 𝑛 → ∞, or 𝑙𝑖𝑚%→'𝑎% = 𝑎. 
For instance, �"

%
¬
%>"

'
= 1, "

#
, "
*
, "
A
, …  gets closer and closer to 0 , and the 

sequence �1 + "
#'
¬
%>"

'
= 1 "

#
, 1 "

A
, 1 "

2
, 1 "

"G
, … gets closer and closer to 1. 

However, not all sequences tend to a limit. For instance, the alternating 
sequence {(−1)%B"}%>"' = +1,−1,+1,−1,…  does not approach any 
particular number (it just bounces back and forth between +1 and −1), 
and the sequence {𝑛}%>"' = 1,2,3, … doesn’t tend to a limit at all.  
Given an infinite sequence {𝑎%}%>"' , the statement that  
𝑎% → 𝑎 as 𝑛 → ∞ 
is equivalent to the statement that 
|𝑎% − 𝑎| → 0, 
that is, |𝑎% − 𝑎| gets arbitrarily close to 0. More formally, we can say the 
following: 𝑎% → 𝑎 as 𝑛 → ∞ if and only if, for every real number 𝜀 > 0, 
there exists a natural number 𝑛 such that, for every natural number 𝑚 ≥ 𝑛, 
it holds that |𝑎6 − 𝑎| < 𝜀. This definition is absolutely crucial to calculus 
and, generally, “real analysis” (i.e., the analysis of the system of real 
numbers). This definition can be explained as follows: from some point 
(𝑚 ≥ 𝑛 ) onward, all the members of the sequence {𝑎%}%>"'  are within a 
distance 𝜀 from 𝑎 (symbolically, |𝑎6 − 𝑎| < 𝜀), and, since we can take the 
positive real number 𝜀 as small as we want, this condition means that 𝑎% 
gets arbitrarily close to 𝑎 as 𝑛 → ∞ (the 𝜀-neighborhood of 𝑎 can become 
arbitrarily small). For instance, using this formal definition, we can 
formally prove that the sequence �"

%
¬
%>"

'
 gets arbitrarily close to 0  as 

follows: We have to prove that 
(∀𝜀 > 0)(∃𝑛 ∈ ℕ)(∀𝑚 ≥ 𝑛) ÚÛ "

6
− 0Û < 𝜀Ü ⇔ (∀𝜀 > 0)(∃𝑛 ∈ ℕ)(∀𝑚 ≥

𝑛) Ú "
6
< 𝜀Ü. 

Let 𝜀 > 0 be given and arbitrary. Then we must find an 𝑛 ∈ ℕ such that, 
∀𝑚 ≥ 𝑛, "

6
< 𝜀 . Let us choose any 𝑛 such that 𝑛 > "

T
. Then, if 𝑚 ≥ 𝑛, 



 
 

 

101 

"
6
≤ "

%
< 𝜀 , and this proves the statement that the sequence �"

%
¬
%>"

'
 gets 

arbitrarily close to 0. Notice that the choice of 𝑛 depended on 𝜀, so that, 
the smaller the 𝜀  is, the bigger the 𝑛  has to be, meaning that, for this 
sequence, the more we want "

6
 to be close to 0, that is, the smaller the 𝜀 in 

the inequality Û "
6
− 0Û < 𝜀, the further out in the sequence we have to go, 

that is, the bigger the 𝑛 is before we are within the required neighborhood 
of zero.  
Let us consider another example. In terms of the above formal definition, 
we can prove that the sequence � %

%B"
¬
%>"

'
= "

#
, #
*
, *
A
, A
C
, … tends to 1 as 𝑛 →

∞ as follows: This is intuitively obvious, but, working in the same way as 
before, we have to show that 
(∀𝜀 > 0)(∃𝑛 ∈ ℕ)(∀𝑚 ≥ 𝑛) ÚÛ 6

6B"
− 1Û < 𝜀Ü. 

Let 𝜀 > 0 be given and arbitrary. Then we must find an 𝑛 ∈ ℕ such that, 
∀𝑚 ≥ 𝑛, Û 6

6B"
− 1Û < 𝜀 . Let us choose any 𝑛 such that 𝑛 > "

T
. Then, if 

𝑚 ≥ 𝑛, Û 6
6B"

− 1Û = Û E"
6B"

Û = "
6B"

< "
6
≤ "

%
< 𝜀, and this proves that the 

sequence � %
%B"

¬
%>"

'
 gets arbitrarily close to 1. 

Cauchy sequence: A sequence {𝑎%}%>"'  is said to be a “Cauchy sequence” 
if and only if, for every real number 𝜀 > 0, there exists a natural number 
𝑚  such that, for every natural number 𝑛 ≥ 𝑚  and for every natural 
number 𝑘 , it holds that |𝑎%B< − 𝑎%| < 𝜀 . The intuition behind this 
definition is that the terms of a Cauchy sequence become arbitrarily close 
to each other (i.e., the distance 𝜀  between two terms of this sequence 
becomes arbitrarily small) as the sequence progresses. For instance, using 
the above definition, we can show that the sequence � "

#'
¬
%>"

'
 is a Cauchy 

sequence as follows: If 𝑎% =
"
#'

, then |𝑎%B< − 𝑎%| = Û "
#'0$

− "
#'
Û =

"
#'
Û "
#$
− 1Û = "

#'
Ã1 − "

#$
Ä < 𝜀, where 𝑘 ∈ ℕ, and 𝜀 > 0, for "

#'
< 𝜀, so that 

2% > "
T
⇒ 𝑛 >

4%"1
4%#

. Let 𝑚 >
4%"1
4%#

. Then 𝑚  is a natural number such that 
|𝑎%B< − 𝑎%| < 𝜀 for all 𝑛 ≥ 𝑚, and 𝑘 ∈ ℕ. 
Subsequences: Let (𝑎%) be a sequence, and let 𝑛", 𝑛#, … , 𝑛= , … with 𝑛=B" >
𝑛= and 𝑖 = 1,2,3, … be a set of positive integers. Then 

�𝑎%%� 
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is said to be a “subsequence” of (𝑎%), and, if 𝑎%% → 𝑙@ as 𝑖 → ∞, then 𝑙@ is 
said to be a “subsequential limit” of (𝑎%). For instance, the sequences 
(𝑎#%E"), (𝑎#%), (𝑎%#), and (𝑎%*) are subsequences of (𝑎%). 
Theorem 1: Every accumulation point of a subsequence of a sequence is 
also an accumulation point of the sequence. 
Proof: Let �𝑎%%� be a subsequence of the sequence (𝑎%), 𝑛=B" > 𝑛=  and 
𝑖 = 1,2,3, … Suppose that 𝑝 is an accumulation point of �𝑎%%�. Then, by 
definition, 𝑎%% ∈ (𝑝 − 𝜀, 𝑝 + 𝜀) ⇒ 𝑎% ∈ (𝑝 − 𝜀, 𝑝 + 𝜀) , 𝜀 > 0 . Thus, 𝑝  is 
an accumulation point of the sequence (𝑎%). 
Remark: The converse is not necessarily true. For instance, consider the 
subsequence {1,2,3,4, … } of the sequence {1,1,1,2,1,3,1, … }. In this case, 
1 is an accumulation point of the sequence, but the subsequence has no 
accumulation point.  
Theorem 2: Let (𝑎%) be an arbitrary bounded sequence, meaning that its 
range 𝑅 = {𝑎%|𝑛 ∈ ℕ} is a bounded set. Then (𝑎%) contains a convergent 
subsequence. 
Proof: If 𝑅 is a finite set, then there exists at least one element 𝑟 ∈ 𝑅 such 
that 𝑟%% = 𝑟 for all 𝑖 = 1,2,3, …, where 𝑛= are positive integers and 𝑛=B" >
𝑛=. Hence, (𝑎%) contains a subsequence �𝑟%%� that converges to 𝑟. 
Now, suppose that 𝑅  is infinite. Then, by the Bolzano–Weierstrass 
Theorem (proved in Chapter 2), 𝑅 has at least one accumulation point, say 
𝑝. Let us take an element 𝑝" ∈ 𝑅 such that 0 < |𝑝" − 𝑝| < 1, and then let 
us take an element 𝑝# ∈ 𝑅 such that 
𝑝# ≠ 𝑝", and 0 < |𝑝# − 𝑝| <

"
#
.                                                                 (1) 

Similarly, let 𝑝%B" ∈ 𝑅 such that 𝑝%B" ≠ 𝑝=, where 𝑖 = 1,2,3, … , 𝑛, and 
0 < |𝑝%B" − 𝑝| <

"
%B"

.                                                                              (2) 
Therefore, by induction, for all 𝑛, there exist 𝑝% ∈ 𝑅 such that, for all 𝑛, 
all 𝑝%’s are distinct and  
0 < |𝑝% − 𝑝| <

"
%
.                                                                                       

Let 𝑚 be the least integer such that 𝑚 ≥ "
T
 for any 𝜀 > 0, so that  

𝜀 ≥ "
%
 for all 𝑛 ≥ 𝑚.                                                                                 (3) 

From (2) and (3), we obtain 
|𝑝% − 𝑝| < 𝜀 for all 𝑛 ≥ 𝑚, 
meaning that 𝑝% → 𝑝 as 𝑛 → ∞. Thus, (𝑎%) has the so defined convergent 
subsequence (𝑝%), quod erat demonstrandum. 
Cauchy’s General Principle of Convergence: A sequence (𝑎%) converges 
if and only if it is a Cauchy sequence.  
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Proof: Firstly, suppose that (𝑎%) converges to 𝑙. Then, ∀𝜀 > 0, ∃𝑚 ∈ ℕ 
such that  
|𝑎% − 𝑙| <

T
#
, ∀𝑛 ≥ 𝑚.  

Let us consider |𝑎%B< − 𝑎%| = |𝑎%B< − 𝑙 − (𝑎% − 𝑙)| ≤ |𝑎%B< − 𝑙| +
|𝑎% − 𝑙| <

T
#
+ T

#
⇒ |𝑎%B< − 𝑎%| < 𝜀 , ∀𝑛 ≥ 𝑚 , meaning that (𝑎%)  is a 

Cauchy sequence.  
Now, we shall prove the converse. Suppose that (𝑎%)  is a Cauchy 
sequence, that is, ∀𝜀 > 0, ∃𝑚 ∈ ℕ such that, ∀𝑛 ≥ 𝑚 and 𝑘 ∈ ℕ, it holds 
that  
|𝑎%B< − 𝑎%| < 𝜀.                                                                                       (1) 
Then  
𝑎6 − 𝜀 < 𝑎% < 𝑎6 + 𝜀, ∀𝑛 ≥ 𝑚.                                                            (2) 
If 𝑏 = 𝑚𝑎𝑥{|𝑎"|, |𝑎#|, … , |𝑎6|}, then, due to (2), for all 𝑛, it holds that 
|𝑎%| < 𝑏 + 𝜀,  
meaning that (𝑎%)  is a bounded sequence. Therefore, (𝑎%)  has a 
convergent subsequence. Let �𝑎%%�  be a convergent subsequence that 
converges to 𝑎. Then, ∀𝜀 > 0, ∃𝑚" ∈ ℕ such that, ∀𝑛= ≥ 𝑚", it holds that 
Ö𝑎%% − 𝑎Ö < 𝜀. 
Moreover, due to (1),  
Ö𝑎% − 𝑎FÖ < 𝜀, ∀𝑛 ≥ 𝑚 and ∀𝑝 ≥ 𝑚, 
so that, for 𝑚# = 𝑚𝑎𝑥{𝑚,𝑚"}, we obtain 
|𝑎% − 𝑎| = Ö𝑎% − 𝑎%% + 𝑎%% − 𝑎Ö ≤ Ö𝑎% − 𝑎%%Ö + Ö𝑎%% − 𝑎Ö < 2𝜀 , ∀𝑛 ≥
𝑚#, meaning that 𝑎% converges to 𝑎, that is, (𝑎%) is convergent, quod erat 
demonstrandum. 
Monotone sequences: A sequence (𝑎%) is called “increasing” if 𝑎6 ≤ 𝑎% 
for all 𝑚 < 𝑛 ∈ ℕ; and it is called “strictly increasing” if 𝑎6 < 𝑎% for all 
𝑚 < 𝑛 ∈ ℕ. By analogy, a sequence (𝑎%) is called “decreasing” if 𝑎6 ≥
𝑎% for all 𝑚 < 𝑛 ∈ ℕ; and it is called “strictly decreasing” if 𝑎6 > 𝑎% for 
all 𝑚 < 𝑛 ∈ ℕ . A sequence that is increasing or decreasing is called 
“monotone.” 
Completeness Axiom of the Real Numbers: If (𝑎%) is any monotone and 
bounded sequence in ℝ, then (𝑎%) converges. 
Without loss of generality, suppose that (𝑎%) is increasing and bounded 
from above (we work similarly in case it is decreasing and bounded from 
below). Then the set 𝐴 = {𝑎%|𝑛 ∈ ℕ}  has a supremum 𝑠𝑢𝑝(𝐴) = 𝑠 , so 
that, ∀𝜀 > 0, ∃𝑝 ∈ 𝐴 such that 𝑠 − 𝜀 ≤ 𝑎F ≤ 𝑠. Because, by hypothesis, 
(𝑎%) is increasing, it also holds that, ∀𝜀 > 0, ∃𝑝 ∈ ℕ such that, ∀𝑛 ≥ 𝑝, it 
holds that 𝑠 − 𝜀 ≤ 𝑎F ≤ 𝑎% ≤ 𝑠, meaning that 𝑎% → 𝑠 as 𝑛 → ∞. 
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Infinite series: By a (real) sequence, we mean a function 𝑓:ℕ → ℝ whose 
images are 𝑎", 𝑎#, 𝑎*, … , 𝑎%, … Let us consider a sequence of real numbers 
𝑎%, 𝑛 ∈ ℕ. From this sequence, we can create a new sequence 𝑠%, 𝑛 ∈ ℕ, 
as follows: 
𝑠" = 𝑎" 
𝑠# = 𝑎" + 𝑎# 
𝑠* = 𝑎" + 𝑎# + 𝑎* 
⋮  
𝑠% = 𝑎" + 𝑎# + 𝑎* +⋯+ 𝑎% = ∑ 𝑎<%

<>" . 
This sequence 𝑠%, 𝑛 ∈ ℕ, whose general term is 𝑠% = ∑ 𝑎<%

<>" , is said to 
be the “sequence of the partial sums” of the sequence 𝑎%, 𝑛 ∈ ℕ. The real 
numbers 𝑠", 𝑠#, 𝑠*, … , 𝑠% are, respectively, called the first partial sum, the 
second partial sum, . . ., the 𝑛th partial sum.  
A “series” of real numbers, symbolized by ∑ 𝑎% = 𝑎" + 𝑎# + 𝑎* +'

%>"
⋯+ 𝑎% +⋯, is defined to be the ordered pair (𝑎%, 𝑠%) where 𝑎%, 𝑛 ∈ ℕ, is 
a sequence of real numbers, and 𝑠% = 𝑎" + 𝑎# + 𝑎* +⋯+ 𝑎% , 𝑛 ∈ ℕ . 
Each term of the sequence 𝑎% , 𝑛 ∈ ℕ , is called a “term” of the 
corresponding series, and each term of the sequence 𝑠%, 𝑛 ∈ ℕ, is called a 
“partial sum” of the series ∑ 𝑎%'

%>" . 
The founders of the modern theory of infinite series are Isaac Newton and 
James Gregory in the seventeenth century, and the Bernoulli family 
mathematicians (Jacob, John, Nicolaus, and Daniel), Leonhard Euler, and 
Joseph-Louis Lagrange in the eighteenth century. In fact, the eighteenth-
century mathematicians were thinking of infinite series as infinite 
polynomials (mathematical expressions consisting of variables, 
coefficients, and the operations of addition, subtraction, multiplication, 
and non-negative integral exponents), and they tried to develop an 
arithmetic system of infinite polynomials. 
The basic idea in the study of infinite series is that an infinite summation 
of numbers can have a finite sum. Some of the early work on series was 
motivated by paradoxes related to the concept of infinity, with which 
many ancient Greek mathematicians were preoccupied. In the fifth century 
B.C.E., the Greek mathematician and philosopher Zeno posed the 
following paradox: Consider a race between the legendary Greek hero 
Achilles and a tortoise over 100 meters. Suppose that the tortoise starts 80 
meters ahead, and Achilles can run 10 times as fast as the tortoise. Then, 
after 10 sec., when Achilles will have run 80 meters, reaching the point 
where the tortoise started, the tortoise will have run only 8 meters farther. 
Then it will take Achilles 1 sec. more to cover that distance, but, during 
the same time, the tortoise will have run 0.8 meters farther. Then it will 
take Achilles 0.1 sec. to reach this third point, while the tortoise moves 
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ahead by 0.08 meters, etc. Thus, whenever Achilles reaches somewhere 
the tortoise has been, the tortoise is still ahead, and it seems that the 
tortoise will stay ahead. In fact, Zeno’s paradox can be resolved as 
follows: the total time that it would take Achilles to catch up, in seconds, 
is 10 + 1 + 0.1 + 0.01 + 0.001 +⋯, which is an infinite series. But this 
infinite series is equal to 11.111…, which is a finite number. In particular, 
let 𝑥 = 0.1 + 0.01 + 0.001 +⋯ . In fact, 0.1 + V

")
= 0.1 + 0.01 +

0.001 +⋯ , and, therefore, 𝑥 = 0.1 + V
")
⇒ 10𝑥 = 1 + 𝑥 ⇒ 9𝑥 = 1 ⇒

𝑥 = "
D
. Hence, the time for Achilles to catch up is 11 "

D
 sec. 

A series ∑ 𝑎%'
%>"  is said to “converge” to a number 𝑙 , and we write 

∑ 𝑎%'
%>" = 𝑙, if and only if 𝑙𝑖𝑚%→'𝑠% = 𝑙, where 𝑠% is the 𝑛th partial sum 

of the corresponding sequence 𝑎% , 𝑛 ∈ ℕ . For instance, consider the 
infinite geometric series ∑ "

#'
'
%>" = "

#
+ "

A
+⋯+ "

#'
+⋯  The 𝑛 th partial 

sum of this sequence is  

𝑠% =
1
2 +

1
4 +⋯+

1
2% =

"
#
ÚÃ"
#
Ä
%
− 1Ü

"
#
− 1

= 1 −
1
2% 

(and it is intuitively obvious that, as 𝑛  increases, "
#'

 decreases, and the 
difference 1 − "

#'
 approaces 1). Given that 𝑙𝑖𝑚%→'𝑠% = 1, we conclude 

that ∑ "
#'

'
%>" = 1.  

A series ∑ 𝑎%'
%>"  is said to “diverge” to ±∞ if and only if 𝑙𝑖𝑚%→'𝑠% =

±∞, respectively.  
A series ∑ 𝑎%∞

%>"  is said to “diverge,” or to be an “alternating series,” if 
and only if 𝑙𝑖𝑚%→∞𝑠% does not exist.  
For instance, consider the series ∑ "

%
∞
%>" = 1 + "

#
+ "

*
+⋯+ "

%
+⋯, which 

is known as the “harmonic series,” because #
1'
= "

1'2"
+ "

1'0"
	∀𝑛 ≥ 2. We 

can prove that the harmonic series diverges to +∞ as follows: 
Instead of considering all the partial sums 𝑠% (where 𝑛 = 1,2,3, …), let us 
look to the following sequence of partials sums (each time, we consider 
the sum of 2% terms, where 𝑛 = 1,2,3, …): 
𝑠# = 1 + "

#
, 

𝑠A = 1 + "
#
+ Ã"

*
+ "

A
Ä > 1 + "

#
+ Ã"

A
+ "

A
Ä = 1 + #

#
, 

𝑠2 = 1 + "
#
+ Ã"

*
+ "

A
Ä + Ã"

C
+ "

G
+ "

R
+ "

2
Ä > 1 + "

#
+ Ã"

A
+ "

A
Ä +

Ã"
2
+ "

2
+ "

2
+ "

2
Ä = 1 + *

#
, 
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and, in general, we observe the following pattern: when we take the sum 
of 2%  terms, the corresponding partial sum is bigger than 1 + %

#
; 

symbolically, the general pattern of this sequence of partial sums can be 
captured by the inequality 

𝑠#' > 1 +
𝑛
2 

and, thus, 𝑙𝑖𝑚%→'𝑠#' > 𝑙𝑖𝑚%→' Ã1 +
%
#
Ä. The right-hand side diverges to 

infinity, and, therefore, the limit of 𝑠#' also diverges to infinity, and, then, 
the whole 𝑠%  diverges to infinity (even if just some of the partial sums 
diverge to infinity, the whole series diverges to infinity). Notice that the 
sequence �"

%
¬
%>"

'
 converges to 0, but the series ∑ "

%
∞
%>"  diverges to +∞. In 

fact, in the case of sequences, “convergence” refers to the behavior of the 
terms of a sequence, whereas, in the case of series, “convergence” refers to 
the behavior of the sum of the terms.  
Operations with series: 

1. Addition: ∑ 𝑎%'
%>" +∑ 𝑏% = ∑ (𝑎% + 𝑏%)'

%>"
'
%>" . 

2. Subtraction: ∑ 𝑎%'
%>" −∑ 𝑏% = ∑ (𝑎% − 𝑏%)'

%>"
'
%>" . 

3. Scalar multiplication: 𝑐 ∑ 𝑎%'
%>" = ∑ 𝑐𝑎%'

%>" , where 𝑐 ∈ ℝ. 
Basic propositions regarding the convergence of series: 

1. If ∑ 𝑎%'
%>"  converges to a number, then the sequence 𝑠%, 𝑛 ∈ ℕ, 

is bounded.  
2. If the sequence 𝑠%, 𝑛 ∈ ℕ, is not bounded, then ∑ 𝑎%'

%>"  does not 
converge to a number. 

3. If ∑ 𝑎%'
%>"  converges to a number, then 𝑙𝑖𝑚%→'𝑎% = 0 (but not 

conversely, as, for instance, the case of the harmonic series 
indicates). 

4. The series ∑ 𝑎%'
%>"  and ∑ 𝑎%B<'

%>"  have the same behavior with 
regard to convergence.  

5. If ∑ 𝑎%'
%>"  with 𝑎% > 0 ∀𝑛 ∈ ℕ, and if the sequence 𝑠%, 𝑛 ∈ ℕ, is 

not bounded, then ∑ 𝑎%'
%>" = +∞. 

6. If ∑ 𝑎%'
%>"  with 𝑎% < 0 ∀𝑛 ∈ ℕ, and if the sequence 𝑠%, 𝑛 ∈ ℕ, is 

not bounded, then ∑ 𝑎%'
%>" = −∞. 

Comparison Test: Suppose that we have two series ∑ 𝑎%'
%>"  and ∑ 𝑏%'

%>"  
such that 𝑎% > 0 and 𝑏% > 0 for all 𝑛 ∈ ℕ. If 𝑎% ≤ 𝑏%, then: 

i. If ∑ 𝑏%'
%>"  is convergent, then so is ∑ 𝑎%'

%>" . 
ii. If ∑ 𝑎%'

%>"  diverges to +∞, then so does ∑ 𝑏%'
%>" . 

Proof: If 𝑠% = ∑ 𝑎<%
<>"  and 𝑡% = ∑ 𝑏<%

<>"  are the terms of the sequences of 
partial sums, then, since they are summations of finitely many positive 
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terms, it is straightforward that 0 < 𝑠% ≤ 𝑡% < ∞ , as well as that the 
sequences (𝑠%) and (𝑡%) are both increasing.  
Suppose that ∑ 𝑏%'

%>"  is convergent, and that ∑ 𝑏%'
%>" = 𝑏 . Then 

𝑙𝑖𝑚%→'𝑡% = 𝑏. Hence, the sequence (𝑠%) is increasing and bounded from 
above by 𝑏. Therefore, as I have already shown in the study of sequences, 
(𝑠%) converges, and so does ∑ 𝑎%'

%>" . 
Now, suppose that ∑ 𝑎%'

%>"  diverges to +∞ . Then 𝑙𝑖𝑚%→'𝑠% = +∞ . 
Hence, 𝑙𝑖𝑚%→'𝑡% = +∞, which implies that ∑ 𝑏%'

%>"  diverges to +∞, and 
the proof of the Comparison Test is complete. 
The Limit Comparison Test: Suppose that we have two series ∑ 𝑎%'

%>"  and 
∑ 𝑏%'
%>"  such that 𝑎% > 0 and 𝑏% > 0 for all 𝑛 ∈ ℕ. If 𝑙𝑖𝑚%→'

1'
0'
= 𝑐 for 

some positive real number 𝑐  (i.e., 𝑐 > 0 , and 𝑐 < ∞), then either both 
series converge, or both series diverge to +∞ , or both series are 
alternating series.  
Proof: Because 0 < 𝑐 < ∞, we can find two positive (finite) numbers 𝑚 
and 𝑀 such that 𝑚 < 𝑐 < 𝑀. Given that 𝑙𝑖𝑚%→'

1'
0'
= 𝑐, the definition of 

the limit of a sequence implies that, for a sufficiently large 𝑛, the quotient 
1'
0'

 must be close to 𝑐, and, therefore, there must exist a positive integer 𝑁 
such that, if 𝑛 > 𝑁, it holds that 
𝑚 < 1'

0'
< 𝑀. 

Multiplying through by 𝑏%, we obtain 
𝑏%𝑚 < 𝑎% < 𝑏%𝑀, provided that 𝑛 > 𝑁.  
Hence, if ∑ 𝑏%∞

%>"  diverges, then so does ∑ 𝑚𝑏%∞
%>" , and, since 𝑏%𝑚 < 𝑎% 

for all sufficiently large 𝑛, then the Comparison Test implies that ∑ 𝑎%∞
%>"  

also diverges. Similarly, if ∑ 𝑏%∞
%>"  converges, then so does ∑ 𝑀𝑏%∞

%>" , 
and, since 𝑎% < 𝑏%𝑀 for all sufficiently large 𝑛, then the Comparison Test 
implies that ∑ 𝑎%∞

%>"  also converges, and the proof of the Limit 
Comparison Test is complete. 
Cauchy Criterion: A series ∑ 𝑎%∞

%>"  converges if and only if the sequence 
(𝑠%) of its partial sums is a Cauchy sequence (it is the same as the Cauchy 
criterion for sequences). 
Fibonacci sequence: The Fibonacci sequence (named after the medieval 
Italian mathematician Fibonacci) is a sequence in which each number is 
the sum of the two preceding ones. Thus, starting from 0  and 1 , the 
Fibonacci sequence begins 

0,1,1,2,3,5,8,13,21,34,55,89, 144,233,… 
The Fibonacci numbers may be defined by the following recurrence 
relation:  
𝐹) = 0, 𝐹" = 1, and 𝐹% = 𝐹%E" + 𝐹%E#, ∀𝑛 > 1. 
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Applications of Fibonacci numbers include computer algorithms (such as 
the Fibonacci search technique, which narrows down possible locations 
with the aid of Fibonacci numbers), and Fibonacci numbers appear in 
several biological settings (such as branching in trees, the arrangement of 
leaves on a stem, the fruit sprouts of a pineapple, the arrangement of a pine 
cone’s bracts, the flowering of an artichoke, etc.). The Fibonacci sequence 
diverges to infinity, since, starting with 𝑛 = 6, we see that 𝐹% > 𝑛; and, 
therefore, given any number 𝑀 > 0 , 𝐹% > 𝑀  for all 𝑛 > 𝑚𝑎𝑥{⌈𝑀⌉, 6} , 
where ⌈𝑥⌉ denotes the “ceiling function,” which maps 𝑥  to the smallest 
integer greater than or equal to 𝑥. 
 

The Cardinality of Number Sets 
 

Two sets	𝐴 and 𝐵 are “equinumerous” or “have the same cardinality” if 
their elements can be correlated one-to-one in such a way that each 
element of either corresponds to exactly one of the other, namely, if there 
exists a bijection from 𝐴 to 𝐵; then we write 𝐴 =5 𝐵. A set 𝐴 is countable 
if and only if either 𝐴 = ∅ or 𝐴 accepts an “enumeration,” namely, there 
exists an onto function 𝜀: ℕ → 𝐴 such that 
𝐴 = {𝜀(0), 𝜀(1), 𝜀(2), … }. 
We can prove the theorem that a union of a countable collection of 
countable sets 𝐴 =∪% 𝐴%, where 𝑛 ∈ 𝐼 ⊆ ℕ, is a countable set as follows: 
Assume that 𝐼 is infinite (if 𝐼 is finite, then we work analogously), so that 𝐼 
can be replaced by ℕ. Then the given countable collection of countable 
sets may be designated by 

𝐴 =∪%>)∞ 𝐴% = 𝐴) ∪ 𝐴" ∪ 𝐴# ∪ … 
Without loss of generality, assume that each 𝐴% is non-empty. Then we 
can find an enumeration 𝜀%: ℕ → 𝐴% for each 𝐴% . Setting  
𝑎=% = 𝜀%(𝑖), 
we obtain 
𝐴% = {𝑎)%, 𝑎"%, … }, 
and we can construct a table containing every element of A as follows: 

𝐴): 𝑎))𝑎")𝑎#)… 
𝐴": 𝑎)"𝑎""	𝑎#"… 
𝐴#: 𝑎)#𝑎"#𝑎##… 

⋮ 
Therefore, collecting the aforementioned elements diagonally, we obtain 
𝐴 = {𝑎)), 𝑎)", 𝑎"), 𝑎#), 𝑎"", … }, which proves the theorem.  
We can prove the theorem that, if the sets 𝐴", 𝐴#, 𝐴*, … , 𝐴% are countable, 
then their Cartesian product 𝐴" × 𝐴# ×…× 𝐴%  is a countable set as 
follows: By definition, if 𝐴= , 𝑖 = 1,2, … , 𝑛,  is empty, then the 
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corresponding Cartesian product is empty. Otherwise, for two sets 𝐴 and 
𝐵, we have the enumeration of 𝐵 given by 
𝐵 = {𝑏), 𝑏", 𝑏#, … }, 
so that 
𝐴 × 𝐵 =∪%>)∞ (𝐴 × {𝑏%}), 
and each 𝐴 × {𝑏%} is equinumerous to 𝐴 (and, therefore, countable) by the 
correspondence 𝑥 → (𝑥, 𝑏%), which proves the theorem. 
As I have already mentioned, the set ℕ of natural numbers is countable. 
The set ℤ of integers is also countable, since we can define a bijection 
from ℤ to ℕ as follows: send 0 to 1, send negative integers to odd natural 
numbers, and send positive integers to even natural numbers. Moreover, 
the set ℚ of rational numbers is countable. In fact, notice that ℚ is a set of 
tuples of integers, since every rational number is of the form 𝑎 𝑏⁄  where 𝑎 
and 𝑏 are integers, and the set of tuples of integers is countable. However, 
one may ask if there exists a rational number for every tuple of integers (𝑎 
and 𝑏 must be coprime). The answer is that, if 𝐴 is a subset of 𝐵, and if 𝐵 
is countable, then so is 𝐴, and, in this case, ℚ is a subset of the set of the 
tuples of integers. However, the set ℚ~  of irrational numbers is 
uncountable (i.e., it contains too many elements to be countable): it 
suffices to consider an irrational number, such as √2, and think that all the 
infinitely many products of √2 by all the infinitely many rational numbers 
are irrational numbers. Even though both ℚ and ℚ~ are infinite sets, the 
set ℚ~ is much larger than the set ℚ. Given that ℝ = ℚ∪ℚ~ and ℚ~ is 
uncountable, the set ℝ of real numbers is uncountable. 
 

Real Equations and Algebra  
 

By the term “equation,” we mean a statement that two quantities are equal. 
For instance, 1,000𝑚 = 1𝑘𝑚 . More often, an equation contains an 
unknown quantity that is represented by a symbol, and we try to find the 
value of this unknown quantity. By the term “algebra,” we refer to 
methods and techniques for solving equations. In fact, the core of the study 
of structures in mathematics consists of taking numbers and putting them 
into equations in the form of “variables”; and the rules for manipulating 
these equations are contained in algebra. Moreover, in the context of 
algebra, we study multidimensional numbers, such as matrices and vectors 
(see chapters 3 and 7). 
The word “algebra” derives from the Arabic word “al-Jabr,” meaning 
“transformation.” It refers to a methodology developed by the Persian 
mathematician Al-Khwarizmi, who lived in Baghdad early in the Islamic 
era. Al-Khwarizmi was interested in solving algebraic equations, and his 
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method consists in applying a transformation to the given equation in 
order to put it into a standard form for which the solution method is 
known.  
Equations requiring multiplication and division: 

i. We can solve the equation V
"#
= 4 as follows: multiplying each 

side by 12 , we get V
"#
× 12 = 4 × 12 ⇒ 𝑥 = 48 . Check: when 

𝑥 = 48, the left-hand side of the given equation becomes A2
"#
= 4. 

The right-hand side of the given equation is equal to 4. Therefore, 
the solution is correct. 

ii. We can solve the equation 6𝑥 = 3 as follows: dividing each side 
by 6, we get GV

G
= *

G
⇒ 𝑥 = "

#
. Check: when 𝑥 = "

#
, the left-hand 

side of the given equation becomes 6 × "
#
= 3. The right-hand side 

of the given equation is equal to 3. Therefore, the solution is 
correct. 

Equations requiring addition and subtraction: 
i. We can solve the equation 𝑥 − 2 = 4 as follows: adding 2 to each 

side, we get 𝑥 − 2 + 2 = 4 + 2 ⇒ 𝑥 = 6. The operation of adding 
2 to each side is the same as transferring −2 to the right-hand 
side, but, in so doing, the sign is changed from a minus to a plus. 
Hence, 𝑥 − 2 = 4 ⇔ 𝑥 = 4 + 2 ⇔ 𝑥 = 6 . Check: when 𝑥 = 6 , 
the left-hand side of the given equation becomes 6 − 2 = 4. The 
right-hand side of the given equation is equal to 4. Therefore, the 
solution is correct. 

ii. We can solve the equation 𝑥 + 18 = 30 as follows: subtracting 
18  from each side, we get 𝑥 + 18 − 18 = 30 − 18 ⇒ 𝑥 = 12 . 
Alternatively, moving +18 to the right-hand side (changing the 
sign from a plus to a minus), we get 𝑥 = 30 − 18 ⇔ 𝑥 = 12. 
Check: when 𝑥 = 12 , the left-hand side of the given equation 
becomes 12 + 18 = 30. The right-hand side of the given equation 
is 30. Therefore, the solution is correct. 

Equations containing the unknown quantity on both sides: In equations of 
this kind, we group all the terms containing the unknown quantity on one 
side of the equation and the remaining terms on the other side.  

i. We can solve the equation 4𝑥 + 3 = 6𝑥 + 11  as follows: 
transferring 6𝑥 to the left-hand side and +3 to the right-hand side, 
we get 4𝑥 − 6𝑥 = 11 − 3 ⇒ −2𝑥 = 8 ⇒ 𝑥 = − 2

#
= −4. Check: 

when 𝑥 = −4, the left-hand side becomes 4(−4) + 3 = −13, and 
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the right-hand side becomes 6(−4) + 11 = −13. Therefore, the 
solution is correct. 

ii. We can solve the equation 7𝑥 − 2 = 5𝑥 + 8  as follows: 7𝑥 −
5𝑥 = 8 + 2 ⇒ 2𝑥 = 10 ⇒ 𝑥 = 5. Check: when 𝑥 = 5, the left-
hand side becomes 7 × 5 − 2 = 33 , and the right-hand side 
becomes 5 × 5 + 8 = 33. Therefore, the solution is correct. 

Equations containing brackets: When an equation contains brackets, we 
remove these first, and then we solve according to the aforementioned 
methods. For instance, 3(2𝑥 − 1) = 9 ⇒ 6𝑥 − 3 = 9 ⇒ 6𝑥 = 12 ⇒ 𝑥 =
2. Check: when 𝑥 = 2, the left-hand side is 3(2 × 2 − 1) = 9, and the 
right-hand side is 9. Therefore, the solution is correct. 
Equations containing fractions: When an equation contains fractions, we 
multiply each term of the equation by the least common multiple of the 
denominators. For instance, we can solve the equation  V

*
+ #

C
= CV

#
− 1 as 

follows: The least common multiple of the denominators 3, 5, and 2 is 30. 
Multiplying each term by 30  gives V

*
× 30 + #

C
× 30 = CV

#
× 30 −

1 × 30 ⇒ 10𝑥 + 12 = 75𝑥 − 30 ⇒ −65𝑥 = −42 ⇒ 𝑥 = A#
GC

. The 
solution may be verified by the check method shown in the previous 
examples. 
Simultaneous equations:  Consider the two following equations: 

{𝑎𝑥 + 𝑏𝑦 = 𝑐
𝑝𝑥 + 𝑞𝑦 = 𝑟Ï. 

Each equation contains the unknown quantities 𝑥 and 𝑦. The solutions to 
the equations are the values of 𝑥  and 𝑦  that satisfy both equations. 
Equations such as these are called “simultaneous equations” (or a “system 
of equations”).  

i. We can solve the simultaneous equations 
4𝑥 + 5𝑦 = 14																																																																																(∗) 
𝑥 + 2𝑦 = 11																																																																																(∗∗) 
as follows: If we multiply equation (∗∗) by 4, we shall have 
the same coefficient of 𝑥 in both equations: 
4𝑥 + 8𝑦 = 44																																																																											(∗∗∗) 
We can now eliminate 𝑥  by subtracting equation (∗) from 
equation (∗∗∗): 

4𝑥 + 8𝑦 = 44 
4𝑥 + 5𝑦 = 14 

                                   ---------------------- 
									3𝑦 = 30 

Hence, 𝑦 = 10. In order to find 𝑥, we substitute 𝑦 = 10 in 
either of the original equations. Therefore, substituting for 
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𝑦 = 10  in equation (∗ ), we get 4𝑥 + 5 × 10 = 14 ⇒ 𝑥 =
−9. In order to check these values, it suffices to substitute 
them in equation (∗∗). 

ii. We can solve the simultaneous equations 
5𝑥 + 7𝑦 = 15																																																																																(∗) 
4𝑥 + 2

C
𝑦 = 24                                                                    (∗∗) 

as follows: the same coefficient of 𝑥 can be obtained in both 
equations if equation (∗) is multiplied by 4 (the coefficient of 
𝑥 in equation (∗∗)) and equation (∗∗) is multiplied by 5 (the 
coefficient of 𝑥 in equation (∗)). Multiplying equation (∗) by 
4, we get 
20𝑥 + 28𝑦 = 60																																																																						(∗∗∗) 
Multiplying equation (∗∗) by 5, we get 
20𝑥 + 8𝑦 = 120                                                            (∗∗∗∗) 
Subtracting equation (∗∗∗) from equation (∗∗∗∗), we get 
−20𝑦 = 60 ⇒ 𝑦 = −3. 
Substituting for 𝑦 = −3 in equation (∗), we get 𝑥 = *G

C
. In 

order to check these values, it suffices to substitute them in 
equation (∗∗). 

iii. We can solve the simultaneous equations 
7𝑥 + 4𝑦 = 20																																																																																(∗) 
3𝑥 − 2𝑦 = 3																																																																																(∗∗) 
as follows: in this system of equations, it is easier to 
eliminate 𝑦, since the same coefficient of 𝑦 can be obtained 
in both equations by multiplying equation (∗∗) by 2. In fact, 
multiplying equation (∗∗) by 2, we get 
6𝑥 − 4𝑦 = 6                                                                    (∗∗∗) 
Adding equations (∗) and (∗∗∗), we get 13𝑥 = 26 ⇒ 𝑥 = 2. 
Substituting for 𝑥 = 2 in equation (∗), we get 𝑦 = *

#
. In order 

to check these values, it suffices to substitute them in 
equation (∗∗). 

iv. We can solve the simultaneous equations 
V
C
− W

*
= "

")
                                                                             (∗) 

*V
A
− #W

*
= #

*
                                                                         (∗∗) 

as follows: first, we shall clear each equation of fractions. In 
equation (∗), the least common multiple of the denominators 
is 30. Hence, by multiplying equation (∗) by 30, we get  
6𝑥 − 10𝑦 = 3																																																																											(∗∗∗) 
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In equation ( ∗∗ ), the least common multiple of the 
denominators is12. Hence, by multiplying equation (∗∗) by 
12, we get  
9𝑥 − 8𝑦 = 8																																																																												(∗∗∗∗) 
We now proceed in the usual way. Multiplying equation  (∗∗
∗) by 6, we get 
36𝑥 − 60𝑦 = 18                                                                 (A) 
Multiplying equation (∗∗∗∗) by 4, we get 
36𝑥 − 32𝑦 = 32                                                                 (B) 
Subtracting equation (B) from equation (A), we get −28𝑦 =
−14 ⇒ 𝑦 = "

#
. Substituting for 𝑦 = "

#
  in equation (∗∗∗), we 

get 𝑥 = 2
G
= A

*
. Therefore, the solutions are 𝑦 = "

#
 and 𝑥 = A

*
. 

Since equation (∗∗∗) came from equation (∗), we must do the 
check in equation (∗∗). Indeed, *(A *⁄ )

A
− #(" #⁄ )

*
= #

*
. 

 
Factoring Models 

 
Common factor: 𝑎𝑥 + 𝑎𝑦 = 𝑎(𝑥 + 𝑦). 
Difference of squares: 𝑥# − 𝑦# = (𝑥 + 𝑦)(𝑥 − 𝑦). 
Trinomial (leading coefficient 1): 𝑥# + (𝑎 + 𝑏)𝑥 + 𝑎𝑏 = (𝑥 + 𝑎)(𝑥 + 𝑏). 
Perfect square trinomial: 𝑥# + 2𝑥𝑦 + 𝑦# = (𝑥 + 𝑦)#. 
General trinomial: (𝑎𝑐)𝑥# + (𝑎𝑑 + 𝑏𝑐)𝑥 + 𝑏𝑑 = (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑). 
Sum of cubes: 𝑎* + 𝑏* = (𝑎 + 𝑏)(𝑎# − 𝑎𝑏 + 𝑏#). 
Difference of cubes: 𝑎* − 𝑏* = (𝑎 − 𝑏)(𝑎# + 𝑎𝑏 + 𝑏#). 
 

Real Polynomials 
 

A function of a single variable 𝑥  is said to be a “polynomial” on its 
domain if it can be put in the following form: 
𝑎%𝑥% + 𝑎%E"𝑥%E" +⋯+ 𝑎"𝑥 + 𝑎),  
where 𝑎%, 𝑎%E", … , 𝑎", 𝑎) are constants. Hence, every polynomial can be 
expressed as a finite sum of monomial terms of the form 𝑎<𝑥<, in which 
the variable is raised to a non-negative integral power. Notice that 𝑥) = 1, 
and so 𝑎)𝑥) = 𝑎). For the aforementioned polynomial with 𝑎% ≠ 0:  
the numbers 𝑎= (where 0 ≤ 𝑖 ≤ 𝑛) are called “coefficients”;  
𝑎% is the “leading coefficient”; 
𝑎%𝑥% is the “leading term”; 
𝑎) is the “constant term” or the “constant coefficient”; 
𝑎" is the “linear coefficient”; 
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𝑎"𝑥 is the “linear term”;  
when the leading coefficient, 𝑎%, is equal to 1, the polynomial is said to be 
“monic”;  
the non-negative integer 𝑛 is the “degree” of the polynomial, and we write 
deg	(𝑝) = 𝑛.  
A “constant polynomial” has only one term, specifically, 𝑎). A non-zero 
constant polynomial has degree 0 , and, by convention, the “zero 
polynomial” (with all coefficients vanishing) has degree −∞.  
A “zero” of a polynomial 𝑝(𝑥) is any number 𝑟 for which 𝑝(𝑟) takes the 
value 0. Hence, when 𝑝(𝑟) = 0, we say that 𝑟 is a “root,” or a “solution” 
of the equation 𝑝(𝑥) = 0. 
Let  
𝑝(𝑥) = 𝑎) + 𝑎"𝑥 + 𝑎#𝑥# +⋯+ 𝑎%𝑥% and  
𝑞(𝑥) = 𝑏) + 𝑏"𝑥 + 𝑏#𝑥# +⋯+ 𝑏6𝑥6 
be two arbitrary polynomials. Then we can operate with them as follows: 
Sum:(𝑝 + 𝑞)(𝑥) = (𝑎) + 𝑏)) + (𝑎" + 𝑏")𝑥 + (𝑎# + 𝑏#)𝑥# +⋯ 
Difference:(𝑝 − 𝑞)(𝑥) = (𝑎) − 𝑏)) + (𝑎" − 𝑏")𝑥 + (𝑎# − 𝑏#)𝑥# +⋯ 
Product of a constant and a polynomial: (𝑐𝑝)(𝑥) = 𝑐𝑎) + 𝑐𝑎"𝑥 +
𝑐𝑎#𝑥# +⋯ 
Product of two polynomials: (𝑝 ∙ 𝑞)(𝑥) = 𝑎)𝑏) + (𝑎)𝑏" + 𝑎"𝑏))𝑥 +
(𝑎)𝑏# + 𝑎"𝑏" + 𝑎#𝑏))𝑥# +⋯+ (𝑎)𝑏< + 𝑎"𝑏<E" +⋯+ 𝑎=𝑏<E= +⋯+
𝑎<𝑏))𝑥< +⋯+ (𝑎%𝑏6)𝑥6B%. 
Composition of two polynomials: (𝑝		⃘𝑞)(𝑥) = 𝑝�𝑞(𝑥)�, so that we replace 
each occurrence of 𝑥 in the expression for 𝑝(𝑥) with 𝑞(𝑥).  
Notice that we divide one polynomial by another in a manner similar to 
the division of two integers. Firstly, we arrange the terms of the dividend 
and the divisor in descending powers of 𝑥. If a term is missing, then we 
write 0 as its coefficient. Then, we divide the first term of the dividend by 
the first term of the divisor to obtain the first term of the quotient. Next, 
we multiply the entire divisor by the first term of the quotient, and we 
subtract this product from the dividend. We use the remainder as the new 
dividend, and we repeat the same process until the remainder is of lower 
degree than the divisor. As with the division of numbers,  
𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = (𝑑𝑖𝑣𝑖𝑠𝑜𝑟)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟. 
Remainder Theorem: If a polynomial 𝑝(𝑥) is divided by 𝑥 − 𝑏, then the 
remainder is 𝑝(𝑏). 
Proof: Let 𝑞(𝑥)  and 𝑟  be, respectively, the quotient and the remainder 
when 𝑝(𝑥) is divided by 𝑥 − 𝑏. Then, given that 
𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = (𝑑𝑖𝑣𝑖𝑠𝑜𝑟)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟,  
it holds that, for any 𝑥, 
𝑝(𝑥) = (𝑥 − 𝑏)𝑞(𝑥) + 𝑟. 
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If 𝑥 = 𝑏, then 𝑝(𝑏) = 𝑟.■ 
Factor Theorem: Given an arbitrary polynomial function 𝑦 = 𝑝(𝑥), 𝑏 is a 
zero of 𝑦 = 𝑝(𝑥) if and only if 𝑥 − 𝑏 is a factor of 𝑝(𝑥).  
Proof. It can be easily verified using the Remainder Theorem.■ 
Remark: The usefulness of the Factor Theorem can be illustrated by the 
following examples. Example 1: We can write a polynomial function (in 
factored form) of degree 3 with zeros −1, 4, and 3 as follows: 𝑝(𝑥) =
(𝑥 + 1)(𝑥 − 4)(𝑥 − 3). Example 2: If 𝑝(𝑥) = 𝑥(𝑥 + 3)(𝑥 − 7)#, then the 
zeros of this function are 0, −3, and 7;  and, in particular, 7 is a “zero of 
multiplicity 2 ,” since there are two factors of 𝑥 − 7 . In general, the 
“multiplicity of a zero” 𝑏 is given by the highest power of 𝑥 − 𝑏 that is a 
factor of 𝑝(𝑥). 
The real number zeros of 𝑦 = 𝑝(𝑥) are also the 𝑥-intercepts in the graph 
of 𝑦 = 𝑝(𝑥). If 𝑏 is a real number zero with multiplicity 𝑛 of 𝑦 = 𝑝(𝑥), 
then the graph of 𝑦 = 𝑝(𝑥)  crosses the 𝑥 -axis at 𝑥 = 𝑏  if 𝑛  is odd, 
whereas the graph turns around and stays on the same side of the 𝑥-axis at 
𝑥 = 𝑏 if 𝑛 is even. Hence, the 𝑥-intercepts can be obtained from the Factor 
Theorem, and the behavior of the graph at an 𝑥-intercept, say (𝑏, 0), is 
determined by the multiplicity of zero 𝑏, that is, by the highest power of 
(𝑥 − 𝑏) that is a factor of 𝑝(𝑥). For instance, if 𝑝(𝑥) = (𝑥 + 1)(𝑥 − 2)#, 
then, by setting 𝑥 = 0, we realize that the 𝑦-intercept is (0,4). Because 
(𝑥 + 1) is a factor with an odd exponent, it holds that (−1,0) is an 𝑥-
intercept at which the graph crosses the 𝑥 -axis. Because (𝑥 − 2)#  is a 
factor with an even exponent, it holds that (2,0) is an 𝑥-intercept at which 
the graph touches the 𝑥-axis and then turns around. 
In fact, the fundamental problem in algebra consists in finding ways of 
solving polynomial equations; specifically, we seek formulae for 
zeros/roots in terms of the coefficients of the corresponding polynomial. A 
well-known example is the “quadratic formula.” If we have the quadratic 
equation 𝑎𝑥# + 𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0, then we have the formula 

𝑥 =
−𝑏 ± √𝑏# − 4𝑎𝑐

2𝑎  
where the expression 𝑏# − 4𝑎𝑐 is known as the “discriminant,” meaning 
that, if we have a number 𝑟 such that 𝑟# = 𝑏# − 4𝑎𝑐 ⇔ 𝑟 = √𝑏# − 4𝑎𝑐, 
then 
𝑥" =

E0BJ
#1

 and 𝑥# =
E0EJ
#1

 
are the solutions to 𝑎𝑥# + 𝑏𝑥 + 𝑐 = 0.  
If 𝑓(𝑥) = 𝑎𝑥# + 𝑏𝑥 + 𝑐  where 𝑎, 𝑏, 𝑐 ∈ ℚ , then the value of the 
discriminant shows how many roots 𝑓(𝑥) = 0  has, and it explains the 
behavior of the quadratic polynomial 𝑎𝑥# + 𝑏𝑥 + 𝑐; specifically: 
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• If 𝑏# − 4𝑎𝑐 < 0, then the quadratic equation has no real roots (its 
roots are conjugate complex numbers, which will be studied in 
Chapter 9). Hence, if the discriminant is negative, then 𝑓(𝑥) 
never crosses the 𝑥-axis (the “roots” are where the graph crosses 
the 𝑥 -axis). A quadratic expression 𝑎𝑥# + 𝑏𝑥 + 𝑐  is always 
positive if and only if the discriminant is negative, that is, 𝑏# −
4𝑎𝑐 < 0 , and 𝑎 > 0 . A quadratic expression 𝑎𝑥# + 𝑏𝑥 + 𝑐  is 
always negative if and only if the discriminant is negative, that is, 
𝑏# − 4𝑎𝑐 < 0, and 𝑎 < 0. 

• If 𝑏# − 4𝑎𝑐 = 0, then the quadratic equation has one repeated 
real, rational root. 

• If 𝑏# − 4𝑎𝑐 > 0 and is a perfect square (i.e., a positive integer 
that is obtained by multiplying an integer by itself), then the 
quadratic equation has two distinct real, rational roots. 

• If 𝑏# − 4𝑎𝑐 > 0 and is not a perfect square, then the quadratic 
equation has two distinct real, irrational roots.  

Notice that, when the discriminant is positive, the quadratic function 
crosses the 𝑥 -axis twice, so that it has two real roots (and then the 
function’s sign will be the same as that of 𝑎 when 𝑥 is less than the smaller 
root or greater than the larger root, and the opposite of that of 𝑎 when 𝑥 is 
between the roots). 
Vieta’s formulae: If 𝑥"  and 𝑥#  are the roots of the quadratic equation 
𝑎𝑥# + 𝑏𝑥 + 𝑐 = 0, then  

𝑥" + 𝑥# = −
𝑏
𝑎 

and  
𝑥"𝑥# =

𝑐
𝑎 

(we can, thus, find the roots 𝑥" and 𝑥# of the quadratic equation by solving 
the aforementioned system of equations). 
Now, let us try to find the roots of a third-degree polynomial. The first 
thing that we have to do is to find at least one root of the given cubic 
equation. Then we must divide that polynomial by the factor that we have 
found out by hit and trial, so that we ultimately come up with the roots of a 
quadratic equation. For instance, consider the cubic equation 
𝑥* − 6𝑥# + 11𝑥 − 6 = 0. 
By considering the factors of −6, namely, 1,2,3, −1,−2,−3,…, we notice 
that 1 satisfies the above equation, and then we divide this cubic equation 
by 𝑥 − 1 . Thus, we obtain the quotient 𝑥# − 5𝑥 + 6 , which can be 
factored as follows: (𝑥 − 2)(𝑥 − 3). The three roots of the given cubic 
equation are 𝑥 = 1, 𝑥 = 2, and 𝑥 = 3. 
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For a cubic equation, Vieta’s formulae can be formulated as follows: If 𝑥", 
𝑥#, and 𝑥* are the roots of the cubic equation 𝑎𝑥* + 𝑏𝑥# + 𝑐𝑥 + 𝑑 = 0, 
then 
𝑥" + 𝑥# + 𝑥* = − 0

1
, 

𝑥"𝑥# + 𝑥"𝑥* + 𝑥#𝑥* =
5
1
, 

and 
𝑥"𝑥#𝑥* = − ;

1
. 

If a function 𝑦 = 𝑓(𝑥) satisfies an equation of the form  
𝑝)(𝑥)𝑦% + 𝑝"(𝑥)𝑦%E" +⋯+ 𝑝%E"(𝑥)𝑦 + 𝑝%(𝑥) = 0, 
where 𝑝)(𝑥), … , 𝑝%(𝑥)  are polynomials in 𝑥 , then it is said to be an 
“algebraic function.” In other words, an algebraic function is a function 
that can be defined as the root of a polynomial equation. If a function can 
be expressed as the quotient of two polynomials, 
𝑓(𝑥) = F(V)

H(V)
, 

then it is called a “rational algebraic function.” 
Polynomials play a very important role in everyday life. For instance, the 
content of a shopping basket can be described in terms of a polynomial, 
engineers design roller coasters using polynomial functions with the 
quadratic equation, economists and businessmen use polynomials in order 
to model the growth rate and forecast revenues, etc.  
 
The Cauchy–Schwarz–Bunyakovsky Inequality: If 𝑎=  and 𝑏=  are any real 
numbers (𝑖 = 1,2. , … , 𝑛), then 

ä (𝑎=𝑏=)
%

=>"
≤ åä 𝑎=#

%

=>"
æ
"
#
åä 𝑏=#

%

=>"
æ
"
#
 

with equality if and only if the sequences (𝑎", 𝑎#, … , 𝑎%)  and 
(𝑏", 𝑏#, … , 𝑏%)  are proportional, namely, there is a constant 𝜆  such that 
𝑎< = 𝜆𝑏< for each 𝑘 ∈ {1,2, … , 𝑛}. This inequality can be easily proved by 
thinking as follows: For any 𝑥 ∈ ℝ, we have 
∑ (𝑎=𝑥 + 𝑏=)#%
=>" ≥ 0 ⇔ (∑ 𝑎=#%

=>" )𝑥# + 2𝑥∑ 𝑎=𝑏= +∑ 𝑏=# ≥ 0%
=>"

%
=>" . 

The left-hand side of the last inequality is a quadratic polynomial in 𝑥. 
Because it cannot have two distinct real roots, its discriminant is non-
positive, namely, (∑ 𝑎=𝑏=%

=>" )# ≤ (∑ 𝑎=#%
=>" )(∑ 𝑏=#%

=>" ) , quod erat 
demonstrandum. 
 
The Minkowski Inequality: If 𝑎=  and 𝑏=  are any real numbers ( 𝑖 =
1,2. , … , 𝑛), then 
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çä (𝑎= + 𝑏=)#
%

=>"
è
"
#
≤ åä 𝑎=#

%

=>"
æ
"
#
+ åä 𝑏=#

%

=>"
æ
"
#
 

with equality if and only if the sequences (𝑎", 𝑎#, … , 𝑎%)  and 
(𝑏", 𝑏#, … , 𝑏%) are proportional. This inequality can be easily proved by 
thinking as follows: By the Cauchy–Schwarz–Bunyakovsky Inequality,  
[∑ (𝑎= + 𝑏=)#%

=>" ]
"
# = [∑ (𝑎=# + 2𝑎=𝑏= + 𝑏=#)%

=>" ]
"
# ≤ Ú∑ 𝑎=# +%

=>"

2(∑ 𝑎=#%
=>" )

"
#(∑ 𝑏=#%

=>" )
"
# +∑ 𝑏=#%

=>" Ü
"
# = (∑ 𝑎=#%

=>" )
"
# + (∑ 𝑏=#%

=>" )
"
#, quod erat 

demonstrandum. 
 

Fixed Points of Functions 
 

By a “fixed point” of a function 𝑓, we mean a point 𝑎 such that 𝑓(𝑎) = 𝑎, 
that is, 𝑎 belongs to both the domain and the range of 𝑓. In other words, a 
fixed point of a function is a point at which the input to the function is 
equal to the output of the function (and, therefore, fixed points play an 
important role in equilibrium analysis). For instance, the function 𝑓:ℝ →
ℝ  defined by 𝑓(𝑥) = 𝑥 + 1  has no fixed point, whereas the function 
𝑓:ℝ → ℝ defined by 𝑓(𝑥) = 𝑥 has infinitely many fixed points (in fact, 
every real number is a fixed point of this function).  
By definition, the fixed points of a function 𝑓 are the solutions of 𝑓(𝑥) =
𝑥 or the roots of 𝑓(𝑥) − 𝑥. For instance, we can find the fixed points of 
𝑓(𝑥) = √𝑥!  as follows: we set 𝑓(𝑥) = 𝑥 , and, therefore, √𝑥! = 𝑥 ⇔
𝑥" *+ = 𝑥 ⇔ 𝑥 = 𝑥* ⇔ 0 = 𝑥* − 𝑥 ⇔ 𝑥(𝑥# − 1) = 0, and each of these 
factors, namely, 𝑥 and (𝑥# − 1), must be set equal to 0. Thus, the first 
fixed point is 𝑥 = 0, and the other fixed points are 𝑥# − 1 = 0 ⇔ 𝑥# =
1 ⇔ 𝑥 = ±1. Hence, 𝑓(𝑥) = √𝑥!  has three fixed points: −1, 0, and +1.  
One of the reasons why fixed points play a significant role in mathematical 
analysis is that the existence of solutions to systems of equations is 
equivalent to the existence of fixed points of appropriate functions. If we 
want to show that 𝑓(𝑥) = 0 for some 𝑥, then this is equivalent to showing 
that 𝑓(𝑥) + 𝑥 = 𝑥, which means that the function 𝐹  defined by 𝐹(𝑥) =
𝑓(𝑥) + 𝑥 has a fixed point.  
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Chapter 3 
Matrices and Applications in 

Input-Output Analysis and Linear 
Programming 

 
Matrices are often used in physics, statistics, and economics, and they are 
particularly useful when they are used in connection with systems of linear 
equations. For instance, let us considers the following linear simultaneous 
equations: 

4𝑥 + 5𝑦 = 14 
𝑥 + 2𝑦 = 11 

By arranging the coefficients of 𝑥 and 𝑦 in the way in which they occur in 
the equations, we obtain the array 
Ã4 5
1 2Ä, 

which is an example of a matrix.  
In general, consider the following rectangular array 

é
𝑎"" ⋯ 𝑎"%
⋮ ⋱ ⋮

𝑎6" ⋯ 𝑎6%
ë, 

consisting of 𝑚  rows (i.e., horizontal 𝑛 -tuples) and 𝑛  columns (i.e., 
vertical 𝑚-tuples). This is called an “𝑚× 𝑛 matrix,” usually denoted by 
𝐴 = (𝑎=?). If the number of rows in the matrix is 𝑚 and the number of 
columns is 𝑛 , then the matrix is said to be of order 𝑚× 𝑛 . The term 
“matrix” was introduced by the nineteenth-century English mathematician 
James Sylvester, but it was his friend the mathematician Arthur Cayley 
who developed the algebra of matrices in the 1850s. 
Types of matrices: 

i. Row matrix. This is a matrix having only one row; for instance, 
the following is a row matrix: 

 (4 5). 
ii. Column matrix. This is a matrix having only one column; for 

instance, the following is a column matrix: 
 Ã52Ä. 
iii. Null matrix. This is a matrix with all its elements zero. 
iv. Square matrix. This is a matrix having the same number of rows 

and columns. 
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v. Diagonal matrix. This is a square matrix in which all the elements 
are zero except the main diagonal elements (the main diagonal in 
a matrix always runs from upper left to lower right, so that the 
main diagonal of a matrix 𝐴 = (𝑎=?) is the list of entries 𝑎=? where 
𝑖 = 𝑗); for instance, the following is a diagonal matrix: 

 Ã4 0
0 2Ä. 

vi. Identity matrix. This is a diagonal matrix in which the main 
diagonal elements are equal to 1 (an identity matrix is usually 
denoted by 𝐼); for instance, the following is an identity matrix: 

 Ã1 0
0 1Ä. 

Two matrices are “equal” if and only if their corresponding elements are 
equal.  
Addition and Subtraction of Matrices: Two matrices may be added or 
subtracted provided that they are of the same order. Addition of matrices is 
done by adding together the corresponding elements of each of the two 
matrices. For instance: 
Ã4 5
1 2Ä + Ã

3 6
2 4Ä = Ã4 + 3 5 + 6

1 + 2 2 + 4Ä = Ã7 11
3 6 Ä. 

In general, the sum of two 𝑚× 𝑛 matrices 𝐴 and 𝐵 is an 𝑚× 𝑛 matrix 𝐶 
whose elements are 𝑐=? = 𝑎=? + 𝑏=? , where 𝑎=? ∈ 𝐴, 𝑏=? ∈ 𝐵 , 1 ≤ 𝑖 ≤ 𝑚 , 
and 1 ≤ 𝑗 ≤ 𝑛.  
Properties of the addition of matrices: If 𝐴, 𝐵, and 𝐶 are 𝑚× 𝑛 matrices, 
then: 
𝐴 + 𝐵 = 𝐵 + 𝐴; 
𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶; 
𝐴 = 𝐵 ⇔ 𝐴 + 𝐶 = 𝐵 + 𝐶; 
the equation 𝑋 + 𝐵 = 𝐴 has a unique solution 𝑋 = 𝐴 − 𝐵; and 
−(𝐴 + 𝐵) = −𝐴 − 𝐵. 
Subtraction of matrices is done in a similar way except the corresponding 
elements are subtracted. For instance: 
Ã4 5
1 2Ä − Ã

3 6
2 4Ä = Ã4 − 3 5 − 6

1 − 2 2 − 4Ä = Ã 1 −1
−1 −2Ä. 

Multiplication of Matrices: 
i. Scalar multiplication: A matrix may be multiplied by a number as 

follows: 
4 Ã5 −2
1 8 Ä = Ã4 × 5 4 × (−2)

4 × 1 4 × 8 Ä = Ã20 −8
4 32Ä. 

In general, given a matrix 𝐴 = �𝑎=?� and a real number 𝑘, 𝑘𝐴 =
�𝑘𝑎=?�. 
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ii. General Matrix Multiplication: Two matrices can only be 
multiplied by each other if the number of columns in the one is 
equal to the number of rows in the other. Multiplication of 
matrices is done by multiplying a row by a column as follows: 
Ã4 5
1 2Ä × Ã

3 6
2 4Ä = Ã4 × 3 + 5 × 2 4 × 6 + 5 × 4

1 × 3 + 2 × 2 1 × 6 + 2 × 4Ä =

Ã22 44
7 14Ä.  

The product of an 𝑚× 𝑛 matrix 𝐴 = (𝑎=?) and an 𝑛 × 𝑝 matrix 𝐵 =
(𝑏=?)  is an  𝑚× 𝑝  matrix 𝐶 = 𝐴𝐵 = (𝑐=?)  whose (𝑖, 𝑗)  entry is 
𝑐=? = ∑ 𝑎=<%

<>" 𝑏<?, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝. Thus, if 𝐴 is 
an 𝑚× 𝑛 matrix, and if 𝐵 is 𝑛 × 𝑝 matrix, then the product 𝐴𝐵 is 
an 𝑚× 𝑝 matrix in which the element that corresponds to the 𝑖th 
row and the 𝑗 th column of 𝐴𝐵  is found by multiplying each 
element in the 𝑖th row of 𝐴 by the corresponding element in the 
𝑗th column of 𝐵 and adding the results.  

Properties of the multiplication of matrices: 
𝐴(𝐵𝐶) = (𝐴𝐵)𝐶; 
𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶; 
(𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴. 
Inverting a Matrix: An 𝑛-square matrix 𝐴 is said to be “invertible” or 
“non-singular” if there exists an 𝑛 -square matrix 𝐵  with the following 
property: 
𝐴𝐵 = 𝐵𝐴 = 𝐼%, 
where 𝐼%  is the 𝑛-square identity matrix, namely, the 𝑛 × 𝑛 matrix with 
ones along the main diagonal and zeros elsewhere. If this is the case, then 
the matrix 𝐵 is called the inverse of 𝐴, and the notation 𝐴E"  is used to 
designate 𝐵. If no such 𝐵 exists, then 𝐴 is said to be “singular.” If 
𝐴 = Ã𝑎 𝑏

𝑐 𝑑Ä, 
then 
𝐴E" = "

1;E05
Ã 𝑑 −𝑏
−𝑐 𝑎 Ä. 

In general, 𝐴E"  can be found in the following way: (i) Write the 
augmented matrix [𝐴|𝐼] , where 𝐼  is the identity matrix with the same 
dimension as 𝐴. (ii) Using elementary row operations, replace matrix [𝐴|𝐼] 
with a matrix of the form [𝐼|𝐵]. (iii) Then 𝐴E" is exactly this matrix 𝐵. For 
instance, if  

𝐴 = é
3 0 2
2 0 −2
0 1 1

ë, 

then we can construct 𝐴E" as follows: 
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We form the augmented matrix: 

é
3 0 2
2 0 −2
0 1 1

	
|
|
|
	
1 0 0
0 1 0
0 0 1

ë. 

We add the second row to the first row to obtain 

é
5 0 0
2 0 −2
0 1 1

	
|
|
|
	
1 1 0
0 1 0
0 0 1

ë. 

Then we divide the first row by 5 to obtain 

é
1 0 0
2 0 −2
0 1 1

	
|
|
|
	
0.2 0.2 0
0 1 0
0 0 1

ë. 

Now, let’s take two times the first row and subtract it from the second row 
to obtain 

é
1 0 0
0 0 −2
0 1 1

	
|
|
|
	
0.2 0.2 0
−0.4 0.6 0
0 0 1

ë. 

We multiply the second row by − "
#
 to obtain 

é
1 0 0
0 0 1
0 1 1

	
|
|
|
	
0.2 0.2 0
0.2 −0.3 0
0 0 1

ë. 

Now, we swap the second and the third rows to obtain 

é
1 0 0
0 1 1
0 0 1

	
|
|
|
	
0.2 0.2 0
0 0 1
0.2 −0.3 0

ë. 

Finally, we subtract the third row from the second row to obtain 

é
1 0 0
0 1 0
0 0 1

	
|
|
|
	
0.2 0.2 0
−0.2 0.3 1
0.2 −0.3 0

ë, 

and, thus, we constructed  

𝐴E" = é
0.2 0.2 0
−0.2 0.3 1
0.2 −0.3 0

ë. 

Transposition of Matrices: The “transpose” of a matrix 𝐴 is denoted by 
𝐴_, and it is the matrix obtained by writing the rows of 𝐴, in order, as 
columns; that is, if 𝐴 = (𝑎=?) is an 𝑚× 𝑛 matrix, then 𝐴_ = (𝑎=?_ ) is the 
𝑛 ×𝑚 matrix where 𝑎=?_ = 𝑎?=, for all 𝑖 and 𝑗. For instance, if  

𝐴 = Ã1 7
4 3Ä, then 𝐴_ = Ã1 4

7 3Ä. 
If a square matrix 𝐴 is such that 𝐴 = 𝐴_, then it is called “symmetric” (its 
elements are symmetric with respect to its main diagonal). 
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Determinants: The determinant of a matrix 𝐴 is a scalar assigned to 𝐴, and 
it is denoted by 𝑑𝑒𝑡(𝐴). Given a matrix 
𝐴 = Ã

𝑎"" 𝑎"#
𝑎#" 𝑎##Ä, 

its determinant is 
𝑑𝑒𝑡(𝐴) = Û

𝑎"" 𝑎"#
𝑎#" 𝑎##Û = 𝑎""𝑎## − 𝑎"#𝑎#". 

Notice that a matrix 𝐴 has an inverse if and only if the determinant of 𝐴 is 
not zero. 
Solution to simultaneous equations using matrices: Let us consider a 
system of two linear equations with two unknowns:  

{𝑎"𝑥 + 𝑏"𝑦 = 𝑐"
𝑎#𝑥 + 𝑏#𝑦 = 𝑐#

Ï, 

which gives rise to the following three matrices: 

𝐴 = å𝑎" 𝑏"
𝑎# 𝑏#

æ, 𝐵 = Ã
𝑐"
𝑐#Ä, and 𝑋 = Ã

𝑥
𝑦Ä. 

Thus, the original system of linear equations can be reformulated as 
follows: 
𝐴𝑋 = 𝐵 ⇔ 𝑋 = 𝐴E"𝐵,  
where 𝐴 is the matrix of the system’s coefficients, 𝑋 is the matrix of the 
system’s unknowns, and 𝐵 is the matrix of the system’s constant terms. 
The system has a unique solution if and only if the determinant det	(𝐴) =
𝑎"𝑏# − 𝑏"𝑎# ≠ 0, and that solution is: 

𝑥 =
𝐵V

𝑑𝑒𝑡(𝐴) =
í𝑐" 𝑏"
𝑐# 𝑏#

í

í𝑎" 𝑏"
𝑎# 𝑏#

í
=
𝑐"𝑏# − 𝑏"𝑐#
𝑎"𝑏# − 𝑏"𝑎#

 

and 

𝑦 =
𝐵W

𝑑𝑒𝑡(𝐴) =
Û
𝑎" 𝑐"
𝑎# 𝑐#Û

í𝑎" 𝑏"
𝑎# 𝑏#

í
=
𝑎"𝑐# − 𝑐"𝑎#
𝑎"𝑏# − 𝑏"𝑎#

 

where the numerators 𝐵V and 𝐵W are obtained by substituting the column 
of constant terms in place of the column of coefficients of the 
corresponding unknown in the matrix of coefficients. If det	(𝐴) = 0, then 
the system has either no solution or an infinite number of solutions.  
Consider the 3-square matrix 

𝐴 = é
𝑎" 𝑏" 𝑐"
𝑎# 𝑏# 𝑐#
𝑎* 𝑏* 𝑐*

ë. 

The determinant of 𝐴 is 
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det	(𝐴) = î
𝑎" 𝑏" 𝑐"
𝑎# 𝑏# 𝑐#
𝑎* 𝑏* 𝑐*

î = 𝑎"𝑏#𝑐* + 𝑏"𝑐#𝑎* + 𝑐"𝑎#𝑏* − 𝑎*𝑏#𝑐" −

𝑏*𝑐#𝑎" − 𝑐*𝑎#𝑏". 
Moreover, it can be easily shown that 

î
𝑎" 𝑏" 𝑐"
𝑎# 𝑏# 𝑐#
𝑎* 𝑏* 𝑐*

î = 𝑎" í
𝑏# 𝑐#
𝑏* 𝑐*

í − 𝑏" Û
𝑎# 𝑐#
𝑎* 𝑐*Û + 𝑐" í

𝑎# 𝑏#
𝑎* 𝑏*

í. 

Let us consider a system of 3 linear equations with 3 unknowns: 

ï
𝑎"𝑥 + 𝑏"𝑦 + 𝑐"𝑧 = 𝑑"
𝑎#𝑥 + 𝑏#𝑦 + 𝑐#𝑧 = 𝑑#
𝑎*𝑥 + 𝑏*𝑦 + 𝑐*𝑧 = 𝑑*

. 

The aforementioned system has a unique solution if and only if the 
determinant of the matrix of coefficients is not zero: 

det	(𝐴) = î
𝑎" 𝑏" 𝑐"
𝑎# 𝑏# 𝑐#
𝑎* 𝑏* 𝑐*

î ≠ 0. 

In this case, the unique solution to the given system can be expressed as 
quotients of determinants as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥 =

𝐵V
det	(𝐴)

𝑦 =
𝐵W

det	(𝐴)

𝑧 =
𝐵`

det	(𝐴)

 

where the numerators 𝐵V , 𝐵W , and 𝐵`  are obtained by substituting the 
column of constant terms for the column of coefficients of the 
corresponding unknown in the matrix of coefficients, so that: 

𝐵V = î
𝑑" 𝑏" 𝑐"
𝑑# 𝑏# 𝑐#
𝑑* 𝑏* 𝑐*

î, 𝐵W = î
𝑎" 𝑑" 𝑐"
𝑎# 𝑑# 𝑐#
𝑎* 𝑑* 𝑐*

î, and 𝐵` = î
𝑎" 𝑏" 𝑑"
𝑎# 𝑏# 𝑑#
𝑎* 𝑏* 𝑑*

î. 

If det	(𝐴) = 0 , then the system has either no solution or an infinite 
number of solutions. 
Advances in computing power have significantly contributed to the 
application of matrix algebra in several scientific disciplines, such as 
physics and mathematical economics.  
 

The Application of Matrices in Input-Output Analysis 
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In general, a “computational problem” is a binary relation between inputs 
and outputs, and, in particular, we specify which outputs are correct for the 
given inputs by means of specific predicates.  
The major economic tasks that every society must accomplish pertain to 
decision-making about an economy’s inputs and outputs. In economics, 
the term “input” refers to goods or services used by firms in their 
production processes. Thus, by means of its technology, an economy 
combines inputs to produce outputs. In economics, the term “output” 
refers to the various useful goods or services that are either employed in 
further production or consumed.  
The acknowledged founder of “input-output analysis” is the Russian-
American economist Wassily Leontief, who won the Nobel Prize in 
Economics in 1973. An input-output matrix is a square matrix, say 𝐴 =
(𝑎=?), whose entries 𝑎=? represent the amount of input 𝑖 required per unit 
of output 𝑗. A column of such a matrix depicts the inputs needed for the 
achievement of a specific output. Therefore, from the perspective of 
economics, it can be considered as a “production technique.” Hence, an 
input-output matrix is a “constellation” of production techniques. If the list 
of inputs is complete, including factor inputs, then the input-output matrix 
contains techniques for the production of the factor services as well.  
Input-output analysis is used in order to analyze inter-industry relations, 
thus explaining inter-dependencies and complexities of the economic 
system as well as the conditions for maintaining equilibrium between 
supply and demand. The inputs of one industry are the outputs of another 
industry, and vice versa. An input is obtained (purchased), and an output is 
produced. Hence, “input” represents the expenditure of a firm, and 
“output” represents the (sales) revenue of a firm. The sum of the money 
values of inputs is the total cost of a firm, and the total money value of the 
output is the total revenue of a firm. Input-output analysis implies that, in a 
state of equilibrium, the money value of the aggregate output of the whole 
economy must be equal to the sum of the money values of the inter-
industry inputs and the sum of the money values of the inter-industry 
outputs. For instance, coal is an input for steel industry, and steel is an 
input for coal industry, but both coal and steel are the outputs of their 
respective industries. An important part of economic activity consists of 
the production of intermediate goods and services (inputs) for further use 
in producing final goods and services (outputs). 
Let us divide the economic system into the “inter-industry sectors” and the 
“final-demand sectors,” each of which can be divided into different sub-
sectors. The total output of any inter-industry sector can be used as an 
input by other inter-industry sectors, by the given sector (i.e., by itself), as 
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well as by final-demand sectors. Prices, consumer demand, and factor 
supply (i.e., the availability of factors of production for purchase by 
producers) are given. Moreover, we assume that there are no externalities 
(by “externalities,” we mean the indirect effects that have an impact on the 
consumption and the production opportunities of others, but the price of 
the product does not take those externalities into account; for instance, a 
traditional example of a negative externality is pollution, and the research 
and development (R&D) activities are traditionally associated with 
positive externalities, since they have positive effects beyond those 
enjoyed by the producer). Furthermore, an input-output model is based on 
the following assumptions: (i) No two products are produced jointly, and, 
therefore, each industry produces only one homogeneous product. (ii) 
Each producing sector satisfies the properties of a linear homogeneous 
production function (i.e., the production of each sector is subject to 
constant returns of scale: its inputs increase at the same rate as its outputs). 
(iii) The combinations of inputs are employed in rigidly fixed proportions 
(there are fixed input coefficients of production). 
For instance, in Table 3-1, we see the input-output matrix of a four-sector 
economy, which, specifically, consists of three inter-industry sectors, 
namely, 𝑋", 𝑋#, and 𝑋*, as well as one final-demand sector. The rows of 
the input-output matrix (i.e., the rows of Table 3-1) inform us about the 
products of 𝑋", 𝑋#, and 𝑋* that are used as intermediate products (inputs) 
by the corresponding inter-industry sector as well as for final consumption 
by the government and the households. The columns of the input-output 
matrix (i.e., the columns of Table 3-1) inform us about the total inputs 
(from all sectors) utilized by each inter-industry sector for its production.  
 
Table 3-1: An input-output matrix. 
 
Total 
output 
of the 
sectors 

 
𝑋" 

 
𝑋# 

 
𝑋* 

 
Final 
demand  

𝑋" 𝑋"" 𝑋"# 𝑋"* 𝐹" 
𝑋# 𝑋#" 𝑋## 𝑋#* 𝐹# 
𝑋* 𝑋*" 𝑋*# 𝑋** 𝐹* 

Labor 
input 

𝐿" 𝐿# 𝐿*  
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Given Table 3-1, the rows, which represent consumption functions, can be 
written as follows: 

𝑋" = 𝑋"" + 𝑋"# + 𝑋"* + 𝐹" 
𝑋# = 𝑋#" + 𝑋## + 𝑋#* + 𝐹#	
𝑋* = 𝑋*" + 𝑋*# + 𝑋** + 𝐹*	

𝐿 = 𝐿" + 𝐿# + 𝐿* 
or, equivalently: 

𝑋= =ä𝑋=? +𝐹= 

𝐿 =ä𝐿= 
where 𝑖  and 𝑗  vary from 1  to 3  (since, in this example, there are three 
inter-industry sectors). 
Moreover, given Table 3-1, the columns, which represent production 
functions, can be written as follows: 

𝑋" = 𝑋"" + 𝑋#" + 𝑋*" + 𝐿"	
𝑋# = 𝑋"# + 𝑋## + 𝑋*# + 𝐿#	
𝑋* = 𝑋"* + 𝑋#* + 𝑋** + 𝐿*	

(and, thus, each entry 𝑎=? in an input-output matrix represents the amount 
of input 𝑖 required per unit of output 𝑗). 
In Table 3-2, we see the corresponding technological coefficient matrix, 
for the same example (vertical interpretation: proportion of the 
corresponding commodity produced by the corresponding sector; 
horizontal interpretation: proportion of the corresponding commodity used 
by the corresponding sector).  
 
Table 3-2: A technological coefficient matrix 
 
Total output 
of the 
sectors 

 
𝑋" 

 
𝑋# 

 
𝑋* 

 
Final 
demand 

𝑋" 𝑎""𝑋" 𝑎"#𝑋# 𝑎"*𝑋* 𝐹" 

𝑋# 𝑎#"𝑋" 𝑎##𝑋# 𝑎#*𝑋* 𝐹# 

𝑋* 𝑎*"𝑋" 𝑎*#𝑋# 𝑎**𝑋* 𝐹* 

Labor input 𝐿" 𝐿# 𝐿*  
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Given that we have assumed that the input requirements are fixed, the 
amount of input 𝑖 that is required in order to produce one unit of output 𝑗 
is given by 𝑎=? = 𝑋=? 𝑋?⁄ , and we have: 

𝑋" = 𝑎""𝑋" + 𝑎"#𝑋# + 𝑎"*𝑋* + 𝐹" 
𝑋# = 𝑎#"𝑋" + 𝑎##𝑋# + 𝑎#*𝑋* + 𝐹#	
𝑋* = 𝑎*"𝑋" + 𝑎*#𝑋# + 𝑎**𝑋* + 𝐹*	

𝐿 = 𝑙"𝑋" + 𝑙#𝑋# + 𝑙*𝑋* 
or, equivalently: 

𝑋= =ä𝑎=? 𝑋? + 𝐹= 

𝐿 =ä𝑙=𝑋= 
for 𝑖 = 1,2,3 (since, in this example, there are three inter-industry sectors). 
Therefore, if we define the matrices 

𝑋 = é
𝑋"
𝑋#
𝑋*
ë, 

𝐴 = é
𝑎"" 𝑎"# 𝑎"*
𝑎#" 𝑎## 𝑎#*
𝑎*" 𝑎*# 𝑎**

ë, 

and  

𝐹 = é
𝐹"
𝐹#
𝐹*
ë, 

then we have: 
𝑋 = 𝐴𝑋 + 𝐹 
𝐿 =ä𝑙=𝑋= 	

(and, thus, we can determine the optimum level of production for the given 
economic network). Notice that 𝐹 indicates that the inter-industry sectors 
not only satisfy each other’s needs, but they also satisfy some outside 
demands (on the other hand, in case of a “closed system,” 𝐹 = 0). 
If 𝐼 is the 3-square identity matrix, then, given the above definitions of the 
matrices 𝑋, 𝐴, and 𝐹, we can formulate the matrix equation 
𝑋 = 𝐴𝑋 + 𝐹 ⇔ 𝑋 − 𝐴𝑋 = 𝐹 ⇔ (𝐼 − 𝐴)𝑋 = 𝐹 ⇔ 𝑋 = (𝐼 − 𝐴)E"𝐹, 
from which we can get the values of 𝑋", 𝑋#, and 𝑋* that correspond to a 
state of equilibrium between supply and demand (and, thus, we can avoid 
both oversupplying and undersupplying the market with the corresponding 
commodities). 
 

The Application of Matrices in Linear Programming 
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By the term “linear programming,” we mean a method to achieve the best 
outcome (e.g., to maximize profit, minimize cost, etc.) in a mathematical 
model whose requirements are represented by linear functions. The first 
contributions to linear programming are due to the Soviet mathematician 
and economist Leonid Vitalyevich Kantorovich (1912–86), who won the 
Nobel Prize in Economics in 1975. Moreover, one of the acknowledged 
founders of linear programming is the American mathematician George 
Bernard Dantzig (1914–2005), who managed to make significant 
contributions to industrial engineering, operations research, economics, 
statistics, and computer science. In fact, input-output analysis is a special 
and very important case of linear programming. 
The “canonical form” of linear programming is the following: given a 
system of 𝑚 linear constraints (or linear inequalities) with 𝑛 variables, we 
wish to find non-negative values (i.e., ≥ 0) of these variables that will 
satisfy the constraints and will maximize a function of these variables; 
symbolically: given 𝑚 linear inequalities and/or equalities  
∑ 𝑎=?? 𝑥? ≤ 𝑏= , 𝑖 = 1,2, … ,𝑚, 𝑎𝑛𝑑	𝑗 = 1,2, … , 𝑛,                                      (∗) (∗) 
we wish to find those values of 𝑥? which satisfy the constraints (∗) and the 
condition that 𝑥? ≥ 0 (for 𝑗 = 1,2, … , 𝑛) and simultaneously maximize the 
linear function 
𝑧 = ∑𝑐?𝑥? , 𝑗 = 1,2, … , 𝑛.                                                                        (∗∗) (∗∗) 
For instance, consider a problem where we wish to maximize the gross 
profit of an industry (or of a firm offering several product lines) that 
produces 𝑛 commodities, and, thus, has 𝑛 sectors of production. In this 
case, (∗) and (∗∗) can be interpreted as follows: 𝑧  denotes an overall 
performance measure (specifically, total gross profit); 𝑥? denotes the level 
of activity 𝑗 (𝑗 = 1,2, … , 𝑛), specifically, the output of the 𝑗th sector of 
production (i.e., the produced quantity of the 𝑗th commodity); 𝑐? denotes 
the performance measure coefficient for activity 𝑗, specifically, the gross 
profit per unit of output in the 𝑗th sector of production (so that the total 
gross profit in the 𝑗th sector of production is 𝑐?𝑥?); 𝑏= denotes the available 
quantity of resource (input) 𝑖 (𝑖 = 1,2, … ,𝑚); and 𝑎=? denotes the quantity 
of resource (input) 𝑖 consumed by each unit of activity 𝑗 (i.e., required per 
unit of output 𝑗). 
In matrix form, the constrained maximization problem (∗∗) can be 
rewritten as follows: 

𝑧61V = (𝑐" 𝑐# … 𝑐%) ∙ ô

𝑥"
𝑥#
⋮
𝑥%

õ, 

under the constraints 
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ö

𝑎"" 𝑎"# … 𝑎"%
𝑎#" 𝑎## … 𝑎#%
⋮

𝑎6"
⋮ ⋱

𝑎6# …
⋮

𝑎6%

÷ ∙ ô

𝑥"
𝑥#
⋮
𝑥%

õ ≤ ö

𝑏"
𝑏#
⋮
𝑏6

÷, 

and 
𝑥? ≥ 0 for 𝑗 = 1,2, … , 𝑛. More simply, given the above concepts, we can 
write: 

𝑚𝑎𝑥𝑧 = 𝑐𝑥
𝑢𝑛𝑑𝑒𝑟	𝑡ℎ𝑒	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑥 ≤ 𝑏
𝑥? ≥ 0

ø.                                                                    (∗∗∗) (∗∗∗) 

Regarding the geometric significance of (∗∗∗), notice that the constraints 
𝐴𝑥 ≤ 𝑏 and 𝑥? ≥ 0 define a convex polyhedron 𝑃%  in ℝ% , and such 𝑃%  is 
called the “feasible region” of the corresponding model, meaning the 
region of all the feasible solutions to the corresponding problem. In 
general, a polyhedron 𝑃% in ℝ% is the set of all points 𝑥 ∈ ℝ% that satisfy a 
finite set of linear inequalities. Moreover, a set 𝑄 in ℝ% is called “convex” 
if, for any two points 𝑥 and 𝑦 in 𝑄, the line segment joining them lies 
entirely within 𝑄 (and, in particular, a convex polyhedron is a polyhedron 
for which a line connecting any two non-coplanar points on the surface of 
the polyhedron always lies in the interior of the polyhedron); symbolically: 
∀𝑥, 𝑦 ∈ 𝑄, the “convex combination” 𝑘𝑥 + (1 − 𝑘)𝑦 ∈ 𝑄 for any 𝑘 such 
that 0 ≤ 𝑘 ≤ 1. The goal of constrained maximization in the context of 
linear programming is to choose that feasible combination (𝑥", 𝑥#, … , 𝑥%) 
of actions that maximize a given function 𝑧 = 𝑐𝑥 . This occurs at the 
maximum point (𝑥"∗, 𝑥#∗, … , 𝑥%∗) of the feasible region. 
The constrained maximization problem (∗∗∗) is known as the “primal 
problem,” while the so-called “dual problem” is the corresponding 
constrained minimization problem where, given a system of 𝑚  linear 
constraints (linear inequalities) with 𝑛  variables, we wish to find non-
negative values (i.e., ≥ 0 ) of these variables that will satisfy the 
constraints and will minimize a function (e.g., a cost function) of these 
variables; symbolically (if, for instance, 𝑧  represents total cost, 𝑐 
represents cost per unit of output, and 𝑏 represents the required level of 
output), we obtain the following model: 

𝑚𝑖𝑛𝑧 = 𝑐𝑥
𝑢𝑛𝑑𝑒𝑟	𝑡ℎ𝑒	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑥 ≥ 𝑏
𝑥? ≥ 0

ù.                                                                  (∗∗∗∗) (∗∗∗∗) 

For instance, using the “dual problem,” we can create models of 
constrained cost minimization in economics and business management. 
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Firms seek to minimize cost subject to the constraint that they produce at 
least 𝑏 units of output, so that the firm’s cost minimization problem is 
given by (∗∗∗∗). In general, linear programming (also known as linear 
optimization) is useful for guiding quantitative decisions in business 
planning, microeconomics, industrial engineering, and in several other 
problems of the social and the natural sciences.  
 
Example: Let us consider the following linear-programming problem:  

𝑚𝑎𝑥𝑧 = 4𝑥 + 5𝑦 
under the constraints 

𝑥 + 𝑦 ≤ 20 
3𝑥 + 4𝑦 ≤ 72 
𝑥, 𝑦 ≥ 0 

where 𝑧 = 4𝑥 + 5𝑦 is the objective function. We work as follows: Firstly, 
we have to draw the straight lines that represent the constraints, thus, 
finding 𝑥-intercepts and 𝑦-intercepts. For the constraint 
𝑥 + 𝑦 ≤ 20, 
we set 𝑦 = 0 to find the 𝑥-intercept, which is 𝑥 + 0 = 20 ⇒ 𝑥 = 20, and, 
therefore, the 𝑥-intercept is the point (20,0). For the same constraint, we 
set 𝑥 = 0  to find the 𝑦 -intercept, which is 0 + 𝑦 = 20 ⇒ 𝑦 = 20 , and, 
therefore, the 𝑦-intercept is the point (0,20). For the constraint 
3𝑥 + 4𝑦 ≤ 72, 
by setting 𝑦 = 0, we obtain 3𝑥 + 0 = 72 ⇒ 𝑥 = 24, and, therefore, the 
the 𝑥-intercept is the point (24,0); and, by setting 𝑥 = 0, we obtain 0 +
4𝑦 = 72 ⇒ 𝑦 = 18, and, therefore, the 𝑦-intercept is the point (0,18) . 
Moreover, regarding the other given constraints, we notice that 𝑥 = 0 is 
the 𝑦-axis, and 𝑦 = 0 is the 𝑥-axis. In Figure 3-1, the shaded region (a 
convex polyhedron) is the feasible region, and the points that lie within it 
satisfy all the given constraints simultaneously. In order to find the 
intersection point 𝐶in Figure 3-1 we have to solve the following system of 
equations: 
𝑥 + 𝑦 = 20                                                                                                (1) 
3𝑥 + 4𝑦 = 72                                                                                            (2) 
and, therefore, we multiply equation (1) by −3 and then add it to equation 
(2) to obtain 𝑦 = 12 , and 𝑥 = 8 . Hence, the point 𝐶 in Figure 3-1 is 
(8,12). Now, given Figure 3-1, we substitute all the corner points into the 
objective function 𝑧 = 4𝑥 + 5𝑦 in order to find the maximum one. Hence, 
we obtain the following results: 
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Table 3-3: A linear programming problem. 
 

Corner points Value of z 
(20,0) 80 
(0,18) 90 
(8,12) 92 

 
Consequently, as indicated in Table 3-3, the maximum value of the 
objective function is 92, and the corner point that corresponds to this value 
is (8,12) , meaning that the optimal solution to the given linear-
programming problem is (𝑥, 𝑦) = (8,12). 
 
Figure 3-1: The feasible region. 
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Chapter 4 
Basic Mathematical Economics, Political 

Economy, and a Vision of Scientific 
Totalitarianism 

 
By the term “economy,” we refer to a system for making decisions about 
the use of limited resources so that goods and services can be produced 
and cosumed. By the term “market,” we refer to a system in which two or 
more parties participate in order to engage in economic transactions.  
Standard economic analysis is based on the concept of rationality. In 
general, in the social sciences, “rationality” means that social behavior can 
be seen in terms of actors pursuing goals. The “rationality postulate” 
implies the following: (i) actors have well ordered preference systems over 
the set of outcomes (i.e., of alternative actions), namely, for all pairs 𝑐= and 
𝑐?, there is a preference relation 𝑅 such that either 𝑐=𝑅𝑐? (the actor prefers 
𝑐=  to 𝑐? ), or 𝑐?𝑅𝑐=  (the actor prefers 𝑐?  to 𝑐= ), or both (the actor is 
indifferent); (ii) each actor’s preference system is substantially 
independent of the other social variables; and (iii) each actor acts to 
maximize one’s utility index (according to the principle of utility, an 
action is good in so far as it tends to promote happiness for moral agents, 
and the meaning of happiness depends on one’s ethics; for instance, 
according to Plato, societal happiness stems from citizens treating each 
other justly, leading virtuous lives, and each fulfilling their social 
function). In particular, one can formulate a decreasing sequence of 
numbers (these numbers are called “utilities,” 𝑢% ) where the largest 
number is assigned to the most preferred outcome, the second largest 
number to the next outcome in the preference order, etc. The function that 
maps consequences to numbers representing an actor’s preference over 
those outcomes is said to be a “utility function.” The most well-known 
utility function is the von Neumann–Morgenstern utility function, which is 
defined as follows: the actor considers a set of all conceivable states of the 
world and assesses the likelihood of each state 𝑆 by assigning a probability 
𝑝(𝑆)  to it, so that the expected utility 𝑈Z(𝐴)  for an action 𝐴  can be 
calculated by multiplying the probability 𝑝(𝑆) of each state’s occurring by 
the utility 𝑢�𝐶(𝑆, 𝐴)� of the outcome that results from the given state of 
the world and the given action, and then summing these products over all 
the possible states: 
𝑈Z(𝐴) = ∑ 𝑝(𝑆)𝑢�𝐶(𝑆, 𝐴)�144	a ; 
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the actor chooses 𝐴 such that 𝑈Z(𝐴) is maximized.  
“Marginal utility” measures the change in the satisfaction that a consumer 
gets from consuming one more unit of a commodity; symbolically: 
𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = b_c

bN
, 

where 𝛥𝑇𝑈 denotes the change in total utility, and 𝛥𝑄 denotes the change 
in the quantity consumed of the corresponding commodity. “Total utility” 
measures the total amount of satisfaction that a consumer gets from all the 
units that he/she consumes of a commodity. 
By analogy, “marginal cost” measures the change in the total cost that 
comes from making or producing one additional unit (of output); 
symbolically: 
𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝐶𝑜𝑠𝑡 = bP

bN
, 

where 𝛥𝐶 denotes the change in total cost, and 𝛥𝑄 denotes the change in 
output. “Total cost” is the sum of the expenses that a producer needs to 
make in order to achieve a specific level of output.  
“Productivity” measures how much output can be produced with a given 
set of inputs, and “marginal productivity” measures the change in output 
as a result of one additional unit of input; symbolically: 
𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = bd

be
, 

where 𝛥𝑋  denotes the change in the firm’s use of the input, and 𝛥𝑌 
denotes the change in the quantity of output produced.  
 

Economic Equilibrium and Economic Planning 
 

As shown in Figure 4-1, the demand curve is drawn with the price on the 
vertical axis (𝑦-axis) and quantity demanded on the horizontal axis (𝑥-
axis), thus obtaining a downward-sloping curve, meaning that, as price 
decreases, the quantity demanded will increase. Moreover, as shown in 
Figure 4-1, the supply curve is drawn with the price on the vertical axis (𝑦-
axis) and quantity supplied on the horizontal axis (𝑥-axis), thus obtaining 
an upward-sloping curve, meaning that, as price increases, the quantity 
supplied will increase.   
In a competitive market—which is based on the assumptions that the 
number of economic actors is so big that none of them can influence prices 
significantly by varying one’s demand or supply, and that economic actors 
can freely enter and exit each trade and industry—economic equilibrium is 
achieved by trial and error within the context of a competitive market. In 
particular, according to this economic model, the conditions of “economic 
equilibrium” are the following: 
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i. The individual condition of equilibrium: it refers to the 
maximization of the individuals’ utility, profit, or income 
from the ownership of productive resources. The consumers 
maximize the total utility that they derive from their income 
by spending it in such a way that the marginal utility of the 
quantity of commodity 𝑥=  obtainable for a unit of income 
(expressed in money) is equal for all commodities. Thus, 
given commodities 𝑥", 𝑥#, … , 𝑥%, the utility-maximizing rule 
for consumers can be formulated as follows: 

𝑀𝑈	𝑜𝑓	𝑥"
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑥"

=
𝑀𝑈	𝑜𝑓	𝑥#
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑥#

= ⋯ =
𝑀𝑈	𝑜𝑓	𝑥%
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑥%

 

where 𝑀𝑈 denotes marginal utility. The producers maximize 
their profit in two ways: firstly, by optimizing the 
combination of factors of production (i.e., by combining the 
factors of production in such a way that the marginal 
productivity of the quantity of factor of production 𝑥=  that 
can be purchased for a unit of money is equal for all factors 
of production) and, secondly, by optimizing the scale of 
output. If prices cannot be manipulated by particular actors, 
but are given by the market itself (as independent 
parameters), then the minimum cost curve of the producer is 
given (since the prices of the factors of production are 
given), and, therefore, the optimum scale of output is 
attained when the marginal cost is equal to the price of the 
product (which is given by the market itself). The owners of 
the fundamental productive resources (namely, labor, capital, 
and natural resources) maximize their income by selling the 
services of these resources to the highest bidder. 

ii. The social condition of equilibrium: it refers to the 
assumption that the incomes of the consumers are equal to 
their receipts from selling the services of the productive 
resources that they own, plus entrepreneurs’ profits. When 
the economic system is in a state of equilibrium, 
entrepreneurs’ profits are equal to zero, since the marginal 
cost is equal to the price of the product (which is given by 
the market itself). By “zero entrepreneurs’ profits,” 
economists mean that, in a state of equilibrium, workers, 
managers, lenders, and owners of resources are earning their 
equilibrium returns, and this situation does not mean that 
there are in fact no profits, but that profits are expressed as 
differences in the remuneration earned by different economic 
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actors (such as, for instance, the difference between the 
remuneration for providing managerial services or leadership 
and the remuneration for providing basic labor skills). This 
condition changes substantially when particular economic 
actors can manipulate prices and, generally, the conditions of 
economic activity by creating oligopolistic or monopolistic 
conditions. 

iii. The structural condition of equilibrium: The equilibrium 
prices are determined by the condition that the demand for 
each commodity is equal to the supply of the corresponding 
commodity, as shown in Figure 4-1. The French economist 
Léon Walras (1834–1910) has explained this process as 
follows: On the basis of a (historically) given random set of 
prices, the economic actors strive to satisfy the individual 
condition of equilibrium and optimize their positions. To 
each commodity there correspond a quantity demanded and a 
quantity supplied. If, for each commodity, the quantity 
demanded and the quantity supplied are equal, then the entire 
situation is settled, and the prices are the equilibrium prices. 
But, if the quantities demanded and the quantities supplied 
diverge, the competition of the buyers and the sellers will 
alter the prices. When supply exceeds demand for a 
good/service, the price of this good/service tends to fall, and, 
when demand exceeds supply of a good/service, the price of 
this good/service tends to rise. As a result, the economic 
actors get a new set of prices, which serves as a new basis for 
the economic actors’ attempt to satisfy the individual 
condition of equilibrium and optimize their positions. The 
individual condition of equilibrium being carried out, the 
economic actors get a new set of quantities demanded and 
quantities supplied. If, for each commodity, demand and 
supply are not equal, then prices will change again, and the 
economic actors will get another set of prices, which serves 
as a new basis for the economic actors’ attempt to satisfy the 
individual condition of equilibrium and optimize their 
positions; and so on.  
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Figure 4-1: Market equilibrium price: in this example, the supply curve (S) and the 
demand curve (D) intersect at the equilibrium point E, representing a price of 
$1.40 and a quantity of 600 (Source: Wikimedia Commons: Author: OpenStax 
College; https://openstax.org/details/books/principles-microeconomics). 
 

 
 
Assuming that freedom of choice in consumption and that freedom of 
choice of occupation are maintained, and assuming that the preferences of 
consumers, as expressed by their demand prices, guide production and the 
allocation of resources, the major goals of a rational and scientifically 
rigorous Central Economic Planning Authority (CEPA) are the following: 

i. Minimization of the average cost of production: The 
managers who run existing plants and those who are engaged 
in building new plants must be guided and controlled by the 
CEPA in order to combine factors of production in such a 
way that the marginal productivity of the quantity of factor 
of production 𝑥= that can be purchased for a unit of money is 
equal for all factors of production. In other words, given 
inputs (factors of production) 𝑥", 𝑥#, … , 𝑥%  employed in a 
productive activity, the CEPA ensures that the following 
cost-minimizing rule is fulfilled 

𝑀𝑃	𝑜𝑓	𝑥"
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑥"

=
𝑀𝑃	𝑜𝑓	𝑥#
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑥#

= ⋯ =
𝑀𝑃	𝑜𝑓	𝑥%
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑥%
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where 𝑀𝑃  denotes marginal productivity. In this way, the 
CEPA ensures that each commodity is produced with a 
minimum sacrifice of alternatives, and it tries to eliminate 
social waste.  

ii. Optimization of the scale of output: The managers of plants 
and the leaders of whole industries must be guided and 
controlled by the CEPA in order to determine the scale of 
production in such a way that the marginal cost is equal to 
the price of the product. In this way, the CEPA ensures that 
the marginal significance of each preference that is satisfied 
is equal to the marginal significance of the alternative 
preferences, which have been sacrificed, and, thus, the CEPA 
maintains a well defined hierarchy of preferences.  

iii. The maintenance of an objective price structure: In the model 
of a competitive market, there is an objective price structure, 
in the sense that, as a result of the parametric function of 
prices, there is only one set of prices, which satisfies the 
structural equilibrium condition, that is, it equalizes the 
demand for and the supply of each commodity. The same 
objective must be consciously and intentionally maintained 
by the CEPA, but, whereas, according to the model of a 
competitive market, the parametric function of prices derives 
merely from the weak and fragile assumption that the 
number of competing economic actors is too large to enable 
any one to influence prices by one’s own action, the CEPA 
can and should ensure the imposition of the parametric 
function of prices by imposing rational and scientifically 
rigorous price controls on strategic resources and, generally, 
on goods and services of critical social importance, in 
conjunction with appropriate monetary and fiscal policies.  

iv. Rational control of the production process: The huge 
economic progress that took place during the nineteenth and 
the twentieth centuries was mainly a consequence of scientific, 
technological, and organizational innovations that (as they 
were integrated into the production process) increased the 
productivity of a combination of factors of production, or 
created new economic goods and services. However, given 
the contradictions of the capitalist system, the results of the 
integration of scientific, technological, and organizational 
innovations into the economy are not homogeneous. 
Companies that innovate make a direct profit or increase 
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their profitability, but this profit (or increase in their 
profitability) is a temporary phenomenon, as free 
competition will tend to equate the price of the product with 
the average cost of production. On the other hand, companies 
that use outdated factors of production or outdated 
production models, and companies that produce competitive 
economic goods that can be easily substituted with others (by 
competitors) in the market, suffer losses which lead to a 
devaluation of the capital invested in them. In the 
competitive market regime, due to the parametric function of 
prices and the freedom of entry and exit enjoyed by private 
companies in every sector of the economy, any innovation is 
inevitably associated with a reduction in the value of some 
old investments, since, in principle, there is no way of 
reacting against a given innovation. What entrepreneurs can 
do to respond to their competitors’ innovations is to try to 
innovate in their own companies, causing, in turn, losses for 
their competitors. Moreover, innovative companies need to 
constantly strive to innovate, because free competition tends 
to nullify the profitability of existing innovations (due to the 
freedom of entry of new competitors in each sector of the 
economy), so the more a company leads in the field of 
innovation the more profitable it becomes.  
Nevertheless, as the prominent American economist, 
diplomat, and economic consultant John Kenneth Galbraith 
(1908–2006) has pointed out, industrial planning is 
inextricably linked to the size of the industrial complex, and 
size is not only a particular underpinning and provider of 
profits, but also the general underpinning and provider of 
technology and innovation. Furthermore, due to the inherent 
contradictions of capitalism, in the free competitive market, 
there emerge several phenomena that oppose free 
competition, such as the following: (i) monopolies, (ii) 
monopsonies, (iii) oligopolies, (iv) oligopsonies, and (v) 
groups of companies (i.e., gentlemen’s agreements, cartels, 
concerns, pools, and trusts). 
When the size of some business units increases so much that 
they can nullify both the efficiency of the parametric 
function of prices (thus being able to exert some control over 
prices) and the freedom of entry of new firms and new 
investors in a sector of the economy in general, such 
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companies develop a strong tendency to prevent any 
development that could bring about a devaluation of the 
capital already invested. Therefore, when a firm is not forced 
by market competition to innovate, it will only innovate 
when the old invested capital is depreciated or if the 
reduction in production costs that is achieved by the 
immediate implementation of an innovation exceeds the 
devaluation of the capital already invested. As J. K. 
Galbraith has aptly explained, this delay in actualizing 
available possibilities to improve the economy works to the 
detriment of social interest. In addition, the British economist 
Lionel Robbins (1898–1984), who was made a life peer as 
Baron Robbins of Clare Market in the City of Westminster in 
1959, has pointed out that the attempt of certain capitalist 
elites to maintain the value of their invested capital may lead 
them to prevent the entry of new producers who find the 
prospects of one economic sector more attractive than the 
prospects of other economic sectors, as well as to postpone 
or cancel the implementation of technical improvements that 
reduce costs and, consequently, reduce the price paid by the 
consumer. 
In any case, the ruling capitalist elite seeks to keep the 
general development of innovation under control and to 
manage innovations according to its own particular interests, 
thus coming into conflict not only with the social interest, but 
also with a rival capitalist elite which wants to become the 
new ruling capitalist elite by displacing the previous one. As 
a result of the contradictions of the capitalist system, the 
protection of monopoly privileges and specific investments 
contradicts economic progress, in the sense that it hinders the 
reduction of prices and the improvement of the quality of 
economic goods and services, and it is a major source of 
imperialist rivalry between the great powers of the 
international system. 2  When the pressure of scientific, 
technological, and organizational innovations for structural 
change is far greater than the tendency of some capitalist 
elites to maintain the value of old investments and their 
control over economic dynamics, an economic crisis ensues. 
This crisis is exacerbated, at a later stage, by the 

 
2 See also: Mavroudeas, “Periodising Capitalism”; Warren, Imperialism. 
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intensification of stock speculation, which manifests itself 
through a bear market for old investments and a bull market 
for new investments (innovations). The CEPA has to correct 
the aforementioned structural flaws of the competitive 
market system, to implement an efficient policy of 
innovation, and to ensure and impose a rational and 
scientifically rigorous production model.  

 
The Financial System 

 
According to the standard functional definition of “money,” four functions 
have been ascribed to money―namely: medium of exchange, unit of 
account, store of value, and standard of deferred payment. The stock of 
money held in an economy is held for various reasons: firstly, money is 
held in order to facilitate exchange (i.e., it is to be spent rather than saved), 
and, secondly, it may be held as an asset (i.e., to be saved rather than 
spent). 
If the supply of money falls below the level that is necessary to support the 
growth of the economy, then the growth of the economy will be held 
below its potential. On the other hand, if the supply of money is above the 
level that is necessary to support the potential growth of the economy in 
real terms, then the growth of the economy in money terms will be greater 
than the growth in real terms, and this, other things equal, will manifest 
itself in inflation. The “central bank” is a public institution that is 
responsible for implementing and managing the monetary policy of a 
country, or of a group of countries, and it controls the money supply.  
In an economy, there will always exist two groups of economic agents: (i) 
surplus units, namely, those whose revenue exceeds their current 
expenditure during a given period of time, and (ii) deficit units, namely, 
those whose expenditure exceeds their current revenue in a given period of 
time. Therefore, some mechanism is required to ensure that the surplus 
funds are channeled to the deficit units.  
The surplus units can lend their excess funds directly to the deficit units. 
For instance, a person can buy company or government securities through 
a public issue. However, it is very often the case that a surplus unit will 
lend its excess funds to a financial institution (“financial intermediary”), 
which will then on-lend these funds by itself, buying company stocks, 
government bonds, or other assets in which it invests. Thus, instead of a 
direct contractual relationship between the provider and the user of the 
funds, there are two contractual relationships: (i) the surplus unit lends to 
or acquires a financial claim on the financial intermediary, and (ii) the 
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financial intermediary lends to or acquires a financial claim on the 
ultimate borrower, the user of the funds. Financial intermediation 
facilitates the reconciliation of the differing needs of lender and borrower 
by means of: (i) maturity transformation (since a financial intermediary 
can borrow short and lend long), (ii) aggregation (i.e., by collecting 
together a large number of relatively small amounts), and (iii) risk 
transformation. The most important financial intermediaries are 
commercial banks, investment banks, insurance companies, mutual funds, 
hedge funds, pension funds, venture capitals, savings and loans 
associations, credit unions, mutual savings banks, and consumer finance 
companies.  
In economics, by the term “interest,” we refer to the profit return on 
investment. The money that is invested is called the “principal.” The 
percentage return per annum is called the “rate per cent.” Thus, if 𝑃 stands 
for the principal, 𝑇 stands for the time in years, 𝑅 stands for the rate per 
cent per annum, and 𝐼 stands for the interest, then 

𝐼 =
𝑃𝑅𝑇
100  

where 𝑃 and 𝐼 must be in the same monetary units. This formula can be 
transposed to give 𝑃, 𝑅, and 𝑇 in terms of the other letters: 
𝑇 = "))f

K[
, 

𝑅 = "))f
K_

, and 

𝑃 = "))f
[_

. 
Compound interest is different from simple interest in that the interest 
which is added also attracts interest. If a sum of 𝑃  monetary units is 
invested at 𝑟% per annum for 𝑛 years, then the value or amount after 𝑛 
years is 
𝑃 Ã1 + J

"))
Ä
%

. 
For instance, the value of $2,500 invested at 5% compound interest after 
eight years (i.e., 𝑃 = $2,500, 𝑟 = 5, and 𝑛 = 8) will be 

𝑃 Ã1 + J
"))
Ä
%
= $2,500Ã1 + C

"))
Ä
2
= $3,693. 

The mathematical formula of compound interest and regular deposits, 
which underpins banking transactions, can be formulated as follows: 
assume that you borrow an amount 𝑃 of money (the “principal”) at an 
(annual) interest rate of  𝑟 > 0, and that, at the end of each year, you have 
to pay back a fixed amount (a “deposit”) 𝑑. Let 𝐴% be the total amount of 
money owed after 𝑛 years. The formula for computing 𝐴% in terms of 𝑃 
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(the principal of the loan), 𝑟 (the interest rate of the loan), and 𝑑 (the loan 
deposits) is the following (where 0 < 𝑟 ≤ 1, e.g. 5% = 0.05): 

𝐴% = 𝐴%E"(1 + 𝑟) − 𝑑
= 𝑃(1 + 𝑟)% − 𝑑(1 + 𝑟)%E" − 𝑑(1 + 𝑟)%E# −⋯
− 𝑑 

= 𝑃(1 + 𝑟)% − 𝑑[(1 + 𝑟)%E" + (1 + 𝑟)%E# +⋯+ (1 + 𝑟) + 1] , which 
includes a geometric series, and 𝑟 ≠ 0; so that the initial condition is 𝐴) =
𝑃; at the end of the first year, you owe 𝑃 (the principal) plus an interest 
equal to 𝑟𝑃  minus the deposit you have agreed to pay each year. 
Therefore, 𝐴" = 𝑃 + 𝑟𝑃 − 𝑑 = 𝑃(1 + 𝑟) − 𝑑; by analogy, at the end of 
the second year, you owe 𝐴# = 𝐴"(1 + 𝑟) − 𝑑 = 𝑃(1 + 𝑟)# − 𝑑(1 + 𝑟) −
𝑑, etc. By allowing the owners of large sums of money to lend (that is, 
trade) money on interest, we give them power to immunize themselves 
against loss (in fact, this is the ultimate purpose of charging interest on 
loans: to immunize the lender of money against loss), while socializing 
loss and risks. Therefore, if the level of interest is formed spontaneously, 
merely as a result of competition, it may give rise to important 
irrationalities and inefficiencies, and it can lead to the establishment of an 
exceptionally privileged financial oligarchy. As against this situation, a 
rational and scientifically rigorous Central Economic Planning Authority 
(CEPA) should systematically control and guide the banking system in 
order to implement the optimal financial and monetary policy in 
accordance with the CEPA’s economic plan. In other words, the CEPA 
must ensure that credit is connected with the CEPA’s policy for the 
rational organization of the resources of enterprises and for the 
achievement of rational settlements between enterprises.  
The net present value (NPV) of an investment project consists of 
calculating the amount by which the value of that investment project 
exceeds its cost. If 𝑖  is the cost of capital (which, for convenience, is 
assumed to be fixed for the project under consideration), then the NPV is 
defined as follows:  

𝑁𝑃𝑉 =
𝑋"
1 + 𝑖 +

𝑋#
(1 + 𝑖)# +⋯+

𝑋%
(1 + 𝑖)% − 𝐶) 

where 𝑋Y (𝑡 = 1,2, … , 𝑛) denotes the cash flow that corresponds to year 𝑡, 
𝐶)  is the capital cost of the investment project in year 0, and 𝑛  is the 
lifetime (in years) of the investment project. Notice that, in the NPV 
formula, 𝑖  is the “discount rate,” that is, the company’s cost of capital 
(specifically, the company’s interest rate and loan payments or dividend 
payments to shareholders); when a company uses both debt and equity to 
fund operations, 𝑖  is the weighted average cost of capital. Hence, 
according to the Italian-American economist Franco Modigliani (who was 
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awarded the Nobel Prize in Economics in 1985) and the American 
economist Merton Miller, under certain conditions (in particular, if we 
assume that there is total information transparency and total rationality), 
the intrinsic or real value of a company can be considered to be the net 
present value of all the investment projects of that company. Furthermore, 
if we divide the intrinsic or real value of a company by the total number of 
outstanding shares issued by that company, we can find the real or 
intrinsic value per share (for the given company). 
Whereas the term “stock” means a share in the ownership of a company, 
the term “bond” means debt. In fact, a bond is a debt instrument issued for 
a period of more than one year with the purpose of raising capital by 
borrowing. By the term “maturity,” we mean the date on which a debt 
becomes due for payment. The “face value” (also known as the “par 
value” or “principal”) is the amount of money a holder of a fixed income 
security will receive back once the given security matures. The “coupon” 
is the amount that a holder of a fixed income security will receive as 
interest payments. The coupon is expressed as a percentage of the par 
value. “Yield” is a figure that shows the return one gets on a bond.  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑌𝑖𝑒𝑙𝑑 =
𝑐𝑜𝑢𝑝𝑜𝑛	𝑎𝑚𝑜𝑢𝑛𝑡
𝑚𝑎𝑟𝑘𝑒𝑡	𝑝𝑟𝑖𝑐𝑒  

(when we buy a bond at par, yield is equal to the coupon, and, when price 
changes, so does the yield). For instance, suppose that a bond has a par 
value of $1,000 and that its coupon rate is equal to 6%. Since the market 
price of a bond changes, an investor may purchase a bond at a discount 
(i.e., less than par value) or a premium (i.e., more than par value). In 
particular, if an investor buys this 6% coupon rate bond for a discount of 
$900 , then the investor earns an annual interest income of ($1,000 ×
6%) = $60, and the current yield is $60 $900 = 6.67%⁄ . Notice that the 
annual cash flow of $60 is fixed, regardless of the price paid for the bond. 
On the other hand, if an investor buys this 6% coupon rate bond at a 
premium of $1,100 , then the investor earns again an annual interest 
income of ($1,000 × 6%) = $60, but, in this case, the current yield is 
$60 $1,100 = 5.45%⁄ . 
A “zero-coupon bond” is a type of bond that makes no coupon payments 
but, instead, is issued at a considerable discount to par value. For instance, 
a zero-coupon bond with a $1,000 par value and ten years to maturity 
might be trading at $600. In case of a zero-coupon bond, 

𝑌 = å
𝑀
𝑃æ

" g⁄

− 1 
where 𝑌 denotes the yield to maturity, 𝑀 denotes the value of the given 
zero-coupon bond at the time of maturity (i.e., the par value), 𝑃 denotes 
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the current price of this bond (present value), and 𝑁 denotes the years to 
maturity.  
In general, as we have seen, in bonds, when price goes up, yield goes 
down, and vice versa. The factor that influences a bond more than any 
other is the level of prevailing interest rates in the economy. When interest 
rates rise, the prices of bonds in the market fall, and, thus, we see an 
increase in the yield of the older bonds, which are brought into line with 
the newer bonds being issued with a higher coupon. On the other hand, 
when interest rates fall, the prices of bonds in the market rise, thereby 
lowering the yield of the older bonds and bringing them into line with the 
newer bonds being issued with a lower coupon. Moreover, another 
important factor that influences a bond is the issuer’s default risk. In fact, 
investors try to determine if the bond rating agencies are going to change 
the issuer’s rating. Rating changes may be prompted by changes in such 
factors as: financial ratios, Gross National Product, inflation, etc.  
In 1911, the American economist Irving Fisher expressed the “quantity 
theory of money” in what is known as the equation (actually, identity) of 
exchange: 

𝑀𝑉 = 𝑃𝑄 
where 𝑀 is the quantity of money in the economy, 𝑉 is the velocity of the 
circulation of money (i.e., the amount of nominal Gross National Product 
each year divided by the money stock), 𝑃 is the general price level (i.e., 
the average value of each transaction), and 𝑄 is aggregate output (i.e., the 
physical volume of transactions during the given time period, so that 
𝐺𝑟𝑜𝑠𝑠	𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑃𝑄 ). Thus, according to Fisher, if we 
assume that, at least in the short-run, both 𝑉 and 𝑄 are constant (given that 
the velocity of circulation is determined by institutional factors, such as 
the payments interval for wages, and 𝑄 is determined by the productive 
capacity of the economy), then a change in the money supply, 𝑀, results in 
an equal percentage change in the price level 𝑃. 
The previous equation implies that  

𝑀 =
𝑃𝑄
𝑉  

and, since 𝑉  is (assumed to be) constant, 1 𝑉⁄  can be replaced by a 
constant 𝑘. Additionally, when the money market is in equilibrium, the 
demand for money, 𝑀;, is equal to 𝑀. Hence,  

𝑀; = 𝑘𝑃𝑄 
which means that, according to Fisher’s model, the demand for money is a 
function of income and does not depend on interest rates. 
However, in practice, the velocity of the circulation of money, 𝑉, is not 
constant, even in the short-run, and, especially, during periods of 
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recession. Therefore, the English economist John Maynard Keynes 
extended Fisher’s equation of exchange by pointing out that there are three 
motives for holding money: (i) Transactions motive: money is a medium 
of exchange, and, as income rises, people conduct more transactions and 
hold more money. (ii) Precautionary motive: people hold money for 
emergencies, and money demand is again expected to rise with income. 
(iii) Speculative motive: money is also a way for people to store wealth, 
and, under the speculative motive, the demand for money is negatively 
related to the interest rate. Moreover, Keynes modeled the demand for 
money as the demand for the real (as opposed to the nominal) quantity of 
money (real balances), 𝑀 𝑃⁄ . According to Keynes, the demand for real 
money balances is a function of both income and interest rates: 

𝑀
𝑃 = 𝑓(𝑄, 𝑖) 

where 𝑄  denotes output or income and 𝑖  denotes the interest rate (and, 
hence, the velocity of the circulation of money fluctuates with the interest 
rate). 
The level of interest rates can indeed be treated as a monetary target, but it 
is important to determine the extent to which interest rates are a major 
factor in decisions of either businesses, consumers, or governments. For 
instance, if an economy is characterized by important structural 
inefficiencies, then an increase in the supply of money (other things 
equal), instead of boosting economic growth, may lead to an increase in 
inflation and money incomes.  
Moreover, it is worth mentioning that central banks have at their disposal a 
number of policy instruments that can affect certain intermediate targets, 
such as the money supply, interest rates, etc. The three major instruments 
of monetary policy are: 

i. Open market operations: this is the activity of a central bank 
in buying or selling government bonds to influence the 
money supply, interest rates, and bank reserves. In fact, if 
securities are bought (by the central bank), the money paid 
out by the central bank increases commercial-bank reserves, 
and the money supply increases. On the other hand, if 
securities are sold (by the central bank), then money supply 
decreases. 

ii. Discount-rate policy: given that the discount rate is the 
interest rate charged by the central bank on a loan that it 
makes to a commercial bank, it follows that the central bank 
can increase the discount rate to reduce the money supply, 
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whereas the central bank can reduce the discount rate to 
increase the money supply.  

iii. Reserve-requirements policy: by the term “required 
reserves,” we mean that portion of deposits that a bank sets 
aside in the form of vault cash or non-interest-earning 
deposits with the central bank. In fact, if the central bank 
wants to tighten money overnight, then it can raise reserve 
requirements, whereas, if the central bank wants to ease 
credit conditions (and, thus, increase the money supply), then 
it can cut reserve requirements.  

 
Economic Cycle, Economic Crisis, and Political Economy 

 
By the term “economic cycle,” or “business cycle,” we refer to economic 
fluctuations between periods of economic expansion and economic 
contraction. In other words, an economic cycle is the circular movement of 
an economic system as it moves from expansion to contraction and back 
again. The four stages that characterize the economic cycle (or business 
cycle) are the following: 

i. Expansion: during this stage, the economy experiences 
relatively rapid growth, interest rates tend to be low, and 
production increases. The economic indicators associated 
with growth (e.g., employment and wages, business profits 
and output, aggregate demand, and the supply of goods and 
services) tend to increase through the expansionary stage, 
but, at some point, the increase in the money supply may 
cause inflationary pressures. 

ii. Peak: during this stage, growth hits its maximum rate, and 
prices and economic indicators may stabilize for a short 
period of time before they start to decrease. 

iii. Contraction: during this stage, growth slows, employment 
decreases, and prices stagnate. As demand decreases, 
businesses may not immediately adjust production levels, 
causing a situation characterized by oversupply and falling 
prices. If the contraction of economic activity continues, then 
it may turn into a “recession.” 

iv. Trough: during this stage, the economy hits a minimum 
point, with supply and demand hitting bottom before 
recovery.  

By the term “economic crisis,” in general, we refer to sudden interruptions 
in the (re)production of the economy. Irrespective of the romantic aspects 
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of Karl Marx’s communist vision, which are irrelevant to my work and 
thought, Karl Marx, under the influence of British and German scientific 
economic theories, articulated a brilliant critical method of understanding 
and restructuring social reality. Irrespective of the romantic, egalitarian 
teleology of Marx’s thought, of which I disapprove, I maintain that Marx’s 
analysis of capitalism is very useful in order to overcome class conflict 
towards a hierarchical and scientifically organized society, in line with 
Plato’s vision and the principles of cybernetics. Additionally, I would like 
to mention that, in contrast to romantic populism, Vladimir Lenin (1870–
1924) conceded that, historically, scientific socialism comes from 
educated intellectuals, from an elite, and the reason why it cannot easily 
spread among the working class is that it is too complicated, and, 
therefore, he highlighted the importance of education. Furthermore, in 
view of Darwin’s theory of evolution, we have to keep in mind that, since 
man is a thinking ape who developed civilization as a negation of nature 
(in a Promethean sense) and as a manifestation of the intentionality of 
human consciousness, humanity’s attempt to transcend its ape origins and 
to rise to better and better and more successful levels of being is an open 
process, a constant quest, and a constant existential gamble.  
The way I have delineated my conception of the Central Economic 
Planning Authority (CEPA) and its specific roles and goals suggests that I 
am proposing a specific model of market socialism, where markets for 
goods, services, money, and capital exist but are thoroughly controlled, 
systematically directed, and totally constrained by a powerful ruling 
scientific elite in the context of a vertical-hierarchical political system 
based on Plato’s vision of the ideal republic.  
Marx has correctly and mathematically rigorously analyzed the 
endogenous causes of the capitalist crises. I shall briefly present Marx’s 
explanation of economic crises, and afterwards I shall briefly present a 
scientifically rigorous, “technocratic” approach to economic planning.  
Karl Marx, in his seminal book The Capital (published as three volumes in 
1867, 1885, and 1894), articulated a structural theory of economic crises in 
the capitalist system. He started from the “labor theory of value,” which 
was originally formulated by the Scottish economist and philosopher 
Adam Smith and the British political economist and politician David 
Ricardo. According to the labor theory of value, only people can create 
value. Machines or production charts have value (in particular, they have 
use value), in the sense that they are useful things, but machines and 
production charts on their own cannot do anything, until someone does 
something with them.  
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Marx thought as follows: Let us divide the average working day into two 
component parts, 𝑉  and 𝑆 , where 𝑉  denotes “variable capital,” and 𝑆 
denotes “surplus value.” Variable capital means that proportion of capital 
which is equal to the cost of labor, so that it is invested in wages (𝑉 is 
sufficient for the purchase of labor power). Surplus value means the 
additional capital that is produced, and it is the source of profit (i.e., the 
accumulated product of the unpaid labor time of the producers). The ratio 

𝑆
𝑉 

is called the “rate of surplus value.” Marx defined the “rate of profit” as 
follows: 

𝑆
𝐶 + 𝑉 

where 𝑆 is the surplus value, 𝑉 is the variable capital (i.e., the wages paid 
for the production of a commodity), and 𝐶 is the constant capital. By the 
term “constant capital,” Marx means the value of goods and materials 
(e.g., machinery, raw materials, etc.) required to produce a commodity 
(Marx used the term “constant capital” in accordance with the labor theory 
of value). Thus, Marx formulated the “law of the tendency of the rate of 
profit to fall” over an economic cycle due to competition. 
A capitalist (or, generally, an owener of a business) cannot fritter away the 
entire surplus value in luxury expenditure, but he/she has to reinvest a 
significant proportion of the surplus value in order to protect 
himself/herself from competition and in order to get an advantage over 
competitors. Moreover, because of technical improvements (such as 
machinery), represented by 𝐶 (the “constant capital”), the productivity of 
labor increases. Over time, as a capitalist invests, the ratio  

𝐶
𝑉 

increases (more and more machinery is working together with the 
individual laborer). Hence, there is a tendency to replace living labor (i.e., 
𝑉) with “dead labor” (i.e., 𝐶). If we divide both the numerator and the 
denominator of the rate of profit by 𝑉, we obtain 

a
h

P
h
+ h

h

=
a
h

P
h
+ 1

 

where the ratio 𝐶 𝑉ý  increases over an economic cycle, as we have just 
explained. Therefore, if the ratio 𝑆 𝑉ý  increases at a lower speed than the 
ratio 𝐶 𝑉ý , then the rate of profit decreases. This result is Marx’s “law of 
the tendency of the rate of profit to fall” over an economic cycle due to 
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competition. It goes without saying that there are counter-acting influences 
that can delay the onset of this effect (e.g., through technology, 
imperialism, foreign trade, labor intensification, an expansionary monetary 
policy, etc.), but the underlying structure of the economy is reflected by 
Marx’s “law of the tendency of the rate of profit to fall” over an economic 
cycle due to competition. In other words, capitalist crises are due to the 
very nature, the intrinsic contradictions, of the capitalist system. During 
capitalist crises, business bankruptcies and consolidations occur, so that 𝐶 
decreases, and the “reserve army of unemployed” increases. The increase 
in unemployment causes a downward pressure on the level of wages, and, 
therefore, 𝑉 decreases. As 𝐶 and 𝑉 decline, the rate of profit recovers, and 
a new cycle of accumulation begins until a new crisis occurs, and so on. 
In view of the foregoing, a policy of economic planning is necessary. My 
conception of a Central Economic Planning Authority (CEPA), as I 
described it earlier in this chapter, represents an updated, modern version 
of Plato’s vision of a republic ruled by the “epaiontes” (i.e., “those with 
real understanding,” the “genuine experts,” “those who perceive things 
according to their nature”). Advances in mathematics and technology 
combined with an aristocratic ethic can make this ideal practical, 
consistent, and effective. Thus, Plato’s political theory should be merged 
with cybernetics, which reflects a conception of a “universal 
organizational science,” which would be capable of combining and 
coordinating all the individual scientific disciplines. Cybernetics is a 
transdisciplinary systematic study of regulatory and purposive systems 
(their structures, constraints, and possibilities). Hence, cybernetics has 
been defined as “the art of governing or the science of government” 
(according to the French physicist and mathematician André-Marie 
Ampère), “the art of steersmanship” (according to the English psychiatrist 
Ross Ashby), “the study of systems of any nature which are capable of 
receiving, storing, and processing information so as to use it for control” 
(according to the Soviet mathematician Andrey Kolmogorov), “the science 
and art of the understanding of understanding” (according to Rodney E. 
Donaldson, the first president of the American Society for Cybernetics), 
“the art of creating equilibrium in a world of constraints and possibilities” 
(according to the American philosopher Ernst von Glasersfeld), as well as 
“a branch of mathematics dealing with problems of control, recursiveness, 
and information, focuses on forms and the patterns that connect” 
(according to the English anthropologist and linguist Gregory Bateson). 
The sixth-century B.C.E. Ionian Greek philosopher and mathematician 
Pythagoras was, arguably, the first person who called himself a 
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“philosopher.” In particular, Diogenes Laertius, in his Lives of Eminent 
Philosophers (Book VIII, Chapter 1: Pythagoras, 8) writes the following: 
 

Sosicrates in his Successions of Philosophers says that, when Leon the 
tyrant of Phlius asked him [namely, Pythagoras] who he was, he said, “A 
philosopher,” and that he compared life to the Great Games, where some 
went to compete for the prize and others went with wares to sell, but the 
best as spectators; for similarly, in life, some grow up with servile 
natures, greedy for fame and gain, but the philosopher seeks truth. 

 
Moreover, Diogenes Laertius, in his Lives of Eminent Philosophers (Book 
V, Chapter 1: Aristotle, 20) writes that, when Aristotle was asked what 
advantage he had ever gained from philosophy, Aristotle’s response was 
the following: “This, that I do without being ordered what some are 
constrained to do by their fear of the law.” From Aristotle’s perspective, 
philosophy—expressing a continuous and systematic quest for knowledge, 
which is dialectically directed towards the ultimate knowledge—enables 
one to understand the underlying order and harmony of the world and, 
thus, to act rationally without coercion. 
Philosophy being the most general approach to knowledge and truth, Plato,  
in his Republic, aptly proposed a model of polity based on the concept of 
the “philosopher king,” a theoretical ruler who combines philosophical 
knowledge and temperament with political skill, power, and authority. 
This political vision, being based on the supreme and noblest 
epistemological, moral, and aesthetic values, and not on particular 
economic/social interests, aims at the scientifically and morally optimal 
organization and governance of human beings and at the guidance of 
science and education by philosophy, by a ruling philosophical elite, and 
not by self-interested individual social actors, or the capitalist class, or 
irrational passions. Philosophy enables one to reason and argue in the most 
abstract, the most comprehensive way and to consciously choose a value 
system and, thus, a way of life and a type of humanity. Consequently, a 
genuinely philosophical mindset is a necessary prerequisite for genuine 
political leadership and statesmanship. As Plato has correctly argued, 
politics separated from philosophy is a counterfeit of politics.  
The constitutive and the regulative rules of a polity shape a dominant 
ethos, which differentiates a genuine political community from any 
coalition of self-interested actors; and genuine thought, that is, thought as 
understood in the context of science and philosophy (which is a reflection 
on science), is the source of correct and optimal rules. My thinking on 
these issues shares the conviction of the philosopher Giuliano Di 
Bernardo, who, in his books Liberalismo contro Totalitarismo and The 
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Future of Homo Sapiens, argues for an updated variety of enlightened, 
genuinely aristocratic (that is, spiritually aristocratic) totalitarianism. The 
vertical and technocratic hierarchical system that we propose should not be 
confused with other historical models, such as those of the tyrant, the 
dictator, the monarch, and any similar models, because it is analogous to 
the government of philosophers delineated by Plato in his Republic.  
 

Scientific Totalitarianism: A Theme in Need of a Focus 
 
The ancient Greek polis (city-state) had a unique, distinctive characteristic 
on the basis of which and due to which the institution of the polis was 
differentiated from other forms of organized collective behavior, and it 
gave rise to the notions of political art, political virtue, and political 
science. The unique, distinctive characteristic of the ancient Greek polis 
consisted of a collective attempt to institute a community whose telos, or 
existential purpose, was to live in harmony with the principle of truth, as 
we read in Aristotle’s Nicomachean Ethics, X. From the aforementioned 
philosophical perspective, we can talk meaningfully about “politics” and 
“civilization” only when the ultimate goal of collective life is “truth,” 
which, according to Plato and Aristotle, implies the imitation of true being, 
that is, of that mode of existence which is free from corruption, alterations, 
and annihilation (Plato, Republic, II, IV, VII, and X; Aristotle, 
Nicomachean Ethics, II–VI). This is the reason why logic and, especially, 
the kind of knowledge that is represented by mathematics play a key role 
in Plato’s and Aristotle’s thought. 
In the context of Plato’s and Aristotle’s philosophical works, genuine 
politics refers to an existential goal of the human being, and, therefore, 
genuine politics is a collective struggle that is aimed at the truthfulness of 
human existence. In other words, the telos of politics is to enable humanity 
to exist authentically through and within a social system. This aspiration is 
the core of classical Greek political thought. 
In order to clarify the arguments that genuine politics consists of the 
pursuit of truth and that truth consists of the imitation of true being, we 
need to understand the meaning of “truth” (in Greek, “aletheia”) and 
“reason” (in Greek, “logos”) in the context of classical Greek thought. In 
terms of the Greek word “aletheia,” everything that exists is manifested as 
an entity in the world, that is, the truth of anything/anyone is ultimately 
determined by its/one’s participation in the logical constitution of the 
world, and the Greek term “logos” refers to the disclosure of this fact. The 
event of disclosure speaks about and declares the existence of an entity in 
the world, and it refers to a conscious being that is aware of the event of 
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disclosure. Hence, truth emerges from the relationship between a disclosed 
entity and the viewer and agent of this disclosure; and “logos” is the event 
of disclosure and the elucidation of the way in which disclosure takes 
place.  
The “existent” is disclosed through its form, or species, that is, through its 
distinctive way of being. For instance, the form of a robot “says” to its 
viewer that the given object is a robot (and not, for instance, a flower). 
However, the Greek term “logos” refers not only to the individual form of 
each being or thing that exists in the world, but also to the overall 
configuration of the world, that is, to the way in which beings and things 
that exist in the world relate to each other. This is the reason why the 
Greek term “logic” derives from the Greek term “logos.” Furthermore, 
according to ancient Greek aesthetics, the overall formation of the entities 
that exist in the word has “kallos,” which means beauty, as we read in 
Plato’s works Timaeus (29a–d, 47b–c), Republic (443d, 500c), Phaedrus 
(246–251, 247c–d), and Laws (734a–741a), as well as in Aristotle’s works 
Physics (265a25), Politics (1289b25), and Nicomachean Ethics (1181b21). 
The Greek noun “kallos” (beauty) is semantically related to the Greek verb 
“kalo” (καλῶ), meaning “attract” and “invite.” By viewing and 
contemplating the way of the overall formation of the entities in the world, 
ancient Greek philosophers identified the harmony and, hence, the beauty 
of the world. Therefore, they called the universe “cosmos,” which, in 
Greek, is semantically related to the Greek noun “cosmema,” meaning 
“jewel,” “ornament,” and “embellishment.” 
The “logos” of the entities that exist in the world consists of the way in 
which they participate in the corresponding species/form and of the way in 
which they relate to each other in the context of the cosmic harmony and 
order. The “logos” of the cosmic entities that belong to the same 
species/form is common to all of them, and it is incorrigible and eternal, 
independent of the characteristics of particular entities. For instance, every 
particular rose and every particular lion will perish, and, eventually, they 
will be annihilated. But the form of a rose, namely, its “logos,” or the way 
of its participation in existence, which makes it what it is (the given plant), 
and the form of a lion, its “logos,” or the way of its participation in 
existence, which makes it what it is (the given animal), are not susceptible 
to corruption, but they are incorrigible and eternal. Moreover, the set of 
the fundamental relations (i.e., the structure) in which every particular 
plant and every particular animal participate (e.g., the way of a plant’s 
sowing, vegetation, and blossoming, and the way of an animal’s birth, 
development, and reproduction) is an integral, incorrigible, and eternal 
whole. Hence, “logos” means participation in the corresponding (eternal 



 

 

154 

and incorrigible) form that makes existents what they are as well as 
participation in the formation of the entire cosmos; and this idea underpins 
my conception of scientific totalitarianism in general as well as my 
conception of a hierarchical, organic society in particular. As I have 
already mentioned, it goes without saying that I reject every variety of 
totalitarianism that is based on biological racism, chauvinism,3 religion, 
romanticism, and/or particular class interests. Moreover, I am aware of the 
traumatic experiences left in Europe by attempts by essentially irrelevant 
persons to pursue totalitarian politics. I advocate a concrete vision of 
scientific totalitarianism based on Plato’s political thought, 
interdisciplinary mathematics, and epistemology.  
True being, that is, the way of being eternal and incorrigible, is the event 
of participation in the “logos,” and, therefore, it is clear what one must do 
if he/she “seeks . . . to be immortal” (Plato, Symposium, 207d1–2): he/she 
must imitate the “logos” of the relations of participation in the formation 
of the cosmos. For instance, he/she must understand and organize society 
as an event of participation in the order, the harmony, and the decency of 
the relations that constitute the eternal cosmic beauty. This is the essence 
of my conception of scientific totalitarianism in general as well as of my 
conception of a hierarchical, organic society in particular.  

 
3 Regarding chauvinism, in particular, it should be mentioned that, in the twentieth 
century, it was reinforced by English, German, and American geopolitics (e.g., by 
such geopoliticians as Halford John Mackinder, Karl Ernst Haushofer, and 
Nicholas J. Spykman). It is worth mentioning that G. Nicolas and C. Guanzini 
have used the evocative symbolism of the Second Horseman of the Apocalypse in 
order to articulate their argument that even the most renowned and venerated of 
geopolitical theorists and political geographers had “attempted to vindicate war 
through teaching the love of the Mother Earth” which was most powerfully and 
emotionally expressed in an aggressive, nationalist love of the Mother Country. 
For more details, see: G. Nicolas and C. Guanzini, “Ancient History for the Future: 
The Political Role of Geography,” Video English Version G. Parker, University of 
Lausanne, Ératosthène, 1993. Additionally, geopolitics has been used by particular 
Western bureaucracies in order to undermine Russia’s imperial, multiethnic 
tradition and structure, and, during the Cold War, geopolitics was also used as an 
ideological weapon against the Soviet bloc and, generally, against the 
cosmopolitan aspect of socialism. Finally, it should be mentioned that White 
Russian émigrés (i.e., Russians who emigrated from the former Russian Empire in 
the wake of the Bolshevik Revolution (1917) and the Russian Civil War (1917–
23), and who were in opposition to the Bolsheviks) developed a peculiar variety of 
chauvinism and fascism by combining Western theories of geopolitics, mysticism, 
and religious doctrines (the Russian intellectual Ivan Ilyin is a characteristic 
representative of this ideological current).  
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Chapter 5 
Probability and Statistics 

 
First of all, it should be clarified that, by the term “quantitative analysis,” 
we mean the study of phenomena by means and on the basis of any type of 
quantitative information. Such an inquiry takes place by applying suitable 
methods that determine the nature of the available information and the 
phenomena under consideration. Quantitative methods mainly include 
methods that derive from mathematical analysis, mathematical 
programming, probability theory, and statistics.  
In fact, statistics emerged from the constant efforts of humankind to deal 
with situations of uncertainty in which they lived. In these situations, the 
element of luck always appeared as a key determining factor which 
prevented the identification of the existence of systematicness in the 
manifestations of various phenomena and in the formulation of relations 
between them. Aristotle was the first philosopher to offer a systematic 
account of “luck” and to include it as a significant topic in both physics 
and ethics (Aristotle, Physics, 2:4–6, and Metaphysics, 7:7–9). A method 
is called statistical if it relates facts and hypotheses of some kind. Hence, 
statistics investigates and develops methods for evaluating hypotheses in 
reference to empirical facts.  
In general, luck is involved in all things where actors do not hold full 
control over the outcome of action. One of the basic attributes of the 
statistical method is the fact that it refers to properties of populations 
instead of individual cases. Statistics examines a unit only in its capacity 
as a member of a population. The statistical method can be applied in 
order to solve any problem related to the definition of overall behavior, 
based on individual observations expressed numerically. The concept of 
luck is commonly used in statistics in order to display all the possible 
outcomes given a very large sample and the probability of each outcome. 
In science, “probabilities,” often called chances or stochastic processes, 
are relative frequencies in series of events, or tendencies or propensities in 
the systems that give rise to those events. By the term “frequency,” we 
refer to the number of times each measurement occurs.  
Probability theory is primarily concerned with the issue of uncertainty. In 
fact, “probability,” usually denoted by 𝑝 , is a quantitative measure of 
uncertainty. It is a number between 0 and 1, where 0 indicates 
impossibility and 1 indicates certainty. Assume that we take any very large 
number,	𝑁, out of a series of cases in which an event,	𝐴, is in question, and 
that 𝐴 happens on 𝑝𝑁 occasions (where 0 ≤ 𝑝 ≤ 1). The probability of the 
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event 𝐴  is said to be 𝑝  (the certainty of the corresponding proposition 
increases as the number 𝑁  of specimen cases selected increases). 
Furthermore, the following corollaries and extensions may be added to the 
aforementioned definition of a probability: (i) If the probability of an event 
is 𝑝, then, out of 𝑁 cases in which it is in question, it will happen 𝑝𝑁 
times, where 𝑁 is any very large number (where 0 ≤ 𝑝 ≤ 1). (ii) If the 
probability of an event is 𝑝, then the probability of its failing is 1 − 𝑝. 
Probability theory is based on set theory. By the term “experiment,” we 
mean a process that leads to one of several possible outcomes. By the term 
“outcome,” we mean an observation or measurement. The “sample space” 
is the set of all possible outcomes of an experiment. An “event” is a subset 
of a sample space―or, in other words, a set of basic outcomes. Thus, we 
say that the event “occurs” if the corresponding experiment gives rise to a 
basic outcome belonging to the event. Therefore, we obtain the following 
formula:  
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡	𝐴 = %(()

%(a)
, 

where 𝑛(𝐴) is the number of elements in the set of the event 𝐴, and 𝑛(𝑆) 
is the number of elements in the sample space 𝑆. For instance, roulette as it 
is played in Las Vegas or Atlantic City consists of a wheel that has 36 
numbers, numbered 1 through 36, and the numbers 0 and 00 (double zero). 
Therefore, in this case, the sample space, 𝑆, consists of 38 numbers, and 
the probability of winning a single number that you bet is 𝑃 = 1/38.  
When the sets corresponding to two events are disjoint (their intersection 
is the empty set), then these events are called “mutually exclusive.” 
The axiomatic definition of probability is the following: Let 𝐸 be a space 
of elementary events (i.e., the space of outcomes of experiments, or the 
space of states of a system, since the state of a system can be construed as 
the outcome of an experiment). The “probability of an event” 𝐴 ⊆ 𝐸 is 
denoted by 𝑝(𝐴), and it is defined as a single number that corresponds to 
𝐴 and has the following properties: 

(P1) 𝑝(𝐴) ≥ 0; 
(P2)  for each pair of mutually exclusive events, 𝐴, 𝐵 ⊆ 𝐸, it holds 

that 
𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵); 

(P3) 𝑝(𝐸) = 1  (i.e., the total probability, after adding all 
possibilities, is equal to one). 

Remark: For each 𝐴, 𝐵 ⊆ 𝐸 , 𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴 ∩ 𝐵); but, 
in case 𝐴 and 𝐵 are mutually exclusive, it holds that 𝑝(𝐴 ∩ 𝐵) = 0, so we 
obtain (P2).  
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By the term “conditional probability,” we mean the probability of event 𝐴 
conditional upon the occurrence of event 𝐵. Assume that we investigate 
the probability of an event 𝐴  given that we know that an event 𝐵  has 
occurred, and that event 𝐵  influences the probability of event 𝐴 . The 
“conditional probability” of event 𝐴 given the occurrence of event 𝐵  is 
defined as the quotient of the probability of the intersection of 𝐴 and 𝐵 
over the probability of event 𝐵; symbolically: 
𝑃(𝐴|𝐵) = K((∩L)

K(L)
, 

where 𝑃(𝐴|𝐵)  denotes the probability of 𝐴  conditioned on 𝐵 , and we 
assume that 𝑃(𝐵) ≠ 0. The aforementioned formula for the computation 
of conditional probability is known as Bayes’s Law, since it was originally 
formulated by the eighteenth-century English statistician and philosopher 
Thomas Bayes. Notice that 𝐴 is independent of 𝐵 if 𝑃(𝐴|𝐵) = 𝑃(𝐴); that 
is, knowing that 𝐵  occurred does not change the probability that 𝐴 
occurred. Thus, according to Bayes’s Law, two events 𝐴  and 𝐵  are 
independent of each other if and only if 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵). 
Bayes’s Law provides a method of revising existing predictions or theories 
(specifically, updating probabilities) given new additional evidence. In 
fact, Bayes’s Law implies that the interpretation of any risk assessment 
depends on an estimate of the base rate, and the corresponding base rate, 
which is never known with complete certainty at the time of the 
assessment, is a Bayesian “prior probability.” 
Probability theory has several significant applications in the natural 
sciences and in the social sciences. For instance, in genetics, probability is 
a measurement tool that helps us to predict the chances of an offspring 
being inherited with a particular trait of interest (assuming Mendel’s laws 
of inheritance). The sum law helps us to find the probability of two or 
more events occurring as long as they are mutually exclusive: the 
probability of the occurrence of one event or the other, of two mutually 
exclusive events, is the sum of their individual probabilities; that is, if 𝐴 
and 𝐵  do not share any outcome, then 𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) . The 
product law helps us to find the probability of two or more events 
occurring as long as they are independent of each other: if 𝐴 and 𝐵 are 
independent of each other, then 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) . Moreover, 
probability theory helps us to estimate the chances of success or failure of 
a business project, an investment, or product launch.  
By the term “random variable,” we refer to a function from the outcomes 
of an experiment to the set of real numbers. A “probability distribution 
function” specifies the probabilities associated with the values of the 
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corresponding random variable. The “expected value” of a discrete 
random variable 𝑋 is denoted by 𝐸(𝑋), and it is defined as follows: 

𝐸(𝑋) =ä𝑥=𝑝(𝑥=) 
where 𝑥=  denotes the 𝑖 th value of the random variable 𝑋  (𝑖 = 1,2,3, …), 
𝑝(𝑥=) denotes the probability of 𝑥=, and the symbol ∑  denotes the sum 
of all products 𝑥=𝑝(𝑥=).  
One of the most important methods that is used to discover, describe, and 
explain “typical” behavior of mass data is the “arithmetic mean.” The 
formula is 

𝑋! =
∑ 𝑋=g
=>"

𝑁  

where 𝑋! denotes the arithmetic mean, ∑ 𝑋=g
=>"  denotes the summation of 

the values of the individual observations 𝑋=  under consideration ( 𝑖 =
1,2, … ,𝑁), and 𝑁 is the total number of items in the series that have been 
summated. It is worth noticing that arithmetic means are often “weighted” 
averages, in the sense that, when averaging values, it is sometimes 
logically necessary to assign more importance to some than to others (by 
multiplying each value with a suitable statistical weight), so that particular 
values may be more influential in determining the “typical” value than 
others. Formally, the weighted arithmetic mean of a non-empty finite set 
of data {𝑋", 𝑋#, … , 𝑋g}  with corresponding non-negative weights 
{𝑤", 𝑤#, … , 𝑤g} is 

𝑋! =
∑ 𝑤=𝑋=g
=>"

∑ 𝑤=g
=>"

=
𝑤"𝑋" +𝑤#𝑋# +⋯+𝑤g𝑋g

𝑤" +𝑤# +⋯+𝑤g
 

(the weights can be in the form of decimals, whole numbers, percentages, 
etc.). For instance, if 𝑥", 𝑥#, 𝑥*, …  are the measured observations and 
𝑓", 𝑓#, 𝑓*, … are the corresponding frequencies, then the arithmetic mean is 

𝑥̅ =
𝑓"𝑥" + 𝑓#𝑥# + 𝑓*𝑥* +⋯

𝑓" + 𝑓# + 𝑓* +⋯
 

(this is the arithmetic mean of a frequency distribution). Moreover, notice 
that a consumer price index (CPI) is typically calculated as a weighted 
average of the price change of the goods and the services covered by the 
index (in this case, the weights are meant to reflect the relative importance 
of the goods and the services as measured by their shares in the total 
consumption of households).  
Weighted aggregative price index: Firstly, having chosen a base year, we 
obtain the prices of a list of commodities and some measure of the 
importance of each commodity that is relevant to the purpose of the index. 
The importance may be measured by the quantity of each commodity sold, 
consumed, or produced (other weights may be devised in special 
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situations). The data used for weighting purposes must refer to the base 
period. Secondly, we multiply each of the commodity prices by the 
corresponding weight. Thirdly, we summate the so obtained values for 
each time period. Fourthly, we divide each total by the base total, and we 
multiply by 100 to reduce the index to percentage form. If we denote the 
base year quantities used for weights by 𝑞), 𝑞)@ , 𝑞X@@, … , 𝑞X% , then the 
aforementioned method of computing a weighted aggregative price index 
is given by the following formula, which is known as the “Laspeyres Price 
Index”: 
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑝𝑟𝑖𝑐𝑒	𝑖𝑛𝑑𝑒𝑥

=
𝑝"𝑞) + 𝑝"@𝑞)@ + 𝑝"@@𝑞)@@ +⋯+ 𝑝"%𝑞)%

𝑝)𝑞) + 𝑝)@𝑞)@ + 𝑝)@@𝑞)@@ +⋯+ 𝑝)%𝑞)%
× 100

=
𝑆𝑢𝑚	𝑜𝑓(𝑃𝑟𝑖𝑐𝑒	𝑎𝑡	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑝𝑒𝑟𝑖𝑜𝑑 × 𝐵𝑎𝑠𝑒	𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)

𝑆𝑢𝑚	𝑜𝑓	(𝑃𝑟𝑖𝑐𝑒	𝑎𝑡	𝑏𝑎𝑠𝑒	𝑝𝑒𝑟𝑖𝑜𝑑 × 𝐵𝑎𝑠𝑒	𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦) × 100 

(do not be confused by the notations: the numerator is simply the total 
expenditures for all commodities at the observation period using base 
quantities, and the denominator is simply the total expenditures for all 
commodities at the base period using base quantities).  
Whereas the mean is the average value of a set of data, the “median” is the 
middle value in a set of data. Hence, in order to find the median of a data 
set, one must arrange the data from least to greatest, and find the data point 
located in the middle: if there is an odd number of data, then the median is 
the middle point in the array, but, if there is an even number of data in the 
array, then the median is the average of the two middle data points in the 
array. The “mode” is the value that appears most frequently in a set of 
data.  
As I have already mentioned, by the term “probability distribution,” we 
mean a statistical function that describes all the possible values and 
likelihoods that a random variable can take within a given range. A 
probability distribution is called a “normal distribution,” or a “Gaussian 
distribution,” if it is symmetric about the mean, showing that data near the 
mean are more frequent in occurrence than data far from the mean (as 
shown in Figure 5-1). In the normal distribution, its mean (average), 
median (midpoint), and mode (most frequent observation) are all equal to 
each other; and these values all represent the peak, or highest point, of the 
distribution. In graphical form, the normal distribution appears as a “bell 
curve,” as shown in Figure 5-1. In other words, the “normal curve” is bell-
shaped and perfectly symmetric (centered on the mean). 
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Figure 5-1: A normal (or Gaussian) distribution (source: Wikimedia Commons: 
Author: Thais Monteiro Peres; 
https://commons.wikimedia.org/wiki/File:Curva_Gaussiana.png). 
 

 
 
One of the most important methods that are used to discover, describe, and 
explain “risk” or “uncertainty” is the “standard deviation,” which is a 
quantity expressing by how much the members of a database (i.e., the data 
under consideration) differ from the arithmetic mean of the given 
database. The formula of the standard deviation is: 

𝜎 = $∑ 𝑥=#g
=>"
𝑁  

where: firstly, we calculate the arithmetic mean 𝑋!  of the values 𝑋=  (𝑖 =
1,2, … ,𝑁) under consideration; secondly, we record the deviation of each 
value 𝑋=  from the arithmetic mean, namely, 𝑥= = 𝑋= − 𝑋! ; thirdly, we 
square these deviations (we compute 𝑥=# ); fourthly, we summate the 
squared deviations and divide by 𝑁 (thus finding the “variance” of our 
data); fifthly, we extract the square root to obtain 𝜎  (i.e., 
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ). However, the aforementioned 
formula for the standard deviation is used when 𝑁 is the entire population 
of the species or kind under consideration; if we do not have the entire 
population, we use the following formula for the standard deviation: 

𝑠 = $∑ (𝑋= − 𝑋!)#%
=>"
𝑛 − 1  
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where 𝑛 is the size of the sample (i.e., the number of the point data that are 
contained in the database that we use), 𝑋= is the 𝑖th point of the sample 
(𝑖 = 1,2, … , 𝑛), and 𝑋! is the arithmetic mean of the sample (namely, of the 
database that we use). 
The normal curve’s standard deviation tells us what percentage of 
observations falls within a specific distance from the mean. As shown in 
Figure 5-1, when we have a normal curve, the area below the curve 
contains 100% of all observations; approx. 68% of all observations fall 
within one standard deviation from the mean; approx. 95%  of all 
observations fall within two standard deviations from the mean; and 
approx. 99% of all observations fall within three standard deviations from 
the mean.  
When we have two sets of data and we want to find how strong a 
relationship is between them, we use “Pearson’s correlation coefficient” 
(PCC), also known as Pearson’s 𝑟. In other words, PCC calculates the 
level of change in one variable due to the change in the other. When 
applied to a sample of the variables 𝑥  and 𝑦 , PCC is commonly 
represented by 𝑟VW.  
Given paired data  
{(𝑥", 𝑦"), … , (𝑥%, 𝑦%)}, consisting of 𝑛 pairs, 𝑟VW is defined as follows: 

𝑟VW =
∑ (𝑥= − 𝑥̅)(𝑦= − 𝑦!)%
=>"

Ù∑ (𝑥= − 𝑥̅)#%
=>" Ù∑ (𝑦= − 𝑦!)#%

=>"
 

where: 
𝑛 is the sample size, 
𝑥= are the values of the 𝑥-variable in the sample, 
𝑥̅ is the mean of the values of the 𝑥-variable, 
𝑦= are the values of the 𝑦-variable in the sample, and 
𝑦! is the mean of the values of the 𝑦-variable. 
PCC returns values between −1 and 1, symbolically, 
−1 ≤ 𝑟VW ≤ 1, 
where: 1  indicates a strong (actually, perfect) positive relationship, −1 
indicates a strong (actually, perfect) negative relationship, and a result of 
zero indicates no relationship at all. In general, a positive correlation 
between two variables means that both the variables move in the same 
direction, whereas a negative correlation between two variables means that 
both the variables move in opposite directions. In the numerator of the 
formula of correlation, we calculate how far away we are from the mean 
and if we are above or below the mean, whereas, in the denominator of the 
formula of correlation, we calculate only how far away we are from the 
mean. Notice that, in the denominator of the formula of correlation, we 
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take the square roots of some numbers being squared, because the square 
root of a square is conceptually equivalent to the absolute value, and 
“absolute value” means “distance.” In particular, in this case, the absolute 
value tells us how far away we are from the corresponding mean value 
(this process is known as “standardizing,” that is, dividing through by 
magnitude).  
For instance, in biology, the relation between independent or the predictor 
variables and outcome or the dependent variable is explored using 
correlation analysis. In this way, one can explain how the risk factors or 
the predictor variables account for the possibility of the occurrence of a 
disease or presence of a phenotype. The disease outcome or the dependent 
variable is associated with biological factors (e.g., age and gender), 
lifestyle variables, psychological variables, and genetic factors (genetic 
mutations), and correlation tests help us to understand such “risk factors–
disease” relationships. Moreover, correlation is an important part of 
statistical analysis in economics and social policy, and it helps us to 
understand economic and social phenomena and trends.  
Poisson process: A “general random process” (such as the temperature in 
a room) is random but varies continuously with time, whereas a “Poisson 
process” refers to a random process that is discrete (namely, a “random 
point process”) and occurs at particular times (e.g., it may describe people 
arriving at a bus stop, telephone users making telephone calls, etc.). In a 
Poisson process, events are characterized by a constant mean rate (i.e., 
these events are random, but, over a certain period of time, they have a 
known mean rate), and events happen independently (of each other). The 
Poisson distribution is 

𝑃e(𝑘) =
𝜆<𝑒EM

𝑘!  
where: 𝑃e(𝑘) denotes the probability, for the Poisson process 𝑋, that 𝑘 
events happen in the time period of interest, 𝜆  denotes the expected 
number of events over the time interval of interest (so that 𝜆 =
𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒), and 𝑘! = 𝑘 ∙ (𝑘 − 1) ∙ (𝑘 − 2) ∙ … ∙ 2 ∙ 1. This distribution 
was first introduced by the French mathematician and physicist Siméon 
Denis Poisson (1781–1840). The mean value of the Poisson distribution 
equals 𝜆; and the variance of the Poisson distribution also equals 𝜆. 
For instance, suppose that you are fishing for 2 hours at a spot where on 
average people catch 2.8  fishes per hour, and you want to know the 
probability of catching 5 fishes. This is a random variable that is “Poisson 
distributed” with 𝜆 = 2.8 × 2 = 5.6, so that 𝑃e(𝑘 = 5) = C.G.Z2..4

C!
.  
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Chapter 6 
Classical Euclidean Geometry, Analytic 

Geometry, and Trigonometry 
 
Geometry is the scientific study of the quantitative and the qualitative 
properties of spatial forms and relations (the criteria for equality of 
triangles provide instances of qualitative geometric knowledge, and the 
computation of lengths, areas, and volumes exemplifies quantitative 
geometric knowledge). 
Around 300 B.C.E., Euclid published the definitive treatment of Greek 
geometry and number theory in his thirteen-volume Elements, building on 
the experience and the achievements of previous Greek mathematicians: 
on the Pythagoreans for Books I–IV, VII, and IX, on Archytas for Book 
VIII, on Eudoxus for Books V, VI, and XII, and on Theaetetus for Books 
X and XIII. The axiomatic method used by Euclid is the prototype for the 
entire field of “pure mathematics,” which is “pure” in the sense that we 
need only pure thought, no physical experiments, in order to verify that the 
statements are correct―that is, we need only to check the reasoning in the 
demonstrations. All mathematical theorems are conditional 
statements―namely, statements of the form  
If  (hypothesis) then (conclusion). 
Put simply, one condition (hypothesis) implies another (conclusion). In 
particular, in a given mathematical system, the only statements that are 
called “theorems” are those statements for which a proof has been 
supplied. By a “proof,” we mean a list of statements that is endowed with 
a justification for each statement, and it ends up with the conclusion 
desired. The following are the six types of justifications allowed for 
statements in proofs: (i) “by hypothesis . . .”; (ii) “by axiom . . .”; (iii) “by 
theorem . . .”; (iv) “by definition . . .”; (v) “by step . . .”; (vi) “by rule . . . 
of logic”; and a justification may involve several of the aforementioned 
types.  
In particular, Euclid articulated: 

i. A set of definitions, such as the following: 
• A point is that which has no part or magnitude (i.e., it does not 

have a concrete size). 
• A line is length without breadth.  
• The ends of a line are points. 
• A straight line is a line that lies evenly with the points on itself.  
• A surface is that which has length and breadth only. 
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• The edges of a surface are lines.  
• A plane surface is a surface that lies evenly with the straight 

lines on itself. 
ii. A set of fundamental rules (axioms): 

• Things that are equal to the same thing are equal to each other. 
• If equals are added to equals, then the wholes are equal. 
• If equals are subtracted from equals, then the remainders are 

equal. 
• Things that coincide with each other are equal to each other. 
• The whole is greater than the part. 
• Things that are double of the same things are equal to each 

other. 
• Things that are halves of the same things are equal to each 

other. 
iii. A set of fundamental propositions (postulates): 

• Postulate 1: a straight line may be drawn from one point to any 
other point. Given two distinct points, there is a unique straight 
line that passes through them.  

• Postulate 2: a terminated straight line can be produced 
indefinitely. 

• Postulate 3: a circle can be drawn with any center and any 
radius. 

• Postulate 4: all right angles are equal to each other. 
• Postulate 5 (known as the Parallel Postulate): if a line segment 

intersects two straight lines forming two interior angles on the 
same side that sum to less than two right angles, then the two 
lines, if extended indefinitely, meet on that side on which the 
angles sum to less than two right angles. 

According to Euclidean geometry, space is three-dimensional and 
isotropic (i.e., it has the same value when measured in different 
directions). This scientific conception of space clashes with several 
mythical and folk perceptions of space, according to which space is 
connected with a form of temporality, and it is unisotropic (for instance, 
the “upward” and the “forward” directions are evaluated as superior to the 
“downward” and the “backward” directions). The Euclidean perception of 
space, combined with the concept of gravity, found its fullest expression in 
Isaac Newton’s calculus and mechanics.  
In view of Euclid’s geometric treatises and the subsequent development of 
geometry as a scientific discipline, geometry is “an axiomatic in which we 
ignore all representation, and in which the word ‘space’ designates a 
structure, i.e., a system of axioms and deductions” (Saddo Ag Almouloud, 
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“Demonstration in Geometry: Historical and Philosophical Perspectives,” 
Quantitative Research Journal, vol. 8, Special Edition: Philosophy of 
Mathematics, 2020, p. 562). In other words, in mathematics, by the term 
“space,” we mean a non-empty set endowed with some mathematical 
structure. In general, in mathematics, the term “structure” refers to a class 
of mathematical objects described by axioms. Moreover, sometimes 
mathematicians use the term “structure” in order to refer to the description 
of the way in which an object could be reconstructed from simpler objects 
of the same kind.   
 

Euclidean Geometry 
 

The two most basic geometric concepts are those of an angle and of a 
straight line. An angle may be considered to be an amount of a rotation or 
turning. In Figure 6-1, the line 𝑂𝐴 has been rotated about 𝑂 in an anti-
clockwise direction, until it takes up the position 𝑂𝐵. The angle through 
which the line has turned is the amount of opening between the lines 𝑂𝐴 
and 𝑂𝐵. If the line 𝑂𝐴 is rotated until it returns to its original position, 
then it will have described one revolution. Angles are usually measured in 
degrees, minutes, and seconds as follows: 60	𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 1	𝑚𝑖𝑛𝑢𝑡𝑒 , 
60	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 1	𝑑𝑒𝑔𝑟𝑒𝑒 , and 360	𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 1	𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . For 
instance, an angle of 32 degrees 18 minutes and 3 seconds is written as 
follows: 32k18@3@′ . A “right angle” is the "

A
th of a revolution, and, 

therefore, it contains 90k. An “acute angle” is less than 90X. An “obtuse 
angle” lies between 90X and 180X. A “reflex angle” is greater than 180X. 
“Complementary angles” are angles whose sum is 90X. “Supplementary 
angles” are angles whose sum is 180X. 
 
Figure 6-1: An angle. 

 
 
While we usually measure angles in degrees, we can also measure angles 
in radians. Referring to Figure 6-2,  
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𝑎𝑛𝑔𝑙𝑒	𝑖𝑛	𝑟𝑎𝑑𝑖𝑎𝑛𝑠 =
𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑎𝑟𝑐
𝑟𝑎𝑑𝑖𝑢𝑠	𝑜𝑓	𝑐𝑖𝑟𝑐𝑙𝑒 

so that 𝜃	𝑟𝑎𝑑𝑖𝑎𝑛𝑠 = 4
J
⇔ 𝑙 = 𝑟𝜃. 

 
Figure 6-2: Measuring angles in radians. 
 

 
 
In geometry, the abstraction of a straight line can be attributed to 
mathematical intuition. According to the ancient Greek mathematician 
Euclid, an arbitrary straight line can be construed as a “length without 
breadth” that is perceived as a whole. Furthermore, there are points on 
every straight line, each point on the straight line corresponds to a real 
number, and the straight line is complete. For this reason, it is known as 
the arithmetic or geometric continuum. In fact, the ancient Greek 
mathematicians’ awareness of the existence of real numbers was 
developed with reference to geometric processes, in the sense that they 
construed a real number either as a completed process of combining units 
or monads (that is, as a rational number) or as an incomplete process of 
measuring non-commensurable quantities (that is, as an irrational number). 
Properties of angles and straight lines: 

i. The total angle of a straight line is 180X(i.e., 𝜋 radians). 
ii. When two straight lines intersect, the opposite angles are equal, as 

shown in Figure 6-3, where ∠𝐴 = ∠𝐶 and ∠𝐵 = ∠𝐷. 
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Figure 6-3: Opposite angles formed by intersecting straight lines. 

 
 

iii. If two parallel lines are cut by a transversal, then, as shown in 
Figure 6-4: the corresponding angles are equal (i.e., 𝑎 = 𝑙, 𝑏 = 𝑚, 
𝑐 = 𝑝, and 𝑑 = 𝑞); the alternate angles are equal (i.e., 𝑑 = 𝑚 and 
𝑐 = 𝑙); and the interior angles are supplementary (i.e., 𝑑 + 𝑙 =
180X and 𝑐 +𝑚 = 180X). Conversely, if two straight lines are cut 
by a transversal, then the lines are parallel if one of the following 
conditions is satisfied: (i) two corresponding angles are equal; (ii) 
two alternate angles are equal; (iii) two interior angles are 
supplementary.  

 
Figure 6-4: Angles formed by two parallel lines cut by a transversal. 

 
Types of triangles on the basis of their angles and their sides: 

i. An “acute-angled” triangle has all its angles less than 90X. 
ii. A “right-angled” triangle has one of its angles equal to 90X. The 

side opposite to the right angle is the longest side, and it is called 
the “hypotenuse.” 
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iii. An “obtuse-angled” triangle has one angle greater than 90X. 
iv. A “scalene” triangle has all three sides of different length. 
v. An “isosceles” triangle has two sides and two angles equal. The 

equal angles lie opposite to the equal sides. 
vi. An “equilateral” triangle has all its sides and angles equal. Each 

angle of an equilateral triangle is equal to 60X. 
Angle properties of triangles: 
i. The sum of the angles of a triangle is equal to 180X 
ii. In every triangle, the greatest angle is opposite to the longest side, 

and the smallest angle is opposite to the shortest side. Moreover, 
in every triangle, the sum of the lengths of any two sides is always 
greater than the length of the third side. 

iii. When the side of a triangle is produced, the exterior angle so 
formed is equal to the sum of the opposite interior angles. For 
instance, in Figure 6-5, ∠𝜃 = ∠𝐴 + ∠𝐵. 

 
Figure 6-5: Exterior angle. 

 
 

iv. In an isosceles triangle, the perpendicular (drawn from the point 
where the two equal sides meet) to the base bisects the angle 
between the two equal sides. Moreover, it bisects the base of the 
triangle. 

Two triangles are said to be “congruent” if they are equal in every respect, 
both with regard to their corresponding angles and with regard to their 
corresponding sides (if that is the case, then their areas are equal). If one 
side and two angles in one triangle are, respectively, equal to one side and 
two similarly located angles in another triangle, then these triangles are 
congruent. Moreover, if two sides and the angle between them in one 
triangle are, respectively, equal to two sides and the angle between them in 
another triangle, then these triangles are congruent. Given two right-
angled triangles, if their hypotenuses are equal to each other and one other 
side in each triangle are also equal to each other, then these right-angled 
triangles are congruent. 
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Two triangles are said to be “similar” if they are equi-angular. Two 
triangles are equi-angular if and only if their corresponding sides are 
proportional (by “corresponding sides,” we mean the sides opposite to the 
equal angles). For instance, given two triangles △ 𝐴𝐵𝐶 and △ 𝑋𝑌𝑍 such 
that ∠𝐴 = ∠𝑋, ∠𝐵 = ∠𝑌, and ∠𝐶 = ∠𝑍, then 
(L
ed
= (P

el
= LP

dl
 (and conversely). 

Areas of triangles: The area of any triangle is: 
𝑎𝑟𝑒𝑎 = "

#
× 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡. 

Triangles having equal bases and equal heights are equal in area. 
Moreover, the areas of congruent triangles are equal. 
Angle Bisector Theorem: The internal bisector of an angle of a triangle 
divides the opposite side in the ratio of the sides containing the angle (the 
converse is also true). 
A “median” of a triangle is a line segment that joins a vertex to the 
midpoint of the side that is opposite to that vertex. The three medians of a 
triangle intersect at a point called the “centroid.” Notice that the area of a 
triangle is divided into half by a median (hence the name).  
One of the most important geometric theorems is the Pythagorean 
Theorem, which states that, in every right-angled triangle, the square of 
the hypotenuse is equal to the sum of the squares of the other two sides. As 
mentioned earlier, the Pythagorean Theorem led Greek mathematicians to 
prove the existence of irrational numbers. The Pythagorean Theorem can 
be proved in an algebraic way, using the concept of a locus, as follows. 
Pythagorean Theorem: Consider a right-angled triangle △ 𝐴𝐵𝐶 , whose 
hypotenuse is 𝑐 , and whose other two sides are 𝑎  and 𝑏 , as shown in 
Figure 6-6. Then  
𝑎# + 𝑏# = 𝑐#.  
Proof: Given the triangle shown in Figure 6-6, we create four triangles 
identical to it, and we use them in order to form a square with side lengths 
𝑎 + 𝑏 as shown in Figure 6-7. The area of this square is  
𝐴 = (𝑎 + 𝑏)(𝑎 + 𝑏).  
 
Figure 6-6: A right-angled triangle.  
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Figure 6-7: Proof of the Pythagorean Theorem. 
 

 
 
In Figure 6-7, inside the big square, the hypotenuses of the four identical 
triangles form another smaller square, whose area is equal to 𝑐#. Each of 
the four triangles has an area of 10

#
. In general, notice that, given an 

arbitrary rectangle 𝐴𝐵𝐶𝐷 whose height is ℎ, and whose base is 𝑏, its area 
is equal to ℎ𝑏. Therefore, if we draw a diagonal from one vertex, say 
diagonal 𝐴𝐶 , it will break the rectangle into two congruent, or equal, 
triangles, and the area of each of these triangles is half the area of the 
rectangle, that is, m0

#
. The area of all four of the triangles that are shown in 

Figure 6-7 is equal to 4 10
#
= 2𝑎𝑏. Adding up the areas of the smaller 

square and of the four triangles, we obtain  
𝐴 = 𝑐# + 2𝑎𝑏.  
Hence, given that, as we have shown, 𝐴 = (𝑎 + 𝑏)(𝑎 + 𝑏), it holds that 
(𝑎 + 𝑏)(𝑎 + 𝑏) = 𝑐# + 2𝑎𝑏 ⇔ 𝑎# + 𝑏# = 𝑐#.■ 
 
Quadrilaterals and Polygons: A “quadrilateral” is any four-sided figure. 
Given that a quadrilateral can be split up into two triangles, the sum of its 
angles is 360X.  
A “parallelogram” has both pairs of opposite sides parallel. If the base of a 
parallelogram is equal to 𝑏 and its height is equal to ℎ, then its area is 
given by the following formula: 𝐴 = 𝑏ℎ . Parallelograms having equal 
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bases and equal heights are equal in area. A parallelogram has the 
following properties: (i) the sides that are opposite to each other are equal 
in length; (ii) the angles that are opposite to each other are equal; (iii) the 
diagonals bisect each other; (iv) the diagonals each bisect the 
parallelogram. 
A “rectangle” is a parallelogram with all its angles equal to 90X. If the 
length of a rectangle is equal to 𝑙 and its width is equal to 𝑤, then its area 
is equal to 𝑙𝑤, and its perimeter is equal to 2𝑙 + 2𝑤. A rectangle has all 
the properties of a parallelogram, but in addition the diagonals are equal in 
length. 
A “rhombus” is a parallelogram with all its sides equal in length. It has all 
the properties of a parallelogram, but in addition it has the following 
properties: (i) the diagonals bisect at right angles; (ii) the diagonal bisects 
the angle through which it passes. If the lengths of the diagonals of a 
rhombus are 𝑑" and 𝑑#, then its area is 𝐴 = ;"×;#

#
. 

A “square” is a rectangle with all its sides equal in length. If the length of 
each side of a square is equal to 𝑎, then its area is equal to 𝑎#, and its 
perimeter is equal to 4𝑎. A square has all the properties of a parallelogram, 
a rectangle, and a rhombus.  
A “trapezoid” is a quadrilateral having only one pair of parallel sides (as 
opposed to a parallelogram, which has both pairs of opposite sides 
parallel). The parallel sides are called the “bases” of the trapezoid, while 
the other two sides are called the “legs” of the trapezoid. If the bases 
(parallel sides) of a trapezoid are equal to 𝑎 and 𝑏, respectively, and if its 
height is equal to ℎ, then its area is equal to "

#
ℎ(𝑎 + 𝑏). 

By the term “polygon,” we refer to any plane closed figure bounded by 
straight lines. A “convex polygon” (e.g., Figure 3-1) has no interior angle 
greater than 180X, whereas a “re-entrant polygon” has at least one angle 
greater than 180X . In a convex polygon having 𝑛 sides, the sum of the 
interior angles is (2𝑛 − 4) right angles, and the sum of the exterior angles 
is 360X. 
 

Analytic Geometry and Trigonometric Functions  
 

Analytic geometry signifies the introduction of coordinates into geometry in 
a systematic way―specifically, by unifying aspects of algebra and aspects 
of geometry. In analytic geometry, geometric theorems are proved using 
coordinates, algebraic equations, and trigonometry; and analytic geometry is 
based on the axiomatization of the set ℝ of real numbers. Moreover, the 
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development of analytic geometry through the algebraization of geometry set 
the stage for the development of infinitesimal calculus.  
The first pioneers of analytic geometry were the second-century B.C.E. 
Greek astronomer and mathematician Hipparchus of Nicaea, who 
introduced coordinates for the sphere (in the context of his studies of the 
night sky), and the third-century B.C.E. Greek geometer Apollonius of 
Perga, who introduced coordinates for the study of conic sections.  
Ancient Greek mathematicians, such as Apollonius of Perga, were the first 
to observe that circles, ellipses, hyperbolas, and parabolas result from the 
intersection of a cone by an adequate plane. A cone is defined to be a 
three-dimensional geometric shape that tapers smoothly from a flat 
circular base to a point called the vertex (or apex). A circle is produced 
when the cone is cut by a plane that is parallel to the base of the cone. An 
ellipse is produced when the cone is cut by a plane that is not parallel to 
the base of the cone or the side of the cone, and it cuts only one nappe of 
the cone. A hyperbola is produced when the intersecting plane cuts both 
nappes of the cone. A parabola is produced when the oblique section of the 
cone is parallel to the slant height (the height of a cone from the vertex to 
the periphery, rather than the center, of the base). In the Middle Ages, the 
use of coordinates in mathematics and analytic geometry was further 
analyzed and developed by the fourteenth-century French Catholic bishop, 
philosopher, and mathematician Nicolas d’Oresme.  
By the term “locus,” we mean a set of all the points that satisfy a specific 
rule. Moreover, the path drawn by a point moving according to a given 
rule is called the “locus of the point.” Thus, using the concept of a locus, 
we can study geometric problems through algebra. In analytic geometry, 
we put traditional (Euclidean) geometry on the Cartesian plane. René 
Descartes has pointed out that “any problem in geometry can easily be 
reduced to such terms that knowledge of lengths of certain straight lines is 
sufficient for its construction” (René Descartes, “On Analytic Geometry,” 
translated by David E. Smith and Marcia L. Latham, in A Source Book in 
Mathematics, edited by David E. Smith, New York: Dover, 1959, p. 397). 
In particular, according to Descartes, “just as arithmetic consists of only 
four or five operations, namely, addition, subtraction, multiplication, 
division, and the extraction of roots, which may be considered a kind of 
division, so in geometry,” we can find required lines by merely adding or 
subtracting other lines; or else, by working as follows (ibid, pp. 397–98): 
 

. . . taking one line which I shall call unity in order to relate it as closely as 
possible to numbers, and which can in general be chosen arbitrarily, and 
having given two other lines, to find a fourth line which shall be to one of 
the given lines as the other is to unity (which is the same as multiplication); 
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or, again, to find a fourth line which is to one of the given lines as unity is 
to the other (which is equivalent to division); or, finally, to find one, two, 
or several mean proportionals between unity and some other line (which is 
the same as extracting the square root, cube root, etc., of the given line). 

 
Consider two points 𝑃(𝑥", 𝑦") and 𝑄(𝑥#, 𝑦#) on the 𝑥𝑦-plane and connect 
them with a straight line segment as shown in Figure 6-8.  
 
Figure 6-8: Slope and Distance. 
 

 
 
The 𝑥-coordinate of point 𝑃 is 𝑥", the 𝑥-coordinate of point 𝑄 is 𝑥#, and 
the distance between 𝑥" and 𝑥# is 𝑥# − 𝑥"; in order to avoid the use of plus 
and minus signs, we can use the absolute value |𝑥# − 𝑥"| . The 𝑦 -
coordinate of point 𝑃  is 𝑦" , the 𝑦-coordinate of point 𝑄  is 𝑦# , and the 
distance between 𝑦# and 𝑦" is 𝑦# − 𝑦"; in order to avoid the use of plus 
and minus signs, we can use the absolute value |𝑦# − 𝑦"|. Therefore, the 
horizontal distance between points 𝑃  and 𝑄  is 𝑥# − 𝑥" , and the vertical 
distance between points 𝑃  and 𝑄  is 𝑦# − 𝑦" . Now, consider the right-
angled triangle that is defined by the points 𝑃(𝑥", 𝑦"), 𝑄(𝑥#, 𝑦#), and the 
point 𝑅 (the intersection between the horizontal side and the vertical side): 
the three sides of this right-angled triangle are the hypotenuse 𝑃𝑄, the 
horizontal side, which is 𝑥# − 𝑥", and the vertical side, which is 𝑦# − 𝑦". 
The “slope,” or “gradient,” of the straight line segment 𝑃𝑄, denoted by 
𝑚KN, is the quotient of the “rise” over the “run,” comparing how much one 
travels vertically (“up and down”) versus how much one travels 
horizontally. Thus, it relates the steepness or inclination of the straight line 
segment 𝑃𝑄 to the coordinates; symbolically: 
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𝑠𝑙𝑜𝑝𝑒 = 𝑚KN =
𝑟𝑖𝑠𝑒
𝑟𝑢𝑛 =

𝑦# − 𝑦"
𝑥# − 𝑥"

=
𝛥𝑦
𝛥𝑥 

(see Figure 6-8; the Greek letter Δ is used to indicate change). 
In Figure 6-8, the distance between points 𝑃 and 𝑄, denoted by 𝑑KN , is 
given by (and, indeed, is a version of) the Pythagorean Theorem. 
Therefore, in Figure 6-8, 

�𝑑KN�
# = (𝑟𝑢𝑛)# + (𝑟𝑖𝑠𝑒)# ⇔ 𝑑KN = Ù(𝑥# − 𝑥")# + (𝑦# − 𝑦")#. 

It can be easily verified that the midpoint of the straight line segment 
joining points (𝑥", 𝑦") and (𝑥#, 𝑦#) is ÃV"BV#

#
, W"BW#

#
Ä. 

All points (𝑥, 𝑦) in ℝ# satisfying the equation 𝑦 = 𝑚𝑥 + 𝑏 form a straight 
line, and 𝑚 is the slope of the straight line. For the slope 𝑚 of the straight 
line passing through the points (𝑥", 𝑦") and (𝑥#, 𝑦#), we have: 

i. If 𝑥" = 𝑥#, 𝑚 is undefined (the line is vertical). 
ii. If 𝑥" ≠ 𝑥#, then 𝑚 = bW

bV
= W#EW"

V#EV"
. 

Two non-vertical straight lines 𝑦"  and 𝑦# , with slopes 𝑚"  and 𝑚# , 
respectively, are parallel if and only if 𝑚" = 𝑚# (i.e., their slopes are 
equal), and they are perpendicular if and only if 𝑚"𝑚# = −1 (i.e., the 
product of their slopes is −1). 
In order to find the equation of a non-vertical straight line, we work as 
follows: 

i. we find a point (𝑥", 𝑦") on the line;  
ii. we find the slope 𝑚 of the line; 
iii. we write the equation of the line as follows:  

𝑦 − 𝑦" = 𝑚(𝑥 − 𝑥") ; this equation is called the “point-slope” 
form of the equation of a line. 

For instance, let us find the equation of the straight line passing through 
the points (5, −0.5) and (10, 9.5). Firstly, we define the point (𝑥", 𝑦") =
(5,−0.5) . Secondly, we find the slope of the required line: 𝑚 =
D.CE(E).C)
")EC

= 2. Thirdly, we find the equation of the required line: 𝑦 − 𝑦" =
𝑚(𝑥 − 𝑥") ⇒ 𝑦 − (−0.5) = 2(𝑥 − 5) ⇒ 𝑦 = 2𝑥 − 10.5.  
 

Circle 
 
As we can see in Figure 6-9, a circle with center 𝑂(𝑣,𝑤) and radius 𝑟 is 
the set of all points in the 𝑥𝑦-plane whose distance from 𝑂 is 𝑟 (in Figure 
6-9, 𝑂(𝑣,𝑤) = 𝑂(2,−1), and 𝑟 = 3). 
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Figure 6-9: Circle. 
 

 
 

If (𝑥, 𝑦) is a point on the circle with center 𝑂(𝑣,𝑤) and radius 𝑟, then the 
distance formula implies that  
𝑟 = Ù(𝑥 − 𝑣)# + (𝑦 − 𝑤)# ⇔ 𝑟# = (𝑥 − 𝑣)# + (𝑦 − 𝑤)#, 
which is the standard form of the equation of a circle with center (𝑣, 𝑤) 
and radius 𝑟. The circumference of a circle of radius 𝑟 is 𝐶 = 2𝜋𝑟, and the 
area of a circle of radius 𝑟 is 𝐴 = 𝜋𝑟#, where 𝜋 ≈ 3.14 is Archimedes’s 
constant (the ratio of the circle’s circumference to its diameter). 
Archimedes approximated 𝜋 by using the fact that the circumference of a 
circle is bounded by the perimeter of an inscribed polygon and the 
perimeter of a circumscribed polygon. In particular, he used a 96-sided 
inscribed polygon and a 96 -sided circumscribed polygon to find the 
following approximation: 
3 + ")

R"
< 𝜋 < 3 + ")

R)
. 

It is worth mentioning that the degenerate possibilities for a circle are the 
following: a point or no graph at all. 
The study of the circle underpins trigonometry. The term “trigonometry” 
appeared for the first time in the book Trigonometria by Bartholomaeus 
Pitiscus (1561–1613) in 1595, and it literally means measuring (and, more 
broadly, studying) “trigons” (“trigon” being the Latin word for “triangle”). 
The acknowledged founder of trigonometry is the ancient Greek 
astronomer and mathematician Hipparchus of Nicaea (ca. 190–ca. 120 
B.C.E.). Moreover, around 100 C.E., another Greek mathematician, 
Menelaus of Alexandria, published a series of treatises on chords.  
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Trigonometric Functions 
 
In the context of analytic geometry, we can also study the basic 
trigonometric functions on the unit circle (specifically, on a circle whose 
center is (0,0) and whose radius 𝑟 = 1).  
 
Figure 6-10: The number circle. 
 

 
 
Consider a circle of unit radius, as shown in Figure 6-10, and let point 𝐴 
(the right-hand endpoint of the horizontal diameter) be a reference point. 
Let an anti-clockwise motion round the circle be a positive direction, and a 
clockwise motion be a negative direction. A circle of unit radius with a 
reference point and the direction of tracing specified is called the “number 
circle.” Given an arbitrary point 𝑃 of the number circle, there are infinitely 
many arcs beginning at the point 𝐴 and terminating at the point 𝑃. One of 
these arcs is the shortest arc connecting the points 𝐴 and 𝑃, and all the 
other arcs are obtained from the shortest arc by adding or subtracting an 
integral number of complete revolutions. Hence, every point 𝑃  of the 
number circle is associated with an infinite set of numbers that consists of 
the values of all the arcs beginning at the point 𝐴 and terminating at the 
point 𝑃 (the lengths of the arcs are taken with the plus or the minus sign 
according as the motion from the point 𝐴 to the point 𝑃 is anti-clockwise 
or clockwise, respectively).  
The circumference of the circle of unit radius is equal to 2𝜋. Therefore, 
the lengths of all the arcs terminating at the given point 𝑃 differ from one 
another by a multiple of 2𝜋, so that the general form of these quantities is 
𝑥 + 2𝜋𝑎, where 𝑎 ∈ ℤ, and 𝑥 is the length of the shortest arc connecting 
the points 𝐴 and 𝑃. Thus, for every real number 𝑥, there is a point 𝑃(𝑥) of 
the number circle such that the length of the arc 𝐴𝑃 is 𝑥, and every point 𝑃 
of the circle corresponds to an infinite set of numbers of the form 𝑥 +
2𝜋𝑎, where 𝑎 ∈ ℤ, and 𝑥 is the length of one of the arcs connecting the 
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points 𝐴 and 𝑃. For instance, the point of reference, namely, 𝐴 (Fig. 6-10), 
corresponds to the namber 0, that is, 𝐴 = 𝐴(0), and, since the length of the 
circumference of the unit circle is 2𝜋, it follows that o

#
 is the length of an 

arc equal to one-fourth of the circumference. Hence, if we lay off an arc of 
length equal to a quarter of the circumference from the point 𝐴 in the 
positive direction, then we obtain a point 𝐵 = 𝐵 Ão

#
Ä, as shown in Figure 

6-10. By analogy, we can find the point corresponding to − o
#
 by starting 

from the point 𝐴 in the negative direction and covering the path of length 
o
#
, thus arriving at the point 𝐷 = 𝐷 Ã− o

#
Ä, as shown Figure 6-10. 

Assume that the center of the number circle coincides with the origin 
𝑂(0,0) of the rectangular coordinate system 𝑋𝑂𝑌, as shown in Figure 6-
11. Let 𝑥 be an arbitrary real number. Then, on the number circle, we find 
the point 𝑃(𝑥) that corresponds to 𝑥 . The ordinate of the point 𝑃(𝑥) is 
called the “sine” of the number 𝑥 (denoted by 𝑠𝑖𝑛𝑥), the abscissa of the 
point 𝑃(𝑥) is called the “cosine” of the number 𝑥 (denoted by 𝑐𝑜𝑠𝑥), the 
ratio p=%V

5XpV
 is called the “tangent” of the number 𝑥 (denoted by 𝑡𝑎𝑛𝑥), and 

the ratio 5XpV
p=%V

 is called the “cotangent” of the number 𝑥 (denoted by 𝑐𝑜𝑡𝑥).  
 
Figure 6-11: Trigonometric functions. 
 

 
 
Notice that the reference point 𝐴 on the number circle corresponds to the 
number 0, that is, 𝐴 = 𝐴(0). Since the abscissa and the ordinate of this 
point are 1 and 0, respectively, we have 𝑐𝑜𝑠0 = 1, 𝑠𝑖𝑛0 = 0, and 𝑡𝑎𝑛0 =
p=%)
5Xp)

= 0. The point 𝐵 of intersection of the circle and the positive ray of 
the axis 𝑂𝑌 corresponds to the number 𝜋/2. Since the abscissa and the 
ordinate of the point 𝐵 are 0 and 1, respectively, we have cos	(o

#
) = 0 and 

sin	(o
#
) = 1, whereas tan	(o

#
) is not defined. Similarly, as shown in Figure 

6-11, given the coordinates of the points 𝐶 and 𝐷, we realize that 𝑐𝑜𝑠𝜋 =
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−1 , 𝑠𝑖𝑛𝜋 = 0 , 𝑡𝑎𝑛𝜋 = 0 , cos	(*o
#
) = 0 , 𝑠𝑖𝑛	(*o

#
) = −1 , and 𝑡𝑎𝑛	(*o

#
)  is 

not defined. The parametrization of the unit circle can be written as 
follows: 

(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃) 
where 0 ≤ 𝜃 ≤ 2𝜋.  
The domain of 𝑦 = 𝑠𝑖𝑛𝑥  is (−∞,+∞) , and its range is [−1,1] . The 
function 𝑦 = 𝑠𝑖𝑛𝑥 is odd (and, therefore, it is symmetric about the origin), 
its 𝑦-intercept is (0,0) , and its 𝑥 -intercepts are 𝑥 = 𝑛𝜋 , where 𝑛  is an 
integer. 
The domain of 𝑦 = 𝑐𝑜𝑠𝑥  is (−∞,+∞) , and its range is [−1,1] . The 
function 𝑦 = 𝑐𝑜𝑠𝑥  is even (and, therefore, it is symmetric about the 𝑦-
axis), its 𝑦-intercept is (0,1), and its 𝑥-intercepts are 𝑥 = o

#
+ 𝑛𝜋, where 𝑛 

is an integer.  
We can summarize the basic definitions and the basic formulae of 
trigonometry as follows:  
𝑆𝑖𝑛𝑒:	sin𝜃 = XFFXp=YZ	p=;Z

mWFXYZ%qpZ
; 

𝐶𝑜𝑠𝑖𝑛𝑒: 𝑐𝑜𝑠𝜃 = 1;?15Z%Y	p=;Z
mWFXYZ%qpZ

; 

𝑇𝑎𝑛𝑔𝑒𝑛𝑡: 𝑡𝑎𝑛𝜃 = XFFXp=YZ	p=;Z
1;?15Z%Y	p=;Z

; 

𝐶𝑜𝑠𝑒𝑐𝑎𝑛𝑡: 𝑐𝑠𝑐𝜃 = mWFXYZ%qpZ
XFFXp=YZ	p=;Z

= "
p=%r

; 

𝑆𝑒𝑐𝑎𝑛𝑡: 𝑠𝑒𝑐𝜃 = mWFXYZ%qpZ
1;?15Z%Y	p=;Z

= "
5Xpr

; 

𝐶𝑜𝑡𝑎𝑛𝑔𝑒𝑛𝑡: 𝑐𝑜𝑡𝜃 = 1;?15Z%Y	p=;Z
XFFXp=YZ	p=;Z

= "
Y1%r

; 
and the basic trigonometric identities: 
𝑠𝑖𝑛#𝑎 + 𝑐𝑜𝑠#𝑎 = 1 (this is an expression of the Pythagorean theorem in 
terms of trigonometric functions); 
1 + 𝑡𝑎𝑛#𝑎 = "

5Xp#1
; 

1 + 𝑐𝑜𝑡#𝑎 = "
p=%#1

; 
𝑠𝑖𝑛(−𝑎) = −𝑠𝑖𝑛𝑎; 
𝑐𝑜𝑠(−𝑎) = 𝑐𝑜𝑠𝑎; 
sin	(𝑎 ± 𝑏) = 𝑠𝑖𝑛𝑎 ∙ 𝑐𝑜𝑠𝑏 ± 𝑐𝑜𝑠𝑎 ∙ 𝑠𝑖𝑛𝑏; 
cos	(𝑎 ± 𝑏) = 𝑐𝑜𝑠𝑎 ∙ 𝑐𝑜𝑠𝑏 ∓ 𝑠𝑖𝑛𝑎 ∙ 𝑠𝑖𝑛𝑏; 
𝑠𝑖𝑛𝑎 + 𝑠𝑖𝑛𝑏 = 2𝑠𝑖𝑛 "

#
(𝑎 + 𝑏) ∙ 𝑐𝑜𝑠 "

#
(𝑎 − 𝑏); 

𝑠𝑖𝑛𝑎 − 𝑠𝑖𝑛𝑏 = 2𝑠𝑖𝑛 "
#
(𝑎 − 𝑏) ∙ 𝑐𝑜𝑠 "

#
(𝑎 + 𝑏); 

𝑐𝑜𝑠𝑎 + 𝑐𝑜𝑠𝑏 = 2𝑐𝑜𝑠 "
#
(𝑎 + 𝑏) ∙ 𝑐𝑜𝑠 "

#
(𝑎 − 𝑏); 

𝑐𝑜𝑠𝑎 − 𝑐𝑜𝑠𝑏 = −2𝑠𝑖𝑛 "
#
(𝑎 + 𝑏) ∙ 𝑠𝑖𝑛 "

#
(𝑎 − 𝑏); 
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𝑠𝑖𝑛2𝑎 = 2𝑠𝑖𝑛𝑎 ∙ 𝑐𝑜𝑠𝑎; 
𝑐𝑜𝑠2𝑎 = 𝑐𝑜𝑠#𝑎 − 𝑠𝑖𝑛#𝑎; 

𝑠𝑖𝑛 "
#
𝑎 = ±0"E5Xp1

#
, 

𝑐𝑜𝑠 "
#
𝑎 = ±0"B5Xp1

#
, 

sin	(𝑎 ± 𝜋 2⁄ ) = ±𝑐𝑜𝑠𝑎, and cos	(𝑎 ± 𝜋 2⁄ ) = ∓𝑠𝑖𝑛𝑎 (the graphs of 𝑠𝑖𝑛𝑒 
and 𝑐𝑜𝑠𝑖𝑛𝑒 have the same shape, but the only difference is a shift of 𝑦 =
𝑐𝑜𝑠𝑥 to 𝑦 = 𝑠𝑖𝑛𝑥 by o

#
 units to the right). 

The inverse trigonometric functions are denoted as follows: 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 ≡
𝑠𝑖𝑛E"𝑥  ( 𝑦 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 ⇔ 𝑥 = 𝑠𝑖𝑛𝑦) , 𝑎𝑟𝑐𝑐𝑜𝑠𝑥 ≡ 𝑐𝑜𝑠E"𝑥  ( 𝑦 =
𝑎𝑟𝑐𝑐𝑜𝑠𝑥 ⇔ 𝑥 = 𝑐𝑜𝑠𝑦) , 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 ≡ 𝑡𝑎𝑛E"𝑥  ( 𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 ⇔ 𝑥 =
𝑡𝑎𝑛𝑦), and 𝑎𝑟𝑐𝑐𝑜𝑡𝑥 ≡ 𝑐𝑜𝑡E"𝑥 (𝑦 = 𝑎𝑟𝑐𝑐𝑜𝑡𝑥 ⇔ 𝑥 = 𝑐𝑜𝑡𝑦). 
In order to calculate the angle 𝐴 subtended at the center of a circle of 
radius 𝑟 by a chord of length 𝑎, we use the cosine rule 

𝐴 = 𝑎𝑟𝑐𝑐𝑜𝑠 1
𝑏# + 𝑐# − 𝑎#

2𝑏𝑐 2 

where 𝑏  and 𝑐  are the sides of the angle 𝐴 , and 𝑏 = 𝑐 = 𝑟  (i.e., 𝐴  is 
bounded by two radii), 𝑎 = 𝑐ℎ𝑜𝑟𝑑	𝑙𝑒𝑛𝑔𝑡ℎ , and 𝐴 =
𝑎𝑛𝑔𝑙𝑒	𝑠𝑢𝑏𝑡𝑒𝑛𝑑𝑒𝑑	𝑎𝑡	𝑡ℎ𝑒	𝑐𝑒𝑛𝑡𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑖𝑟𝑐𝑙𝑒. 
 

Ellipse 
 
As we can see in Figure 6-12, an “ellipse” is the set of all points in a plane 
the sum of whose distances from two fixed points (“foci”) is constant. 
Foci: (−𝑐, 0) and (𝑐, 0). Notice that, if the two foci coincide, then we 
receive a circle. The Greek word ellipse, literally meaning “omission,” 
was first applied by Apollonius of Perga, because, in the case of an ellipse, 
the conic section of the cutting plane makes a smaller angle with the base 
than does the side of the cone. 
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Figure 6-12: Ellipse. 
 

 
 
The standard form of the equation of an ellipse with center at the origin 
and foci on the 𝑥-axis is 
V#

1#
+ W#

0#
= 1. 

By setting 𝑦 = 0, we find that the 𝑥-intercepts are (−𝑎, 0) and (𝑎, 0). By 
setting 𝑥 = 0, we find that the 𝑦-intercepts are	(0, −𝑏) and (0, 𝑏). The 
larger segment from (−𝑎, 0) to (𝑎, 0) is called the “major axis,” while the 
“minor axis” is the segment from (0, −𝑏) to (0, 𝑏). The endpoints of the 
major axis are called the “vertices of the ellipse”; vertices: (−𝑎, 0) and 
(𝑎, 0).  
If the foci are placed on the 𝑦-axis at (0, −𝑐) and (0, 𝑐), then the standard 
form of the equation of an ellipse is 
V#

0#
+ W#

1#
= 1. 

In this case, the major axis is along the 𝑦-axis, the foci are (0, 𝑐) and 
(0, −𝑐), and the vertices are (0, 𝑎) and (0, −𝑎). 
Given the definition of an ellipse, the degenerate possibilities for an ellipse 
are the following: a point or no graph at all. 
In our solar system, many bodies revolve in elliptical orbits around a 
larger body that is located at one focus. In the seventeenth century, 
Johannes Kepler, based on Apollonius’s mathematical study of the ellipse, 
articulated a rigorous explanation of planetary motions.  
Moreover, regarding the ellipse, it should be mentioned that it has a 
reflection property that causes any ray or wave that originates at one focus 
to strike the ellipse and pass through the other focus. In terms of acoustics, 
the aforementioned property implies that, in a room with an elliptical 
ceiling, even a slight noise made at one focus can be heard at the other 
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focus, but, if people are standing between the foci, then they hear nothing. 
Such rooms are known as whispering galleries.  
As regards architecture, it should be mentioned that ornamental arches are 
often elliptical in shape; in other words, arches whose main purpose is 
beauty and not strength are often elliptical in shape.  
 

Hyperbola and hyperbolic functions 
 
As we can see in Figure 6-13, a “hyperbola” is the set of all points in a 
plane the difference of whose distances from two fixed points (“foci”) is a 
positive constant (the Greek word hyperbola literally means 
“extravagance”). Hence, the distances between the foci and a point on the 
figure maintain a constant difference for a hyperbola and a constant sum 
for an ellipse.  
 
 
 
Figure 6-13: Hyperbola. 
 

 
 
Given the definition of a hyperbola, the degenerate possibilities for a 
hyperbola are two intersecting straight lines.  
The standard form of a hyperbola with center at the origin and foci on the 
𝑥-axis is 
V#

1#
− W#

0#
= 1. 

By setting 𝑦 = 0, we find that the 𝑥-intercepts are (−𝑎, 0) and (𝑎, 0). The 
line segment joining these two points is called the “transverse axis.” The 
endpoints of the transverse axis are called the “vertices of the hyperbola.” 
By setting 𝑥 = 0, we find that there are no 𝑦-intercepts.  The line segment 
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from (0, 𝑏) to (0, −𝑏) is called the “conjugate axis.” In order to determine 
the significance of 𝑏, we write 
V#

1#
− W#

0#
= 1 as 𝑦 = ±0V

1
01 − 1#

V#
. 

As |𝑥| tends to infinity, 1 − 1#

V#
 tends to 1, and, therefore, the graph of the 

hyperbola approaches the lines  
𝑦 = ± 0

1
𝑥. 

These lines are called the “asymptotes of the hyperbola” (they are the 
diagonals of a rectangle of dimensions 2𝑎 by 2𝑏).  
If the foci are placed on the 𝑦-axis at (0, −𝑐) and (0, 𝑐), then the standard 
form of the equation of a hyperbola is 
W#

1#
− V#

0#
= 1, 

and, in this case, the asymptotes are given by  
𝑦 = ± 1

0
𝑥. 

 
Hyperbolic functions: Hyperbolic functions are analogues of the ordinary 
trigonometric functions, but hyperbolic functions are defined using the 
hyperbola rather than the circle. The hyperbolic functions are defined as 
follows: 
ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑠𝑖𝑛𝑒: 𝑠𝑖𝑛ℎ𝑥 = "

#
(𝑒V − 𝑒EV), 

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑐𝑜𝑠𝑖𝑛𝑒: 𝑐𝑜𝑠ℎ𝑥 = "
#
(𝑒V + 𝑒EV), 

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑡𝑎𝑛𝑔𝑒𝑛𝑡: 𝑡𝑎𝑛ℎ𝑥 = p=%mV
5XpmV

, 

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑐𝑜𝑡𝑎𝑛𝑔𝑒𝑛𝑡: 𝑐𝑜𝑡ℎ𝑥 = 5XpmV
p=%mV

, 

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑠𝑒𝑐𝑎𝑛𝑡: 𝑠𝑒𝑐ℎ𝑥 = "
5XpmV

, and 

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑐𝑜𝑠𝑒𝑐𝑎𝑛𝑡: 𝑐𝑠𝑐ℎ𝑥 = "
p=%mV

. 
Basic formulae of hyperbolic functions: 

i. 𝑐𝑜𝑠ℎ(−𝑥) = 𝑐𝑜𝑠ℎ𝑥, 
ii. 𝑠𝑖𝑛ℎ(−𝑥) = −𝑠𝑖𝑛ℎ𝑥, 
iii. 𝑒V = 𝑠𝑖𝑛ℎ𝑥 + 𝑐𝑜𝑠ℎ𝑥, 
iv. 𝑒EV = 𝑐𝑜𝑠ℎ𝑥 − 𝑠𝑖𝑛ℎ𝑥, 
v. 𝑡𝑎𝑛ℎ(−𝑥) = −𝑡𝑎𝑛ℎ𝑥, 
vi. 𝑐𝑜𝑠ℎ#𝑥 − 𝑠𝑖𝑛ℎ#𝑥 = 1, 
vii. 𝑠𝑒𝑐ℎ#𝑥 + 𝑡𝑎𝑛ℎ#𝑥 = 1, 
viii. 𝑐𝑜𝑡ℎ#𝑥 − 𝑐𝑠𝑐ℎ#𝑥 = 1, 
ix. 𝑐𝑜𝑠ℎ2𝑥 = 𝑐𝑜𝑠ℎ#𝑥 + 𝑠𝑖𝑛ℎ#𝑥, 
x. 𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥, 
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xi. 𝑠𝑖𝑛ℎ(𝑥 + 𝑦) = 𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑦 + 𝑐𝑜𝑠ℎ𝑥𝑠𝑖𝑛ℎ𝑦, and 
xii. 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) = 𝑐𝑜𝑠ℎ𝑥𝑐𝑜𝑠ℎ𝑦 + 𝑠𝑖𝑛ℎ𝑥𝑠𝑖𝑛ℎ𝑦. 

 
Just as the points (𝑐𝑜𝑠𝑡, 𝑠𝑖𝑛𝑡) form the unit circle (defined by 𝑥# + 𝑦# =
1), the points (𝑐𝑜𝑠ℎ𝑡, 𝑠𝑖𝑛ℎ𝑡)  form the right half of the unit hyperbola 
(defined by 𝑥# − 𝑦# = 1), as shown in Figure 6-14. 
 
Figure 6-14: Hyperbolic functions (source: Wikimedia Commons: Author: Marco 
Polo; https://commons.wikimedia.org/wiki/File:Hyperbolic_functions.svg). 
 

 
 
In mechanics, hyperbolic functions are used in order to describe the shape 
of electric lines freely hanging between two poles and any idealized 
hanging chain or cable supported only at its ends and hanging under its 
own weight. In particular, the “catenary” is a curve that describes the 
shape of a flexible hanging chain or cable, and its equation in Cartesian 
coordinates is 𝑦 = 𝑎𝑐𝑜𝑠ℎ ÃV

1
Ä = 1

#
Ã𝑒

5
/ + 𝑒E

5
/Ä. Moreover, catenaries and 

related curves are used in the design of bridges and arches, so that forces 
do not result in bending moments, and, in the offshore oil and gas 
industry, the term “catenary” refers to a steel catenary riser (a pipeline 
suspended between a production platform and the seabed that adopts an 
approximate catenary shape).  
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Parabola 
 
As we can see in Figure 6-15, a “parabola” is the set of all points in a 
plane that are equidistant from a fixed line (“directrix”) and a fixed point 
(“focus”) not on the line (the word “parabola” derives from the Greek 
terms “parā,” meaning “beside,” and “bolē,” meaning “a throw,” and, 
therefore, “parabola” literally means “para-beside”―that is, placing side 
by side). 
 
Figure 6-15: Parabola. 
 

 
 
The standard form of the equation of a parabola with directrix 𝑥 = −𝑝 and 
focus at (𝑝, 0) is 
4𝑝𝑥 = 𝑦#. 
The line through the focus that is perpendicular to the directrix is called 
the “axis of symmetry.” In this case, the axis of symmetry is the 𝑥-axis, 
and the parabola opens to the right. The point on the axis of symmetry that 
is midway between the focus and the directrix is called the “vertex,” and 
the vertex is the turning point of the parabola. The standard form of the 
equation of a parabola with directrix 𝑥 = 𝑝 and focus at (−𝑝, 0) is 
−4𝑝𝑥 = 𝑦#, 
and, in this case, the parabola opens to the left.  
Obviously, the axis of symmetry of a parabola may be the 𝑦-axis. If the 
directrix is 𝑦 = −𝑝 and the focus is at (0, 𝑝), then the standard form of the 
equation of a parabola is 
𝑥# = 4𝑝𝑦, 
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and the parabola opens upward. If the directrix is 𝑦 = 𝑝 and the focus is at 
(0, −𝑝), then the standard form of the equation of a parabola is 
𝑥# = −4𝑝𝑦, 
and the parabola opens downward.  
As regards the parabola in general, it should be mentioned that it has a 
reflection property that causes any ray or wave that originates at the focus 
and strikes the parabola to be reflected parallel to the axis of symmetry. 
Thus, for instance, flashlights and searchlights use a parabolic reflector 
with the bulb located at the focus. Additionally, due to the reflection 
property of a parabola, any ray or wave that comes into a parabolic 
reflector parallel to the axis of symmetry is directed to the focus point. For 
this reason, radars, radio antennas, and reflecting telescopes operate 
according to this principle. In astronomy, the parabola features in both the 
construction of telescopes and in the motion of comets around the Sun. 
Finally, due to their great strength, parabolic arches are used extensively in 
bridges, cathedrals, and elsewhere in architecture and engineering, 
especially in case we have equally spaced load.  
 

Volumes and Surface Areas 
 

By the term “volume,” we mean the amount of three-dimensional space 
enclosed by a closed surface. The volume of any solid having a uniform 
cross-section is equal to: 
cross-sectional area×length of solid. 
The surface area of any solid having a uniform cross-section is equal to: 
curved surface+ends; namely: 
perimeter of cross-sections×length of solid+total area of ends. 
The volume of a sphere with radius 𝑟 is equal to 
A
*
𝜋𝑟*,  

and its surface area is equal to 
4𝜋𝑟#. 
The volume of a cylinder whose height is ℎ and whose base is a circle with 
radius 𝑟 is equal to 
𝜋𝑟#ℎ, 
and its surface area is equal to 
2𝜋𝑟ℎ + 2𝜋𝑟# = 2𝜋𝑟(ℎ + 𝑟). 
The volume of a cone whose vertical height is ℎ and whose base is a circle 
with radius 𝑟 is equal to  
"
*
𝜋𝑟#ℎ, 

and, if 𝑙 is its slant height, then its surface area is equal to 
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𝜋𝑟𝑙 + 𝜋𝑟#. 
The volume of a pyramid whose height is ℎ and whose base’s area is equal 
to 𝐴 is given by the following formula:  
𝑉 = "

*
𝐴ℎ. 

The surface area of a pyramid is equal to the sum of the areas of the 
corresponding triangles plus the area of the base. 
 

Spherical Coordinates and Polar Coordinates 
 

Until now, we have determined the position of a point 𝑃 by the lengths of 
its Cartesian (rectangular) coordinates. As I explained in Chapter 2, in the 
Cartesian or rectangular coordinate system, we have three axes, 𝑥, 𝑦, and 
𝑧, which are perpendicular to each other, and we can define any point by 
taking the number of units in the 𝑥-direction, the number of units in the 𝑦-
direction, and the number of units in the 𝑧 -direction, through the 
corresponding projections.  
As shown in Figure 6-16, in the spherical coordinate system, we have 
again three mutually perpendicular coordinates, 𝑟, 𝜃, and 𝜑, where: the 
radial line 𝑟 is the shortest distance between the origin of the coordinate 
system and the given point 𝑃 , 𝜃  (known as the “polar angle” or the 
“inclination”) is defined to be the angle between the 𝑧-axis and the radial 
line 𝑟, and 𝜑 (known as the “azimuthal angle” or the “azimuth”) is the 
angle between the orthogonal projection  of the radial line 𝑟  onto the 
reference 𝑥𝑦-plane (which is orthogonal to the 𝑧-axis and passes through 
the origin) and the 𝑥-axis (which is orthogonal to the 𝑧-axis and to the 𝑦-
axis). 
As shown in Figure 6-16, the relation between the spherical coordinate 
system and the rectangular coordinate system is the following:  
We can convert spherical coordinates (𝑟, 𝜃, 𝜑) to rectangular coordinates 
(𝑥, 𝑦, 𝑧), using the following formulae:  
𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 
𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, and 
𝑧 = 𝑟𝑐𝑜𝑠𝜃. 
Moreover, we can convert rectangular coordinates (𝑥, 𝑦, 𝑧) to spherical 
coordinates (𝑟, 𝜃, 𝜑), using the following formulae: 
𝑟 = Ù𝑥# + 𝑦# + 𝑧#, 
𝜃 = 𝑐𝑜𝑠E" `

tV#BW#B`#
= 𝑎𝑟𝑐𝑐𝑜𝑠 `

tV#BW#B`#
, and 

𝜑 = 𝑡𝑎𝑛E" W
V
= 𝑎𝑟𝑐𝑡𝑎𝑛 W

V
. 
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Figure 6-16: Spherical coordinates (source: Wikimedia Commons: Author: 
Cristian Quinzacara; 
https://commons.wikimedia.org/wiki/File:Coordenadas_esf%C3%A9ricas_01.svg). 
 

 
 
Using the aforementioned methodology and reasoning regarding spherical 
coordinates, we can define points in the two-dimensional polar coordinate 
system, where (𝑥, 𝑦) = (𝑟𝑐𝑜𝑠𝜑, 𝑟𝑠𝑖𝑛𝜑) , as shown in Figure 6-17. For 
instance, the equations of lines and conic sections can be expressed in 
polar coordinates through the relation (𝑥, 𝑦) = (𝑟𝑐𝑜𝑠𝜑, 𝑟𝑠𝑖𝑛𝜑). 
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Figure 6-17: Two-dimensional polar coordinates (source: Wikimedia Commons: 
Author: WillowW; 
https://commons.wikimedia.org/wiki/File:Polar_coordinate_components.svg). 
 

 
 
Hence, the graph of the equation 𝑟 = 𝑓(𝜑) in polar coordinates is the 
same as the graph of the parametric equations (with parameter 𝜑) 𝑥 =
𝑓(𝜑)𝑐𝑜𝑠𝜑 and 𝑦 = 𝑓(𝜑)𝑠𝑖𝑛𝜑 in Cartesian coordinates; and, conversely, 
the graph of a given equation in 𝑥 and 𝑦 is the same as the graph of the 
equation in 𝑟  and 𝜑  obtained by substituting 𝑥  and 𝑦  with 𝑟𝑐𝑜𝑠𝜑  and 
𝑟𝑠𝑖𝑛𝜑, respectively.  
 

A Note on the Line of Best Fit 
 
A “scatter plot” is a type of mathematical diagram that uses Cartesian 
coordinates, and it provides a visual and statistical means to test the 
strength of a relationship between two variables. The “line of best fit” is a 
(straight) line that is used to express a relationship in a scatter plot of 
different data points, and it minimizes the distance between it and the data 
under consideration, as shown in Figure 6-18. In Figure 6-18, we can see 
that the general trend of the data points is going up to the right, indicating 
a positive correlation. When we draw a line of best fit, we do not want to 
draw it so high that all of the data points are below that line, nor do we 
want to draw it so low that all of the data points are above that line, but we 
want to draw a line of best fit that comes as close to those data points as 
possible.  
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In other words, a line of best fit, also known as a “trend line” or a “line of 
regression,” is a line that best displays the trend of a group of points on a 
scatter plot, and it is used to predict the behavior of data using the slope of 
that line.  
 
Figure 6-18: The line of best fit (source: Wikimedia Commons: Author: Amatulic; 
https://commons.wikimedia.org/wiki/File:Normdist_regression.png). 
 

 
 
A basic way of approximating the line of best fit is to use a ruler and try to 
draw that line in such a way that it comes as close to the given data points 
as possible (as shown in Figure 6-18). Assume, for instance, that, given a 
scatter plot, two points that lie on the line of best fit are 𝐴(1,−3)  and 
𝐵(7,5). Firstly, we have to find the slope of this line: 𝑚 = J=pZ

Jq%
= W#EW"

V#EV"
=

CE(E*)
RE"

= 2
G
= A

*
. Now, we shall use the slope-intercept form, 𝑦 = 𝑚𝑥 + 𝑏, 

in order to find the equation of this line. Given that 𝑚 = A
*
, we obtain 𝑦 =

A
*
𝑥 + 𝑏, and we have to determine the value of 𝑏. Let us use the point 
𝐴(1,−3) in order to determine the value of 𝑏 (of course, we shall find the 
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same result if we use the point 𝐵(7,5) in order to determine 𝑏). When 𝑦 =
−3, 𝑥 = 1, and, therefore, we have: 
𝑦 = A

*
𝑥 + 𝑏 ⇒ −3 = A

*
(1) + 𝑏 ⇒ 𝑏 = − "*

*
.  

Hence, in this case, the equation of the line of best fit is  
𝑦 = A

*
𝑥 − "*

*
. 

Thus, using analytic geometry, we can find the line of best fit, which is an 
intelligent guess or approximation on a set of data aiming to identify and 
describe the relationship between given variables.   
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Chapter 7 
Vectors, Vector Spaces, Normed Vector 

Spaces, and Metric Spaces 
 
The discipline of mathematics that deals with matrices (covered in Chapter 
3) and vectors (and, more generally, with vector spaces and linear 
transformations) is called Linear Algebra. In this chapter, we shall 
complete our study of the basic concepts of linear algebra, and we shall 
study the basic principles of metric spaces and metric geometry. 
 

Fields and Vectors 
 

In mathematics, a “field” is an algebraic structure that has two binary 
operations, usually called “addition” and “multiplication,” and both of 
them are always commutative. Fields model number systems (since 
numbers can be added or multiplied, and, therefore, subtracted and 
divided, too, and various relationships hold true between them). A “field” 
is a structured set 

(𝐹, 0,1, +,∙) 
that satisfies the following properties: 
(F1) 0,1 ∈ 𝐹, 0 ≠ 1, and + and ∙ are binary functions (operations) on 𝐹. 
(F2) Addition + satisfies the following identities: 

i. (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧), 
ii. 𝑥 + 𝑦 = 𝑦 + 𝑥, 
iii. 𝑥 + 0 = 𝑥, 

and, for every 𝑥, there exists some 𝑥@ such that 𝑥 + 𝑥@ = 0. 
(F3) Multiplication ∙ satisfies the following identities: 

i. (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥 ∙ (𝑦 ∙ 𝑧), 
ii. 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥, 
iii. 𝑥 ∙ 1 = 𝑥, 

and, for every 𝑥, there exists some 𝑥@@ such that 𝑥 ∙ 𝑥@@ = 1. 
(F4) Both addition and multiplication satisfy the identity 
𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧. 
Remark: The axioms of a field imply that any field 𝐹  satisfies the 
following: 

i. For every 𝑥, there exists a unique 𝑥@ such that 𝑥 + 𝑥@ = 0; and 
then 𝑥@ = −𝑥 (called the “additive inverse” of 𝑥). Moreover, for 
every 𝑥 ≠ 0, there exists a unique  𝑥@@ such that 𝑥 ∙ 𝑥@@ = 1; and 
then 𝑥@@ = 𝑥E" (called the “multiplicative inverse” of 𝑥). 
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ii. 𝑥 ∙ 0 = 0. 
iii. 𝑥 ∙ 𝑦 = 0 ⇒ 𝑥 = 0	𝑜𝑟	y = 0. 
iv. (−𝑥) ∙ 𝑦 = −(𝑥 ∙ 𝑦). 
v. A field is a set 𝐹 that is closed under the operations of addition 

and multiplication.  
Familiar examples of fields are the set ℚ of all rational numbers and the 
set ℝ of all real numbers. Notice that the set ℤ of all integers is not a field, 
because not every element of ℤ has a multiplicative inverse (in fact, only 1 
and −1 have multiplicative inverses in ℤ). 
A “scalar” is a quantity that can be specified by determining only its 
magnitude. However, the quantities that are specified by determining both 
magnitude and direction are called “vectors.” In other words, a “vector” is 
a quantity that has both a direction and a magnitude of length; therefore, it 
is graphically denoted by an oriented line segment (“arrow”). In physics, 
vectors are very useful, because they can visually represent position, 
displacement, velocity, and acceleration. Moreover, vector graphics are 
used in computers, since they can be scaled to a larger size without losing 
any image quality. 
If the coordinates of a point 𝑃 in the coordinate plane are (𝑥, 𝑦), and if we 
denote the origin of the coordinate system by 𝑂(0,0), then a vector 𝑂𝑃 is 
denoted by 𝑂𝑃33333⃗ , since the length 𝑂𝑃  represents the magnitude, and the 
arrow represents the direction, as shown in Figure 7-1. 
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Figure 7-1: A vector in the 𝑥𝑦 -plane and its components (source: Wikimedia 
Commons: Author: JozumBjada; 
https://commons.wikimedia.org/wiki/File:Vector_in_2D_space_and_its_decompos
ition.png). 
 

 
 
The column vector (matrix) corresponding to 0𝑃33333⃗  is 
Ã
𝑥
𝑦Ä. 

Since the coordinates of point 𝑃 are (𝑥, 𝑦), the length from 𝑂(0,0) to 𝑃 is 
Ù𝑥# + 𝑦#, according to the Pythagorean Theorem. Notice that, frequently, 
we do not need to use arrows in order to indicate that letters represent 
vectors (in particular where there is no likelihood of confusion).  
The operations between vectors are based on matrix algebra. For instance, 
given two vectors 𝑂𝐴33333⃗ = Ã

𝑝
𝑞Ä and 𝑂𝐵33333⃗ = Ã𝑟𝑠Ä,  

their sum is a vector 𝑂𝐶33333⃗  such that 
𝑂𝐶33333⃗ = 𝑂𝐴33333⃗ + 𝑂𝐵33333⃗ = Ã

𝑝
𝑞Ä + Ã

𝑟
𝑠Ä = Ã

𝑝 + 𝑟
𝑞 + 𝑠Ä. 

In general, we can define the following vector operations: 
Vector addition: 𝑢3⃗ + 𝑣⃗ = (𝑢" + 𝑣", 𝑢# + 𝑣#, … , 𝑢% + 𝑣%) . For instance, 
given two vectors 𝑢3⃗  and 𝑣⃗ in ℝ#, draw 𝑢3⃗  (with its tail, that is, initial point, 
anywhere), and then draw 𝑣⃗ with its tail at the head (that is, the terminal 
point)  of 𝑢3⃗ . Then 𝑢3⃗ + 𝑣⃗ is defined to be that vector that goes from the tail 
of 𝑢3⃗  to the head of 𝑣⃗. 
Scalar multiplication: 𝑘𝑢3⃗ = (𝑘𝑢", 𝑘𝑢#, … , 𝑘𝑢%) ,  where: 𝑢3⃗ =
(𝑢", 𝑢#, … , 𝑢%)  is a vector in ℝ% , and 𝑘  is a real number (scalar). For 
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instance, given a vector  𝑢3⃗ , 2	𝑢3⃗  is a vector pointing in the same direction as  
𝑢3⃗  and twice as long as  𝑢3⃗ , whereas −1.5	𝑢3⃗  is a vector pointing in the 
opposite direction from  𝑢3⃗  and 1.5 times as long as  𝑢3⃗ . Two vectors are 
“parallel” if one of them is a scalar multiple of the other.  
Negation: −𝑢3⃗ = (−1)𝑢3⃗ = (−𝑢", −𝑢#, … , −𝑢%) . To subtract vectors, 
switch the direction of the vector that is being subtracted, arrange the two 
vectors from “head to tail,” and draw a resultant vector from the tail of the 
first vector to the head of the second vector; symbolically: 
𝑢3⃗ − 𝑣⃗ = 𝑢3⃗ + (−𝑣⃗). 
Dot Product (or Scalar Product or Inner Product):  
𝑢3⃗ ∙ 𝑣⃗ = 𝑢"𝑣" + 𝑢#𝑣# +⋯+ 𝑢%𝑣% = ∑ 𝑢=𝑣=%

=>"  (i.e., the Euclidean inner 
product of two vectors 𝑢3⃗  and 𝑣⃗ in ℝ%  is the real number determined by 
multiplying the correspondent components of 𝑢3⃗  and 𝑣 and then summing 
the resulting products), where: 𝑢3⃗ = (𝑢", 𝑢#, … , 𝑢%) and 𝑣⃗ = (𝑣", 𝑣#, … , 𝑣%) 
are vectors in ℝ%. 
Norm (Length): ‖𝑢3⃗ ‖ = √𝑢3⃗ ∙ 𝑢3⃗ = Ù𝑢"# + 𝑢## +⋯+ 𝑢%#  
(specifically, the norm of a vector is the distance of the vector from the 
origin), where: 𝑢3⃗ = (𝑢", 𝑢#, … , 𝑢%) is a vector in ℝ%. When we divide a 
vector by its norm, we turn it into a “unit vector,” and this process is called 
“normalization.” 
Notice that, as a result of the Cauchy–Schwarz–Bunyakovsky inequality, 
the absolute value of the dot product of two vectors is less than or equal to 
the product of their lengths; symbolically: 
‖𝑢3⃗ ‖‖𝑣⃗‖ ≥ |𝑢3⃗ ∙ 𝑣⃗|, 
with equality if and only if there is a scalar 𝜆 such that 𝑢3⃗ = 𝜆𝑣 or if one of 
the vectors is zero. This inequality can be easily proved as follows 
(method of C. C. Pugh): Notice that, ∀𝜆 ∈ ℝ, the dot product  
(𝜆𝑢3⃗ + 𝑣⃗) ∙ (𝜆𝑢3⃗ + 𝑣⃗)  
is always greater than or equal to zero; and consider the following 
polynomial of 𝜆: 
(𝜆𝑢3⃗ + 𝑣⃗) ∙ (𝜆𝑢3⃗ + 𝑣⃗) = 𝜆#‖𝑢3⃗ ‖# + 2𝜆(𝑢3⃗ ∙ 𝑣⃗) + ‖𝑣⃗‖#. 
This polynomial (which is of the form 𝑎𝜆# + 𝑏𝜆 + 𝑐 ) must always be 
greater than or equal to zero, and, thus, it must have a non-positive 
discriminant, meaning that (𝑢3⃗ ∙ 𝑣⃗)# ≤ ‖𝑢3⃗ ‖#‖𝑣⃗‖# ; quod erat 
demonstrandum.  
The dot product is an operation on vectors that enables us to find the angle 
between two vectors, and, when we talk about the angle between two 
vectors, we are picturing the vectors with their tails at the same point. 
Thus, if 𝜃 is the angle between two vectors 𝑢3⃗  and 𝑣⃗, then the dot product 
𝑢3⃗ ∙ 𝑣⃗ = ‖𝑢3⃗ ‖‖𝑣⃗‖𝑐𝑜𝑠𝜃, 
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where ‖𝑢3⃗ ‖  denotes the norm of 𝑢3⃗ , and ‖𝑣⃗‖  denotes the norm of 𝑣⃗ , as 
shown in Figure 7-2. 
 
Figure 7-2: The dot product of two vectors (source: Wikimedia Commons: Author: 
Mazin07; https://commons.wikimedia.org/wiki/File:Dot_Product.svg). 
 

 
 
Cross Product of two vectors in a 3-dimensional space: Consider two 
vectors 𝑢3⃗ = (𝑢", 𝑢#, 𝑢*) and 𝑣⃗ = (𝑣", 𝑣#, 𝑣*), and let 𝚤, 𝚥, and 𝑘3⃗  be the unit 
vectors of the three coordinate axes, respectively. Then the cross product 
of  𝑢3⃗  and  𝑣⃗ is a vector given by the following determinant:  

𝑢3⃗ × 𝑣⃗ = 8
𝚤 𝚥 𝑘3⃗
𝑢" 𝑢# 𝑢*
𝑣" 𝑣# 𝑣*

8 = Û
𝑢# 𝑢*
𝑣# 𝑣*Û 𝚤− Û

𝑢" 𝑢*
𝑣" 𝑣*Û 𝚥 + Û

𝑢" 𝑢#
𝑣" 𝑣#Û 𝑘

3⃗ =

(𝑢#𝑣* − 𝑢*𝑣#)𝚤− (𝑢"𝑣* − 𝑢*𝑣")𝚥 + (𝑢"𝑣# − 𝑢#𝑣")𝑘3⃗ . 
The geometric significance of this operation is that, if 𝜃  is the angle 
between 𝑢3⃗  and 𝑣⃗ with 0 ≤ 𝜃 ≤ 𝜋, then  
𝑢3⃗ × 𝑣⃗ = ‖𝑢3⃗ ‖‖𝑣‖(𝑠𝑖𝑛𝜃)𝑛3⃗ , 
where 𝑛3⃗  is a unit vector perpendicular to the plane containing 𝑢3⃗  and 𝑣⃗ 
(with your right hand, point your index finger along vector 𝑢3⃗ , and point 
your middle finger along vector 𝑣⃗; then 𝑛3⃗  goes in the direction of your 
extended thumb), as shown in Figure 7-3. Obviously, if the vectors 𝑢3⃗  and 
𝑣⃗ are parallel (i.e., if the angle 𝜃 between them is either 0X or 180X), then 
𝑢3⃗ × 𝑣⃗ is equal to the zero vector. 
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Figure 7-3: The cross product of two vectors (source: Wikimedia Commons: 
Author: Svjo; https://commons.wikimedia.org/wiki/File:Cross-product-
povray.png). 
 

 
 
The magnitude of the cross product (|𝑢3⃗ × 𝑣⃗|) can be interpreted as the 
positive area of the parallelogram having 𝑢3⃗  and 𝑣⃗ as its sides. Whilst the 
resultant of the dot product of two vectors 𝑢3⃗  and 𝑣⃗ is a scalar quantity, the 
cross product of two vectors 𝑢3⃗  and 𝑣⃗ is a third vector whose direction is 
perpendicular to both 𝑢3⃗  and 𝑣⃗  (the direction is given by the 
aforementioned right-hand rule). 
Notice that we can write the equation of a straight line in three dimensions 
using vector notation as follows: Let 𝑎⃗ and 𝑏3⃗  be the radius (or position) 
vectors of two points 𝐴 and 𝐵, respectively, with respect to some origin. 
Then the condition for an arbitrary point 𝑃 with radius vector 𝑟 to lie on 
the straight line going through 𝐴 and 𝐵 is that the vectors 𝑟 − 𝑎⃗	 and 𝑏3⃗ − 𝑎⃗ 
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be parallel, that is, 𝑟⃗ − 𝑎⃗ = 𝜆�𝑏3⃗ − 𝑎⃗�; and, therefore, if 𝜆 is regarded as a 
parameter, then the equation of the straight line takes the form 
𝑟 = 𝑎⃗ + 𝜆�𝑏3⃗ − 𝑎⃗�. 
The parameter 𝜆  can be eliminated by taking the cross product of the 
aforementioned expression with �𝑏3⃗ − 𝑎⃗�, thus obtaining 
(	𝑟⃗ − 𝑎⃗) × �𝑏3⃗ − 𝑎⃗� = 0 ⇒ 𝑟 × �𝑏3⃗ − 𝑎⃗� = 𝑎⃗ × 𝑏3⃗ . 
By analogy, we can write the equation of a plane in vector form as 
follows: Let 𝑎⃗, 𝑏3⃗ , and 𝑐 be the radius vectors of three given points 𝐴, 𝐵, 
and 𝐶 , respectively. In order to find the equation of the plane going 
through these three points, we think as follows: since the vectors 	𝑟 − 𝑎⃗, 
𝑏3⃗ − 𝑎⃗, and 𝑐 − 𝑎⃗ are coplanar, the required equation is 
𝑟 − 𝑎⃗ = 𝜆�𝑏3⃗ − 𝑎⃗� + 𝜇(𝑐 − 𝑎⃗), 
where 𝜆 and 𝜇 are parameters. In order to eliminate the parameters 𝜆 and 
𝜇, we firstly take the cross product of the aforementioned expression with 
𝑐 − 𝑎⃗ and then the dot product with 𝑏3⃗ − 𝑎⃗, thus obtaining 
[(𝑟 − 𝑎⃗) × (𝑐 − 𝑎⃗)] ∙ �𝑏3⃗ − 𝑎⃗� = 0. 
 

Vector (or Linear) Spaces 
 

The most abstract definition of a vector is that a vector is an element of a 
“vector (or linear) space,” which, in turn, can be defined as follows: let 𝑈 
be a set endowed with two operations: addition and scalar multiplication, 
defined in the following way: 
+: 𝑈 × 𝑈 → 𝑈  defined by (𝑢, 𝑣) ∈ 𝑈 × 𝑈 → 𝑢 + 𝑣 ∈ 𝑈  for all 𝑢, 𝑣 ∈ 𝑈 , 
that is, 𝑈 is “closed under addition”; 
∙ : 𝑘 × 𝑈 → 𝑈  defined by (𝑘, 𝑢) ∈ 𝐾 × 𝑈 → 𝑘 ∙ 𝑢 ∈ 𝑈  for every 𝑘 ∈ 𝐾 
(where 𝐾 is a field, such as ℝ) and for every 𝑢 ∈ 𝑈, that is, 𝑈 is “closed 
under scalar multiplication.” Of course,0 ∈ 𝑈 , since, for every 𝑢 ∈ 𝑈 , 
(−1)𝑢 ∈ 𝑈 , and, therefore, 𝑢 − 𝑢 ∈ 𝑈 ⇒ 0 ∈ 𝑈 . As a result of the 
aforementioned definition, we say that 𝑈  under the operations of + 
(addition) and ∙ (scalar multiplication) forms a “vector space” (or “linear 
space”) over the field 𝐾; and, therefore, a “vector” can be defined as an 
element of such a 𝑈.  
For instance, we can prove that, if  
𝑉 = {𝑎𝑥# + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ ℝ}, 
then 𝑉 is a vector space over ℝ as follows: 
Step 1: 0= 0𝑥# + 0𝑥 + 0 ∈ 𝑉.  
In other words, 0 ∈ 𝑉. 
Step 2: Let  
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{𝑣" = 𝑎"𝑥# + 𝑏"𝑥 + 𝑐"
𝑣# = 𝑎#𝑥# + 𝑏#𝑥 + 𝑐#

 . 

Then 𝑣" + 𝑣# = (𝑎" + 𝑎#)𝑥# + (𝑏" + 𝑏#)𝑥 + (𝑐" + 𝑐#) ∈ 𝑉.  
In other words, 𝑉 is closed under addition. 
Step 3: Let 𝑣 = 𝑎𝑥# + 𝑏𝑥 + 𝑐 with 𝑎, 𝑏, 𝑐 ∈ ℝ.  
Then 𝑘𝑣 = (𝑘𝑎)𝑥# + (𝑘𝑏)𝑥 + (𝑘𝑐) ∈ 𝑉. 
In other words, 𝑉 is closed under scalar multiplication. 
Therefore, 𝑉 = {𝑎𝑥# + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ ℝ} is a vector space over ℝ. In 
other words, the set of all real quadratic polynomials forms a vector space 
over ℝ.  
On the other hand, we can prove that a sphere 𝑆 is not a vector space as 
follows: let 𝑣 be a vector belonging to the sphere 𝑆. If we multiply	𝑣 by an 
adequate number 𝑘, then 𝑘𝑣 does not belong to 𝑆 any more (it “pierces” 
the sphere). Hence, a sphere is not a vector space (it is not closed under 
scalar multiplication). This example helps us to understand why no 
bounded set, in general, is a vector space. 
Linearly Independent Vectors: Let 𝑉 be a vector space over 𝐾. The vectors 
𝑣", 𝑣#, … , 𝑣% of 𝑉 are “linearly independent” if and only if every time 
𝑘"𝑣" + 𝑘#𝑣# +⋯+ 𝑘%𝑣% = 0 ⇒ 𝑘" = 𝑘# = ⋯ = 𝑘% = 0. 
For instance, the vectors 𝑣" = Ã1 0

0 0Ä, 𝑣# = Ã0 1
0 0Ä, 𝑣* = Ã0 0

1 0Ä, and 

𝑣A = Ã0 0
0 1Ä are linearly independent, since  

𝑘"𝑣" + 𝑘#𝑣# +⋯+ 𝑘%𝑣% = 0 

⇒ Ã𝑘" 0
0 0Ä + Ã

0 𝑘#
0 0 Ä + å

0 0
𝑘* 0æ + å

0 0
0 𝑘A

æ = Ã0 0
0 0Ä 

⇒ å𝑘" 𝑘#
𝑘* 𝑘A

æ = Ã0 0
0 0Ä ⇒ 𝑘" = 𝑘# = 𝑘* = 𝑘A = 0. 

Linearly Dependent Vectors: Let 𝑉 be a vector space over 𝐾. The vectors 
𝑣", 𝑣#, … , 𝑣%  of 𝑉 are “linearly dependent” if and only if 𝑘"𝑣" + 𝑘#𝑣# +
⋯+ 𝑘%𝑣% = 0 for some 𝑘= ≠ 0, where 𝑖 = 1,2, … , 𝑛.  
For instance, the vectors 𝑣" = (0,1) , 𝑣# = (1,0) , and 𝑣* = (1,1)  are 
linearly dependent. 
Basis: Let 𝑉 be a vector space over 𝐾. The vectors 𝑣", 𝑣#, … , 𝑣%  form a 
“basis” of 𝑉  if and only if these vectors are linearly independent and 
generate (or span) 𝑉; that is, every vector of 𝑉 must be expressed in terms 
of 𝑣", 𝑣#, … , 𝑣% . For instance, if 𝑉 = {𝑎 + 𝑏𝑥 + 𝑐𝑥#|𝑎, 𝑏, 𝑐 ∈ ℝ} , then 
𝑣" = 1, 𝑣# = 𝑥, and 𝑣* = 𝑥# form a basis of 𝑉, because: (i) 𝑣", 𝑣#, and 𝑣* 
are linearly independent, since no vector from {1, 𝑥, 𝑥#} can be written in 
terms of the other vectors; and (ii) {1, 𝑥, 𝑥#} generate 𝑉, since, for any 𝑣 ∈
𝑉, it holds that 𝑣 = 𝑘 + 𝑙𝑥 +𝑚𝑥# = 𝑘 ∙ 1 + 𝑙𝑥 +𝑚𝑥#. Every (non-zero) 
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vector space over a field 𝐾 has at least one basis (actually, it has many 
different bases). We shall see that all bases of a finite-dimensional vector 
space have the same length (i.e., the same number of elements), and this 
length is said to be the “dimension” of the corresponding vector space.  
A list of vectors (𝑣", … , 𝑣%) is linearly independent if and only if every 
vector 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑣", … , 𝑣%), that is, every vector belonging to the vector 
space spanned by (𝑣", … , 𝑣%) , can be uniquely written as a linear 
combination of (𝑣", … , 𝑣%): If (𝑣", … , 𝑣%) is a linearly independent list of 
vectors, then, for the sake of contradiction, suppose that there are two 
ways of writing 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑣", … , 𝑣%)  as a linear combination of 
(𝑣", … , 𝑣%), say 
𝑣 = 𝑘"𝑣" +⋯+ 𝑘%𝑣%, and 
𝑣 = 𝑘"@𝑣" +⋯+ 𝑘%@ 𝑣%. 
Subtracting these two equations by parts, we obtain 0 = (𝑘" − 𝑘"@)𝑣" +
⋯+ (𝑘% − 𝑘%@ )𝑣% . Thus, every vector belonging to the vector space 
spanned by the linearly independent list of vectors (𝑣", … , 𝑣%)  can be 
uniquely written as a linear combination of (𝑣", … , 𝑣%). Now, we shall 
prove the converse: Suppose that, for every 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑣", … , 𝑣%), there are 
unique 𝑘", … , 𝑘% ∈ 𝐹 (where 𝐹 is a field) such that 𝑣 = 𝑘"𝑣" +⋯+ 𝑘%𝑣%. 
Then the only way in which the zero vector 𝑣 = 0 can be written as a 
linear combination of 𝑣", … , 𝑣%  is with 𝑘" = ⋯ = 𝑘% = 0, and this fact 
implies that (𝑣", … , 𝑣%) are linearly independent. 
If 𝑉 is a finite-dimensional vector space, and if (𝑣", … , 𝑣6) is a linearly 
independent list of vectors that spans 𝑉, then, given any list (𝑤", … , 𝑤%) 
that also spans 𝑉 , it holds that 𝑚 ≤ 𝑛 . Notice that a list of vectors is 
linearly independent if and only if removing any vector from the list yields 
a list whose span is strictly smaller than that of the original list, and, 
therefore, a linearly independent list is minimal for its span (such a list 
does not have any linear redundancies). On the other hand, a spanning set 
for a vector space 𝑉  is generally a list of vectors in 𝑉  such that every 
vector of 𝑉 is in the span of the list, so that the last proposition means that 
spanning sets have to be at least as large as linearly independent sets 
(“bases”). Indeed, this proposition can be verified as follows: Consider an 
arbitrary list of vectors 𝐴) = (𝑤", … , 𝑤%) such that 𝑉 = 𝑠𝑝𝑎𝑛(𝐴)). At the 
𝑘th step of the procedure, construct a new list 𝐴< by replacing some vector 
𝑤?<  with the vector 𝑣<  such that 𝐴<  still spans 𝑉 . Repeating the same 
process for every 𝑣< , we obtain a new list 𝐴6  of length 𝑛 that contains 
each of the vectors 𝑣", … , 𝑣6, and, therefore, 𝑚 ≤ 𝑛.  
Using the last proposition, we can prove that every vector space 𝑉 has the 
following invariant property: the number of vectors in every basis of 𝑉 
remains the same (and, thus, this number is said to be the “dimension” of 
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𝑉, and it is denoted by 𝑑𝑖𝑚(𝑉)). Indeed, if (𝑣", … , 𝑣6) and (𝑤", … , 𝑤%) 
are two bases of 𝑉, then, due to the last proposition, we have 𝑚 ≤ 𝑛, since 
(𝑣", … , 𝑣6) is linearly independent (given that we assumed that it is a 
basis of 𝑉), and 𝑛 ≤ 𝑚, since (𝑤", … , 𝑤%) is linearly independent (given 
that we assumed that it is a basis of 𝑉); and, therefore, 𝑚 = 𝑛. 
By the definition of the direct (or Cartesian) product of two sets, it can be 
easily verified that, if 𝑋", 𝑋#, … , 𝑋%  are finite-dimensional vector spaces 
over the same field, then 𝑋" × 𝑋# ×…× 𝑋% is finite-dimensional and  
𝑑𝑖𝑚(𝑋" × 𝑋# ×…× 𝑋%) = 𝑑𝑖𝑚(𝑋") + 𝑑𝑖𝑚(𝑋#) +⋯+ 𝑑𝑖𝑚(𝑋%). 
Let 𝐴 and 𝐵 be non-empty subsets of a vector space 𝑉. The “sum” of 𝐴 
and 𝐵, denoted by 𝐴 + 𝐵, is the set of all possible sums of elements from 
both sets: 𝐴 + 𝐵 = {𝑎 + 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. 
By the definition of a basis of a vector space, it can be easily verified that, 
if 𝑋 and 𝑌 are two subspaces of a vector space 𝑉 over a field 𝐹, and if 𝐵e 
is a basis of 𝑋 and 𝐵d is a basis of 𝑌, then 𝐵e ∪ 𝐵d is a basis of 𝑋 + 𝑌. 
Notice that the union 𝐵e ∪ 𝐵d may contain linearly dependent elements, 
and, therefore, if 𝑋 and 𝑌 are subspaces of a vector space 𝑉, then 
𝑑𝑖𝑚(𝑋 + 𝑌) = 𝑑𝑖𝑚(𝑋) + 𝑑𝑖𝑚(𝑌) − 𝑑𝑖𝑚(𝑋 ∩ 𝑌). 
Direct sum decompositions: Let 𝑈 and 𝑊 be subspaces of a vector space 
𝑉. Then 𝑉 is said to be the “direct sum” of 𝑈 and 𝑊, and we write 𝑉 =
𝑈⊕𝑊 , if and only if 𝑉 = 𝑈 +𝑊 = {𝑣 = 𝑢 + 𝑤|𝑢 ∈ 𝑈,𝑤 ∈𝑊}  and 
𝑈 ∩𝑊 = {0}. In other words, the “direct sum” is a way of adjoining two 
(or more) vector spaces in order to obtain a larger vector space, and the 
condition that 𝑈 ∩𝑊 = {0} implies that every such 𝑣 ∈ 𝑉  has a unique 
expression as 𝑣 = 𝑢 + 𝑤 with 𝑢 ∈ 𝑈,𝑤 ∈𝑊. Hence, given two subspaces 
𝑈 and 𝑊 of a vector space 𝑉, 𝑉 = 𝑈⊕𝑊 if and only if, for every 𝑣 ∈ 𝑉, 
there exist unique vectors 𝑢 ∈ 𝑈 and 𝑤 ∈𝑊 such that 𝑣 = 𝑢 + 𝑤. 
 

Norms and Normed Vector Spaces 
 

When we study vector spaces, we must keep in mind that the term “space” 
signifies a collection of vectors that interact in a certain way, which is 
determined by the corresponding structure (e.g., by a set of operations, by 
a norm, etc.). We can define a norm in an abstract way as follows: given a 
vector (or linear) space 𝑋 over ℝ, a “norm” ‖∙‖ for 𝑋 is a function on 𝑋 
that assigns to each element a real number (symbolically: ‖∙‖: 𝑋 → ℝ) 
satisfying the following properties: 
for every 𝑥 ∈ 𝑋: 

i. ‖𝑥‖ ≥ 0, 
ii. ‖𝑥‖ = 0 if and only if 𝑥 = 0, 
iii. ‖𝑘𝑥‖ = |𝑘|‖𝑥‖ for any scalar 𝑘, and, 
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 for every 𝑥, 𝑦 ∈ 𝑋, 
iv. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖+ ‖𝑦‖ (the triangle inequality, implying that the 

shortest path between two points is a line segment; equality holds 
whenever one of 𝑥 and 𝑦 is a non-negative multiple of the other). 

A vector (or linear) space that is equipped with a norm ‖∙‖ is denoted by 
(𝑋, ‖∙‖) and is called a “normed vector space” (or “normed linear space”). 
Different norms can be defined on the same vector space, thus giving rise 
to different normed vector spaces.  
Example 1:	(ℝ, |∙|). The set of real numbers (ℝ) is a normed vector space 
with norm given by the absolute value (or modulus), that is,  
‖𝑥‖ = |𝑥|, 
and we call this the “usual norm” for ℝ. 
Example 2: (ℝ%,‖∙‖#). The set of ordered 𝑛-tuples of real numbers (ℝ%) is 
a normed vector space with norm ‖∙‖# defined as follows: 
for any real vector 𝑥 = (𝑘", 𝑘#, … , 𝑘%),  
‖𝑥‖# = Ù|𝑘"|# + |𝑘#|# +⋯+ |𝑘%|#, 
and we call this the “Euclidean norm” (notice that, in this case, the only 
norm property that provides any difficulty to verify is the triangle 
inequality; we can show that ‖𝑥‖# satisfies the triangle inequality by using 
the Cauchy–Schwarz–Bunyakovsky Inequality and the Minkowski 
Inequality). 
Example 3: (ℝ%, ‖∙‖"). The set of ordered 𝑛-tuples of real numbers (ℝ%) is 
a normed vector space with norm ‖∙‖" defined as follows: 
for any real vector 𝑥 = (𝑘", 𝑘#, … , 𝑘%),  
‖𝑥‖" = |𝑘"| + |𝑘#| + ⋯+ |𝑘%|. 
Example 4:	(ℝ%, ‖∙‖'). The set of ordered 𝑛-tuples of real numbers (ℝ%) 
is a normed vector space with norm ‖∙‖' defined as follows: 
for any real vector 𝑥 = (𝑘", 𝑘#, … , 𝑘%),  
‖𝑥‖' = 𝑚𝑎𝑥{|𝑘=|, 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1,2, … , 𝑛}, 
and we call this the “supremum (or uniform) norm” for ℝ%. 
Example 5:	(ℬ(𝑋), ‖∙‖'). For any non-empty set 𝑋, we denote by ℬ(𝑋) 
the set of bounded real functions on 𝑋. Notice that a function 𝑓 on some 
set 𝑋 with real values is said to be “bounded” if the set of its values is 
bounded―that is, if there exists a real number 𝑀 such that, for every 𝑥 ∈
𝑋, it holds that |𝑓(𝑥)| ≤ 𝑀.  
ℬ(𝑋) is a real vector space under the pointwise definitions of addition and 
scalar multiplication. Moreover, ℬ(𝑋) is a normed vector space with norm 
‖∙‖' defined by 
‖𝑓‖' = 𝑠𝑢𝑝{|𝑓(𝑥)|, 𝑤ℎ𝑒𝑟𝑒	𝑥 ∈ 𝑋}, 
and we call this the “supremum  (or uniform) norm” for ℬ(𝑋). Notice that 
Example 4 is the special case when 𝑋 = {1,2, … , 𝑛}. 
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Example 6:	𝑙#-space, also known as the “Hilbert (sequence) space.” This is 
a generalization of the Euclidean 𝑛-space. The set 𝑙#, whose elements are 
sequences of scalars (real numbers) 𝑥 = {𝑘", 𝑘#, … , 𝑘%, … }  such that 
∑|𝑘%|# is convergent, is a real vector space under the pointwise definitions 
of addition and scalar multiplication, and it is a normed vector space with 
norm ‖∙‖# defined by 
‖𝑥‖# = Ù∑ |𝑘=|#'

=>" ;  
where the only norm property that provides any difficulty to verify is the 
triangle inequality, and we can show that ‖𝑥‖#  satisfies the triangle 
inequality by using the Cauchy–Schwarz–Bunyakovsky Inequality and the 
Minkowski Inequality. 
In an arbitrary normed vector space (𝑋, ‖∙‖), the set 

𝑆(0; 1) = {𝑥 ∈ 𝑋	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	‖𝑥‖ = 1} 
is called the “unit sphere”; the set 

𝐵[0; 1] = {𝑥 ∈ 𝑋	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	‖𝑥‖ ≤ 1} 
is called the “closed unit ball”; and the set 

𝐵(0; 1) = {𝑥 ∈ 𝑋	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	‖𝑥‖ < 1} 
is called the “open unit ball.” In Figure 7-4, we consider the shape of the 
unit sphere in several coordinate space examples: (a) in (ℝ#, ‖∙‖#), where 
𝑆�(0,0); 1� = {(𝑘, 𝑙)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑘# + 𝑙# = 1}  (i.e., here, we have the 
graph of Ù𝑥# + 𝑦# = 1, which is the unit circle); (b) in(ℝ#,‖∙‖'), where 
𝑆�(0,0); 1� = {(𝑘, 𝑙)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑚𝑎𝑥{|𝑘|, |𝑙|} = 1} (i.e., here, we have the 
infinity-norm for two elements, which is the maximum value of the two 
elements, and we require that it is equal to one, so that we end up with the 
square with the corners at (1,1), (1, −1), (−1,−1), and (−1,1)); and (c) 
in (ℝ#, ‖∙‖") , where 𝑆�(0,0); 1� = {(𝑘, 𝑙)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	|𝑘| + |𝑙| = 1}  (i.e., 
here, we have the one-norm for two values, which is the sum of their 
absolute values, and we require that one is the magnitude, and, therefore: 
in the first quadrant, we have the graph of the equation 𝑦 = 1 − 𝑥; in the 
second quadrant, we have the graph of the equation 𝑦 = 1 + 𝑥, since 𝑥 is 
negative there, and we change the sign; in the third quadrant, we have the 
graph of the equation 𝑦 = −𝑥 − 1; and, in the fourth quadrant, we have 
the graph of the equation 𝑦 = 𝑥 − 1).  
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Figure 7-4: The shape of the unit sphere in: (a) (ℝ!, ‖∙‖!), (b) (ℝ!, ‖∙‖#), and (c) 
(ℝ!, ‖∙‖$). 
 

 
 

Linear Transformations 
 

Linear transformations are transformations (functions) that preserve the 
operations of vector addition and scalar multiplication. Thus, a 
transformation 𝑇 is “linear” if and only if 

i. 𝑇(𝑢3⃗ + 𝑣⃗) = 𝑇(𝑢3⃗ ) + 𝑇(𝑣⃗) and 
ii. 𝑇(𝑐𝑢3⃗ ) = 𝑐𝑇(𝑢3⃗ ), where 𝑐 is a scalar quantity. 

Remark: If 𝑇 is a linear transformation, then 𝑇�03⃗ � = 03⃗ . 
Example 1: Recall that, when we multiply an 𝑚× 𝑛 matrix by an 𝑛 × 1 
column vector (which is an element of ℝ%), we receive an 𝑚× 1 column 
vector (which is an element of ℝ6). If 𝐴 is any 𝑚× 𝑛 matrix, then the 
mapping 𝑇:ℝ% → ℝ6 which is matrix-vector multiplication  

𝑇(𝑥) = 𝐴𝑥⃗ 
is a linear transformation. In fact, every linear transformation can be 
expressed as a matrix transformation.  
Example 2: Projection is a linear transformation. In particular, in ℝ#, a 
projection is a linear transformation 𝑇:ℝ# → ℝ#, which takes every vector 
in the plane into a vector in the plane. The “vector projection” of 𝑣⃗ onto 𝑢3⃗  
is denoted by 𝑝𝑟𝑜𝑗quu⃗ 𝑣⃗ , and it is defined as follows: 

𝑝𝑟𝑜𝑗quu⃗ 𝑣⃗ = 1
𝑣⃗ ∙ 𝑢3⃗
‖𝑢3⃗ ‖#2𝑢3⃗  

where the operator ∙ denotes the dot product, and ‖𝑢3⃗ ‖ is the length of 𝑢3⃗ . 
This formula indicates that the new vector is going in the direction of 𝑢3⃗  
(notice that the vector projection is the vector produced when one vector is 
resolved into two component vectors, one that is parallel to the second 
vector and one that is perpendicular to the second vector). The “scalar 
projection” of of 𝑣⃗ onto 𝑢3⃗  is equal to 
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𝑣" = ‖𝑣⃗	‖𝑐𝑜𝑠𝜃 
where 𝜃 is the angle between 𝑣⃗ and 𝑢3⃗  (notice that the scalar projection is 
the length of the vector projection); and recall that 𝑐𝑜𝑠𝜃 = wu⃗ ∙quu⃗

‖wu⃗ 	‖‖quu⃗ 	‖
. 

Example 3: Rotation is a linear transformation. In particular, in ℝ#, we 
write 𝑅𝑜𝑡r: ℝ# → ℝ# for the linear transformation that rotates vectors in  
ℝ# counter-clockwise through the angle 𝜃 about the origin of the Cartesian 
coordinate system. Its matrix is  

Ã𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 Ä 

and, to perform the rotation on a plane point with standard coordinates 
𝑣⃗ = (𝑥, 𝑦) , it should be written as a column vector and multiplied by 
𝑅𝑜𝑡r: ℝ# → ℝ#, namely: 

𝑅𝑜𝑡r𝑣⃗ = Ã𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 Ä Ã

𝑥
𝑦Ä = å𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃æ. 

The kernel of a linear transformation: The “kernel” (or “null space”) of a 
linear transformation is the subset of the domain that is transformed into 
the zero vector. In formal notation, the kernel of a linear transformation 
𝑇: 𝑉 →𝑊 is denoted by 𝑘𝑒𝑟(𝑇), and it is the set of all input vectors 𝑣⃗ ∈ 𝑉 
such that 𝑇(𝑣⃗) = 03⃗ . The kernel is a measure of injectivity. In fact, since 
the kernel consists of the elements sent to 03⃗ , the dimension of the kernel 
tells us how much the corresponding linear transformation shrinks the 
source space into the target space. Hence, a linear transformation is 
injective if and only if its kernel is trivial, that is, if and only if its kernel is 
the singleton of 03⃗ . 
Eigenvectors and eigenvalues: In linear algebra, we often need to know 
which vectors have their directions unchanged by a linear transformation. 
An “eigenvector” (or “characteristic vector”) is such a vector. Hence, an 
eigenvector 𝑣⃗ of a linear transformation 𝑇 is merely scaled by a constant 
factor 𝜆  when the linear transformation is applied to it; symbolically, 
𝑇(𝑣⃗) = 𝜆𝑣⃗ . The corresponding “eigenvalue” (or “characteristic value”) is 
the multiplying factor 𝜆. In other words, if 𝑇 is a linear transformation 
from a vector space 𝑉 over a field 𝐹 into itself and 𝑣 is a non-zero vector 
in 𝑉, then 𝑣⃗ is an eigenvector of 𝑇 if 𝑇(𝑣) is a scalar multiple of 𝑣⃗, that is, 
𝑇(𝑣⃗) = 𝜆𝑣⃗ where 𝜆 is a scalar in 𝐹, and then 𝜆 is said to be the eigenvalue 
associated with 𝑣⃗. 
Let 𝐴 be an 𝑛 × 𝑛 matrix, and let 𝑋 ∈ ℝ% be a non-zero vector for which 

𝐴𝑋 = 𝜆𝑋 
for some scalar 𝜆. Then 𝜆 is said to be the eigenvalue of the matrix	𝐴, and 
𝑋 is said to be an eigenvector of 𝐴 associated with 𝜆. If this is the case, 
then 
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𝐴𝑋 − 𝜆𝑋 = 0 ⇔ (𝐴 − 𝜆𝐼)𝑋 = 0 
where 𝐼 is the corresponding identity matrix. Therefore, when we have to 
find eigenvectors, we have to find the non-trivial solutions to this 
homogeneous system of equations. The expression (determinant)  
𝑑𝑒𝑡(𝐴 − 𝜆𝐼)  
is a polynomial called the “characteristic polynomial” of 𝐴 ; that is, it 
contains the eigenvalues as roots, and it is invariant under matrix 
similarity. In other words, the solutions to the “characteristic equation” 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 
are the eigenvalues. 
For instance, let us find the eigenvalus of the matrix 
𝐴 = Ã2 2

5 −1Ä, 
and then let us find the corresponding eigenvectors. 
In order to find the eigenvalues of 𝐴, we have to find those 𝜆 for which 
𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0. In this case, 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 1Ã2 2
5 −1Ä − 𝜆 Ã

1 0
0 1Ä2

= 𝑑𝑒𝑡 1Ã2 2
5 −1Ä − Ã

𝜆 0
0 𝜆Ä2 = Û2 − 𝜆 2

5 −1 − 𝜆Û

= (2 − 𝜆)(−1 − 𝜆) − 10 = 𝜆# − 	𝜆 − 12 
meaning that the eigenvalues of 𝐴  are the solutions to the quadratic 
equation 𝜆# − 	𝜆 − 12 = 0, namely, 𝜆" = −3 and 𝜆# = 4. 
Case I: Let 𝜆 = −3. Then  
𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴𝑥 = −3𝑥.                                                                             (1) 
If we write 
𝑥 = Ã

𝑥"
𝑥#Ä, 

then, given the definition of matrix 𝐴, we obtain: 

𝐴𝑥 = Ã2 2
5 −1Ä Ã

𝑥"
𝑥#Ä = å2𝑥" + 2𝑥#5𝑥" − 𝑥#

æ.                                                      (2) 

Moreover,  

−3𝑥 = å−3𝑥"−3𝑥#
æ.                                                                                        (3) 

Because of equation (1), (2) is equal to (3), and, therefore, we get 

å2𝑥" + 2𝑥#5𝑥" − 𝑥#
æ = å−3𝑥"−3𝑥#

æ 

meaning that 
2𝑥" + 2𝑥# = −3𝑥" ⇒ 5𝑥" = −2𝑥# ⇒ 𝑥" = − #

C
𝑥#, 

and  
5𝑥" − 𝑥# = −3𝑥#. 
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This result means that there are infinitely many solutions to the equation 
𝐴𝑥 = −3𝑥, but they all satisfy the condition that the first entry 𝑥" is − #

C
 

times the second entry 𝑥# . All the solutions to this equation have the 
following pattern: 

Ã 2𝑡−5𝑡Ä = 𝑡 Ã 2−5Ä 
where 𝑡 is any real number. The non-zero vectors 𝑥 that satisfy equation 
(1) are the eigenvectors associated with the eigenvalue 𝜆 = −3. One such 
eigenvector is 
𝑣⃗" = Ã 2−5Ä, 
and every other eigenvector associated with the eigenvalue 𝜆 = −3 is a 
scalar multiple of 𝑣⃗", that is, 𝑣⃗" spans this set of eigenvectors. 
Case II: Let 𝜆 = 4. Then, in a similar way, we can find eigenvectors 
associated with the eigenvalue 𝜆 = 4 by solving the equation 
𝐴𝑥 = 4𝑥, 
which implies that 

å2𝑥" + 2𝑥#5𝑥" − 𝑥#
æ = å4𝑥"4𝑥#

æ 

meaning that 
2𝑥" + 2𝑥# = 4𝑥" ⇒ 𝑥" = 𝑥#, 
and  
5𝑥" − 𝑥# = 4𝑥#. 
This means that the set of eigenvectors associated with the eigenvalue 𝜆 =
4 is spaned by the vector 
𝑣⃗# = Ã11Ä. 
Isomorphisms: Let 𝑈 and 𝑉 be two vector spaces over the same field 𝐾. 
Then a linear transformation 𝑇:𝑈 → 𝑉 is called an “isomorphism” if and 
only if 𝑇 is one-to-one and onto; and, in this case, the vector spaces 𝑈 and 
𝑉  are said to be “isomorphic.” In general, in mathematics, an 
“isomorphism” is a bijective function (one-to-one correspondence) 
between two structures that preserves the operations of the structures. 
If 𝑉%  is an 𝑛-dimensional vector space over ℝ with basis {𝑣", 𝑣#, … , 𝑣%}, 
then let us define a mapping 𝑓: 𝑉% → ℝ% by 
𝑓(𝑎"𝑣" +⋯+ 𝑎%𝑣%) → (𝑎", … , 𝑎%). 
Then it can be easily shown that 𝑓: 𝑉% → ℝ%  is linear, one-to-one, and 
onto. Hence, an 𝑛-dimensional vector space 𝑉%  over ℝ is isomorphic to 
ℝ%. 
 

Hyperplanes 
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Notice that, in a three-dimensional space, a plane is given by a linear 
equation such as 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0  where 𝑎 , 𝑏 , and 𝑐  are the 
components of the normal vector 𝑛3⃗ = (𝑎, 𝑏, 𝑐), which is perpendicular to 
the plane or to any vector parallel to the plane. Moreover, in a three-
dimensional space, a straight line can be specified as the intersection of 
two planes, and, thus, it is given by two such linear equations; specifically: 
{(𝑥, 𝑦, 𝑧) ∈ ℝ*|𝑎"𝑥 + 𝑏"𝑦 + 𝑐"𝑧 = 𝑑"𝑎𝑛𝑑𝑎#𝑥 + 𝑏#𝑦 + 𝑐#𝑧 = 𝑑#}. 
Given a non-zero vector 𝑛3⃗ = (𝑎, 𝑏, 𝑐) and a point 𝑝" = (𝑥", 𝑦", 𝑧"), if 𝑝 =
(𝑥, 𝑦, 𝑧) is an arbitrary point of ℝ*, then, expanding the “scalar equation,” 
we obtain 
0 = 𝑎(𝑥 − 𝑥") + 𝑏(𝑦 − 𝑦") + 𝑐(𝑧 − 𝑧") = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − (𝑎𝑥" +
𝑏𝑦" + 𝑐𝑧"), 
and, by setting 𝑎𝑥" + 𝑏𝑦" + 𝑐𝑧" = 𝑑 , we obtain the “linear equation” 
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑. Conversely, if (𝑥", 𝑦", 𝑧") lies on the plane with linear 
equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑, where 𝑑 = 𝑎𝑥" + 𝑏𝑦" + 𝑐𝑧", then we obtain 
the scalar equation 𝑎(𝑥 − 𝑥") + 𝑏(𝑦 − 𝑦") + 𝑐(𝑧 − 𝑧") = 0. Each can be 
written as a vector equation:  
the scalar form can be written as 0 = 𝑛3⃗ ∙ (𝑝 − 𝑝"), and 
the linear form can be written as 𝑛3⃗ ∙ 𝑝 = 𝑛3⃗ ∙ 𝑝". 
Both equations describe the plane in ℝ*  through the point 𝑝"  and with 
normal vector 𝑛3⃗ . 
Generally, a 𝑘-dimensional plane, usually called a “hyperplane,” in an 𝑛-
dimensional space is the geometric locus of the points whose coordinates 
satisfy a system of 𝑛 − 𝑘 linear equations, such as: 

𝑎""𝑥" + 𝑎"#𝑥# +⋯+ 𝑎"%𝑥% + 𝑏" = 0
𝑎#"𝑥" + 𝑎##𝑥# +⋯+ 𝑎#%𝑥% + 𝑏# = 0

⋮
𝑎%E<,"𝑥" + 𝑎%E<,#𝑥# +⋯+ 𝑎%E<,%𝑥% + 𝑏%E< = 0

ù                                (1) 

provided that these equations are consistent and independent. Each of 
these equations represents an (𝑛 − 1) -dimensional hyperplane, and all 
together determine the common points of 𝑛 − 𝑘 hyperplanes. Hence, a 𝑘-
dimensional hyperplane is determined by the intersection of 𝑛 − 𝑘 
hyperplanes of dimension 𝑛 − 1. 
An important property of a 𝑘-dimensional hyperplane is the fact that it is a 
𝑘 -dimensional space. For instance, a 3 -dimensional hyperplane is the 
ordinary 3 -dimensional space. Therefore, we can generalize results 
concerning 𝑛-dimensional spaces to (𝑛 + 1)-dimensional spaces.  
If equations (1) are consistent and independent, then, by simple algebraic 
techniques, we can choose 𝑘  out of the 𝑛  variables 𝑥=  and express the 
remaining 𝑛 − 𝑘 variables as functions of these, namely: 
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𝑥<B" = 𝑐""𝑥" + 𝑐"#𝑥# +⋯+ 𝑐"<𝑥< + 𝑑"
𝑥<B# = 𝑐#"𝑥" + 𝑐##𝑥# +⋯+ 𝑐#<𝑥< + 𝑑#

⋮
𝑥% = 𝑐%E<,"𝑥" + 𝑐%E<,#𝑥# +⋯+ 𝑐%E<,<𝑥< + 𝑑%E<

ù 

where the variables 𝑥", 𝑥#, … , 𝑥< admit arbitrary values, and the rest of the 
𝑥= ’s are determined by these. Hence, the position of a point in a 𝑘 -
dimensional hyperplane is determined by 𝑘 coordinates. 
 

Spherical Geometry and Hyperbolic Geometry 
 

Using analytic geometry, we can define a “solid sphere” with center 
(𝑥), 𝑦), 𝑧)) and radius 𝑟 as a solid bounded by a surface given by the locus 
of all points (𝑥, 𝑦, 𝑧) such that (𝑥 − 𝑥))# + (𝑦 − 𝑦))# + (𝑧 − 𝑧))# = 𝑟# . 
The straight line that joins any point of this surface with the center is 
called a “radius,” and a straight line drawn through the center and 
terminated both ways by this surface is called a “diameter.”  
Moreover, the equation of the surface of a solid sphere with center 𝐶 and 
radius 𝑎 can be expressed in vector form as follows: Let 𝑂 be the origin of 
the Cartesian coordinate system. Let 𝑐 be a vector such that its tail is 𝑂, its 
head is 𝐶 , and its magnitude is 𝑂𝐶 . Let 𝑃 be an arbitrary point on the 
surface of the solid sphere, and let 𝑟 be a position vector whose magnitude 
is 𝑂𝑃 (i.e., it indicates the location of a point on the surface of the solid 
sphere with respect to the origin of the Cartesian coordinate system). 
Obviously, 𝐶𝑃 = 𝑎 (the radius). Then the vector equation of the surface of 
a solid sphere is  
|𝑟 −	𝑐|# = 𝑎#, 
and, thus, a point 𝑃 lies on the solid sphere if and only if its position vector 
𝑟 satisfies this condition.  
The section of the surface of a solid sphere made by any plane is a 
“circle.” The section of the surface of a solid sphere by a plane is called a 
“great circle” if the plane passes through the center of the solid sphere, and 
it is called a “small circle” if the plane does not pass through the center of 
the solid sphere. Hence, the radius of a great circle is equal to the radius of 
the corresponding solid sphere, and the radius of a small circle is less than 
the radius of the corresponding solid sphere. See, for instance, Figure 7-5. 
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Figure 7-5: A great circle passing through two points (source: Wikimedia 
commons: Author: HaEr48; 
https://commons.wikimedia.org/wiki/File:Great_circle_passing_through_two_poin
ts.svg). 
 

 
 
Through the center of a solid sphere and any two points on the surface, we 
can draw a plane, and, in fact, this plane is unique, unless the two points 
are the extremities of a diameter of the solid sphere, in which case 
infinitely many such planes can be drawn. Therefore, only one great circle 
can be drawn through two given points on the surface of a solid sphere, 
unless the points are the extremities of a diameter of the solid sphere. 
When only one great circle can be drawn through two given points, the 
great circle is uniquely divided at the two points, and the shorter of the two 
arcs is said to be the “arc of a great circle joining the two points,” such as, 
for instance, the arc 𝐴𝐵 in Figure 7-5. 
The “axis” of any circle of a solid sphere is that diameter of the solid 
sphere which is perpendicular to the plane of the circle, and the extremities 
of the axis are called the “poles” of the circle. The poles of a great circle 
are equidistant from the plane of the circle, whereas the poles of a small 
circle are not equidistant from the plane of the circle. But a pole of a circle 
is always equidistant from every point of the circumference of the circle.  
The arc of a great circle that is drawn from a pole of a great circle to any 
point in its circumference is a quadrant (a quarter of a circle). The angle 
subtended at the center of a solid sphere by the arc of a great circle joining 
the poles of two great circles is equal to the inclination of the planes of the 
great circles. The angle between two great circles is defined as the “angle 
of inclination of the planes of the circles.” Two great circles bisect each 
other.  
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Assume that the the arcs of great circles join a point 𝑃 on the surface of a 
solid sphere with two other points 𝐴 and 𝐵  on the surface of the solid 
sphere, which are not at opposite extremities of a diameter, in such a way 
that each of these arcs is equal to a quadrant. Then 𝑃 is a pole of the great 
circle through 𝐴 and 𝐵.  
The great circles that pass through the poles of a given great circle are said 
to be “secondaries” to the given great circle. The angle between any two 
great circles is measured by the arc that they intercept on the great circle to 
which they are secondaries.  
Assume that, from a point 𝑃 on the surface of a solid sphere, there can be 
drawn two arcs of great circles, so that they are not parts of the same great 
circle, and the corresponding planes are at right angles to the plane of a 
given circle (i.e., the line in which they intersect is perpendicular to the 
plane of the given circle, and, therefore, it is the axis of the given circle). 
Then that point 𝑃 is a pole of the given circle. 
In summary, on the surface of a solid sphere, the “lines” can be interpreted 
as geodesics: a “geodesic” is the shortest path between two points on a 
curved surface (i.e., the equivalent of a Euclidean straight line in the 
context of spherical geometry); like, for instance, on the surface of the 
Earth (e.g., airplanes, wishing to minimize the time that they spend on the 
air, do not follow Euclidean straight lines, but they follow shortest curves 
known as geodesics). In spherical geometry, “great circles,” or 
“geodesics,” are intersections with planes through the center of the sphere. 
Thus, it is not unconditionally true that, given any two points, there is a 
unique line through them, because, if one chooses two points on the 
surface of a solid sphere that are opposite, or “antipodal,” then there is a 
whole family of great circles that go through them. 
Suppose that the angular point of a solid angle is made the center of a solid 
sphere. Then the planes that form the solid angle cut the solid sphere in 
arcs of great circles, and the figure that is formed on the surface of the 
solid sphere is called a “spherical triangle” if it is formed by the meeting 
of three plane angles, that is, if it is bounded by three arcs of great circles, 
as shown, for instance, in Figure 7-6. The three arcs of great circles that 
form a spherical triangle are called the “sides” of the spherical triangle, 
and the angles formed by the arcs at the points where they meet are called 
the “angles” of the spherical triangle. The angles of a spherical triangle are 
the inclinations of the plane faces that form the solid angle. 
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Figure 7-6: Great circles and a spherical triangle. 
 

 
 

 
On the plane, the sum of the interior angles of any triangle is exactly 𝜋 
radians (i.e., 180X ). However, on the surface of a solid sphere, the 
corresponding sum varies, but it is always greater than 𝜋 radians. If the 
angles at each vertex of a spherical triangle are 𝛼 , 𝛽 , and 𝛾 , then the 
positive quantity 

𝐸 = 𝛼 + 𝛽 + 𝛾 − 𝜋 
is called the “spherical excess” of the triangle. If 𝑟 is the radius of the solid 
sphere on which a spherical triangle resides, and if the angles are 
measured in radians, then the area of a spherical triangle is equal to 𝑟#𝐸, 
where 𝐸  is the spherical excess, defined above; and, in degrees, the 
formula for the area of a spherical triangle is 𝜋𝑟#𝐸 180X⁄ . 
The radius is the distance from the center of the solid sphere to any point 
on its surface. Thus, given a solid sphere with center (𝑥), 𝑦), 𝑧))  and 
radius 𝑟, the distance from its center to an arbitrary point (𝑥, 𝑦, 𝑧) on its 
surface is 𝑟 = Ù(𝑥 − 𝑥))# + (𝑦 − 𝑦))# + (𝑧 − 𝑧))# . However, the 
shortest distance between two points on the surface of a solid sphere is the 
so-called “great-circle distance”: the shortest distance between point 𝑎 =
(𝑎", 𝑎#, 𝑎*) and point 𝑏 = (𝑏", 𝑏#, 𝑏*) on the surface of a solid sphere of 
radius 𝑟 > 0 is part of the great circle lying in a plane that intersects the 
surface of the solid sphere and contains the points 𝑎 = (𝑎", 𝑎#, 𝑎*) and 
𝑏 = (𝑏", 𝑏#, 𝑏*) as well as the center of the solid sphere. In particular, if 
𝑎 = (𝑎", 𝑎#, 𝑎*) and 𝑏 = (𝑏", 𝑏#, 𝑏*) are points on a sphere of radius 𝑟 > 0 
centered at the origin of Euclidean 3-space, then the distance from 𝑎 to 𝑏 
along the surface of the sphere is 

𝑑(𝑎, 𝑏) = 𝑟 ∙ 𝑎𝑟𝑐𝑐𝑜𝑠 å
𝑎 ∙ 𝑏
𝑟# æ = 𝑟 ∙ 𝑎𝑟𝑐𝑐𝑜𝑠 å

𝑎"𝑏" + 𝑎#𝑏# + 𝑎*𝑏*
𝑟# æ 
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as can be easily seen by considering the plane through 𝑎, 𝑏, and the origin. 
If 𝜃 is the angle between the vectors 𝑎 and 𝑏, then 𝑎 ∙ 𝑏 = 𝑟#𝑐𝑜𝑠𝜃, and the 
short arc joining 𝑎 and 𝑏 has length 𝑟𝜃. 
On the surface of the Earth, lines of longitude, also called meridians (i.e., 
lines running North-South that measure angular distance from the Prime 
Meridian, i.e., they measure distance East-West), and lines of latitude, also 
called parallels (i.e., lines running East-West that measure distance from 
the Equator, i.e., they measure distance North-South), are used as 
reference points, as shown in Figure 7-7 (zero degrees latitude is the line 
designating the Equator; and zero degrees longitude is known as the 
Greenwich Prime Meridian). Meridians coincide with points of the same 
longitude, and parallels coincide with points of the same latitude. By the 
term “great circle,” we mean the largest circle that circumnavigates the 
Earth and is centered at the center of the Earth. A great circle divides the 
Earth in half, and, thus, the Equator is a great circle, but no other latitudes. 
All lines of latitude, except for the Equator, are “small circles.” All lines of 
longitude are “great circles.” The shortest distance between any two points 
on the Earth’s surface lies along a great circle. 
 
Figure 7-7: Latitude and Longitude on the Globe (source: Wikimedia Commons: 
Author: Peter Mercator; 
https://commons.wikimedia.org/wiki/File:Latitude_and_longitude_graticule_on_a
_sphere.svg). 
 

 
 
First of all, we know that the circumference of a circle is given by the 
formula 𝐶 = 2𝜋𝑟, and an arc length is a fraction of a circle; and such a 
fraction is equal to r

*G),
. Hence, the formula for the computation of an arc 

length is 
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𝑙 = r
*G),

× 2𝜋𝑟.                                                                                          (1) 
When we have to find the distance between two points on the Earth’s 
surface, we use formula (1) with the angle 𝜃 being the angular distance 
from the center of the Earth. The radius of the Earth is approximately 
6,371𝑘𝑚. Therefore: the formula for finding the distance between two 
points with the same longitude is 

𝑑(𝑥, 𝑦) =
𝐴𝑛𝑔𝑢𝑙𝑎𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

360X × 2𝜋 × 6,371𝑘𝑚 
where the angular distance is the angle between the two points relative to 
the center of the Earth; and the formula for finding the distance along a 
parallel between two points with the same latitude is 

𝑑(𝑥, 𝑦) =
𝐴𝑛𝑔𝑢𝑙𝑎𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

360X × 2𝜋 × 6,371𝑘𝑚 × 𝑐𝑜𝑠𝜃 
where 𝜃 is the latitude, and the angular distance is the angle between the 
two points relative to the center of the small circle of the parallel on which 
they are located. 
The two most common non-Euclidean geometries are spherical geometry, 
also known as Riemannian geometry (named after the German 
mathematician Bernhard Riemann), and hyperbolic geometry, also known 
as Lobachevskian geometry (named after the Russian mathematician 
Nikolai Ivanovich Lobachevski). I have already clarified the following: 
Euclidean geometry exists on surfaces that have constant zero curvature, 
and, in Euclidean geometry, Euclid’s parallel postulate holds (i.e., through 
any given point not on a line, passes exactly one line parallel to that line in 
the same plane), and the sum of angles of a triangle is always equal to 𝜋 
radians (180X); whereas Riemannian geometry (that is, geometry on the 
sphere or on the ellipsoid) exists on surfaces that have constant positive 
curvature, and, in Riemannian geometry, there are no parallel lines 
(instead, there exist geodesics, which intersect each other), and the sum of 
angles of a triangle is always strictly greater than 𝜋 radians (180X). On the 
other hand, Lobachevskian geometry (i.e., hyperbolic geometry), which is 
based on hyperbolic functions, exists on surfaces that have constant 
negative curvature, and, in Lobachevskian geometry, there exist infinitely 
many lines that pass through a point 𝑃 and are parallel to a given line, as 
indicated in Figure 7.8: in fact, there is a pair of lines through 𝑃 parallel to 
a given line 𝑙  that form an angle, and every line through 𝑃  and in the 
interior of this angle is parallel to 𝑙 . Moreover, in Lobachevskian 
geometry, the sum of angles of a triangle is always strictly less than 𝜋 
radians (180X), as indicated in Figure 7.9 (whereas Riemannian geometry 
is characterized by “fat triangles,” Lobachevskian geometry is 
characterized by “thin angles”).  
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In geometry, we must have in advance not only the concept of space but 
also the very fundamental concepts for constructions in space; and, indeed, 
geometry gives them nominal definitions, and geometric axioms provide 
the means which are necessary in order to determine them. Our choice 
among the different geometries is based, on a case-by-case basis, on 
experimental facts and practical needs. 
The geometry of the surface of a solid sphere is a non-Euclidean geometry 
focused on the coordinate representation of the sphere, namely, on the 
equation 
𝑥# + 𝑦# + 𝑧# = 𝑘, 
and the transition from spherical geometry to hyperbolic geometry is based 
on a small but crucial modification. In particular, hyperbolic geometry is a 
non-Euclidean geometry focused on the following equation: 
𝑥# + 𝑦# − 𝑧# = 𝑘, 
so that: for 𝑘 = 0, this equation yields a cone (𝑥# + 𝑦# = 𝑧#); for 𝑘 = 1, 
this equation yields a hyperboloid (i.e., what we get when we rotate a 
hyperbola around the 𝑧 axis); and, for 𝑘 = −1, this equation yields another 
hyperboloid (with two branches, one opening upward, and the other 
opening downward), and, in fact, this hyperboloid is considered to be the 
most important hyperbolic analogue of the sphere (it best captures 
Lobachevski’s thought). Hence, according to the Italian mathematician 
Eugenio Beltrami (1835–1900), the hyperbolic plane is the surface 𝑥# +
𝑦# − 𝑧# = −1, and, in this geometry, the analogues of “straight lines” are 
obtained by taking a plane through the origin (as we did in the case of 
spherical geometry) and cutting the aforementioned surface with such a 
plane, thus obtaining hyperbolic lines.  
 
Figure 7.8: Parallel lines in hyperbolic geometry. 
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Figure 7.9: Triangles in hyperbolic geometry. 
 

 
 

Metrics and Metric Spaces 
 

In a vector space 𝑉%  over the field of real numbers, we can define the 
distance between points 𝑥 = (𝛼",𝛼#, … ,𝛼%) and 𝑦 = (𝛽",𝛽#, … ,𝛽%) by 

|𝑥 − 𝑦| = çä (𝛼< − 𝛽<)#
%

<>"
è
"
#
 

and, thus, obtain the 𝑛-dimensional Euclidean space ℝ%. 
A “norm” measures the size of a single thing (specifically, the length of a 
vector, as measured from the origin), but a “metric” (or “distance 
function”) is a more general concept and mesures distances between pairs 
of things (specifically, the distance between two arbitrary points). A 
“metric,” or “distance function,” on an arbitrary set 𝑋  is a real-valued 
function 𝑑 defined on 𝑋 × 𝑋 that has the following properties for all 𝑥, 𝑦, 
and 𝑧: 
(D1) 𝑑(𝑥, 𝑦) ≥ 0; 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦; 
(D2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 
(D3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 
Properties (D1), (D2), and (D3) are known, respectively, as the “positive 
definite” property, the “symmetric property,” and the “triangle inequality.” 
In other words, a metric on 𝑋 is a real-valued function that is positive 
definite and symmetric and satisfies the triangle inequality. If we allow 
𝑑(𝑥, 𝑦) = 0 , then the metric is sometimes called “semi-metric” or 
“pseudometric.” A set 𝑋 endowed with a metric is called a “metric space.” 
The systematic study of metric spaces (spaces with a metric) was initiated 
by the French mathematician Maurice Fréchet in the 1900s. 
For instance, given two typical points 𝑝 = (𝑝", 𝑝#) and 𝑞 = (𝑞", 𝑞#) of ℝ#, 
the Euclidean metric is given by 
𝑑y(𝑝, 𝑞) = Ù(𝑝" − 𝑞")# + (𝑝# − 𝑞#)#. 
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The Euclidean metric on ℝ% is defined by 

𝑑y(𝑝, 𝑞) = çä (𝑝= − 𝑞=)#
%

=>"
è
"
#
 

(the only metric property that provides any difficulty to verify is the 
triangle inequality; we can show that 𝑑y(𝑝, 𝑞)  satisfies the triangle 
inequality by using the Cauchy–Schwarz–Bunyakovsky Inequality and the 
Minkowski Inequality). 
It is possible to define more than one metric on the same set 𝑋, and, in 
general, different metrics define different metric spaces on 𝑋 . Two 
metrics, somewhat different from 𝑑y, on ℝ% are the following: 
𝑑6(𝑝, 𝑞) = 𝑚𝑎𝑥{|𝑝= − 𝑞=|, 𝑖 = 1,2, … , 𝑛}, and 
𝑑z(𝑝, 𝑞) = ∑ |𝑝= − 𝑞=|%

=>" . 
For any non-empty set 𝑋, the “discrete metric” is defined by 

𝑑(𝑥, 𝑦) = {
1	𝑖𝑓	𝑥 ≠ 𝑦
0	𝑖𝑓	𝑥 = 𝑦, 

which specifies that the distance from a point to itself is equal to 0, while 
the distance between any two distinct points is equal to 1. Notice that a 
metric space is called “discrete” if and only if each 𝑥 ∈ 𝑋 is an “isolated 
point,” meaning that there exists a neighborhood of 𝑥 that does not contain 
any other points of 𝑋. It is clear that the discrete metric on any non-empty 
set defines a discrete metric space. 
All norms are metrics, but normed vector spaces have a richer structure 
than general metric spaces. If you have a norm, then you can define a 
metric by saying that the distance (metric) between vectors 𝑢3⃗  and 𝑣 is the 
size of 𝑢3⃗ − 𝑣⃗, namely: 

𝑑(𝑢3⃗ , 𝑣⃗) = ‖𝑢3⃗ − 𝑣⃗‖ 
which is the metric induced by the corresponding norm.  
Let (𝑋, 𝑑) be a metric space. The “open (metric) ball” of radius 𝑟 > 0 
centered at a point 𝑝 ∈ 𝑋 is usually denoted by 𝐵J(𝑝), and it is defined by 

𝐵J(𝑝) = {𝑥 ∈ 𝑋|𝑑(𝑥, 𝑝) < 𝑟} 
(i.e., a subset of points in 𝑋 that satisfy 𝑑(𝑥, 𝑝) < 𝑟). The “closed (metric) 
ball” is usually denoted by 𝐵J[𝑝], and it is defined by 

𝐵J[𝑝] = {𝑥 ∈ 𝑋|𝑑(𝑥, 𝑝) ≤ 𝑟} 
(i.e., a subset of points in 𝑋 that satisfy 𝑑(𝑥, 𝑝) ≤ 𝑟). 
In a metric space (𝑋, 𝑑), the “(metric) sphere” of radius 𝑟 > 0 centered at 
a point 𝑝 ∈ 𝑋 is usually denoted by 𝑆J(𝑝), and it is defined by 

𝑆J(𝑝) = {𝑥 ∈ 𝑋|𝑑(𝑥, 𝑝) = 𝑟} 
(i.e., a subset of points in 𝑋 that satisfy 𝑑(𝑥, 𝑝) = 𝑟). 
For instance, in ℝ*, a ball is a three-dimensional (“solid”) figure bounded 
by a sphere, which is a two-dimensional figure (i.e., in ℝ* , a two-
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dimensional sphere is the surface of a three-dimensional ball; and a three-
dimensional ball is also called a “solid sphere”). The 0-sphere is the pair 
of points at the ends of a line segment, which can be construed as the 1-
ball (i.e., an 1-ball is a line segment). The 1-sphere is a circle, that is, the 
circumference of a disc, which can be construed as the 2-ball (i.e., a 2-ball 
is a disc). The 2-sphere is the boundary of a 3-ball in ℝ*. 
In terms of metrics, in Figure 7-4 (a), (b), (c), we see the unit sphere in 
(ℝ#, 𝑑y), (ℝ#, 𝑑6), and (ℝ#, 𝑑z), respectively.  
A ball of 𝑛 dimensions is called an 𝑛-ball, and it is bounded by an (𝑛 −
1)-sphere (i.e., a sphere of (𝑛 − 1) dimensions is the boundary of a ball of 
𝑛 dimensions). Thus, an 𝑛-dimensional closed ball is determined by 𝑛 + 1 
independent variables: the 𝑛 coordinates of its center, and its radius. For 
instance, in the 𝑛-dimensional Euclidean space (ℝ%, 𝑑y), a closed ball of 
center (𝑎", … , 𝑎%) and radius 𝑟 is analytically expressed as 
(𝑥" − 𝑎")# +⋯+ (𝑥% − 𝑎%)# ≤ 𝑟#, 
while the corresponding sphere is 
(𝑥" − 𝑎")# +⋯+ (𝑥% − 𝑎%)# = 𝑟#. 
Notice that a geometry of three-dimensional closed balls may be regarded 
as a four-dimensional geometry, so that a three-dimensional closed ball 
may be regarded as a point of a four-dimensional space. 
Let (𝑋, 𝑑) be a metric space, and let 𝑥 ∈ 𝑋. A subset 𝐴 of 𝑋 is said to be a 
“neighborhood” of 𝑥 with respect to the metric 𝑑 if and only if there exists 
an 𝜀 > 0 such that 𝐵T(𝑥) ⊆ 𝐴, that is, if and only if 𝐴 contains an open 
ball of radius 𝜀 centered at 𝑥. Hence, given a metric space (𝑋, 𝑑), a subset 
𝐴 of 𝑋 is said to be “open” in (𝑋, 𝑑) if and only if, for every 𝑝 ∈ 𝐴, there 
exists an 𝜀 > 0 such that 𝐵T(𝑝) ⊆ 𝐴; that is, a set is “open” if and only if it 
is a neighborhood of each of its points. The name “open ball” is justified 
by the fact that it can be easily verified that an open ball is an open set 
according to the aforementioned definition. Moreover, by the definition of 
an open set, it can be easily verified that, in an arbitrary metric space 
(𝑋, 𝑑) , the union of any collection of open sets is open, and the 
intersection of any finite collection of open sets is open. An infinite 
intersection of open sets may result in a non-open set. For instance, 
∩%>"' Ã− "

%
, "
%
Ä = {0} is an infinite intersection of open sets that results in a 

non-open set, the singleton of zero.  
Let 𝐴 be a subset of a metric space (𝑋, 𝑑). Consider the “complement” of 
𝐴  with respect to 𝑋 , also known as the “set difference” of  𝑋  and 𝐴 , 
namely, 𝑋 − 𝐴 = 𝐴∼, consisting of the elements of 𝑋 that do not belong to 
𝐴. By De Morgan’s laws, the complement of the union of two sets is the 
same as the intersection of their complements; and the complement of the 
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intersection of two sets is the same as the union of their complements. 
Thus, we can define a “closed” subset of a metric space (𝑋, 𝑑) as the 
complement of an open subset of (𝑋, 𝑑). In other words, a subset 𝐴 of a 
metric space (𝑋, 𝑑)  is said to be “closed” in (𝑋, 𝑑)  if and only if its 
complement, namely, 𝑋 − 𝐴 = 𝐴∼, is open in (𝑋, 𝑑). By the definition of a 
closed set and the above properties of an open set, we can easily verify the 
following properties of a closed set (by applying De Morgan’s laws): in an 
arbitrary metric space (𝑋, 𝑑), the union of any finite collection of closed 
sets is closed, and the intersection of any collection of closed sets is 
closed. An infinite union of closed sets may result in an open set. For 
instance, ∪%>#' Ú"

%
, 1 − "

%
Ü = (0,1). 

Notice that, given an arbitrary metric space (𝑋, 𝑑), the sets 𝑋 and ∅ are 
considered to be both open and closed in (𝑋, 𝑑). 
We can formulate an alternative definition of a closed set in a metric space 
using the concept of an accumulation point (see also Chapter 2). Let (𝑋, 𝑑) 
be a metric space, let 𝐴 ⊆ 𝑋, and let 𝑎 ∈ 𝐴. Then 𝑎 is an “accumulation 
point” (or a “cluster point” or a “limit point”) of 𝐴 if and only if, for every 
𝜀 > 0, 𝐴 ∩ (𝐵T(𝑎) − {𝑎}) ≠ ∅; that is, if and only if, for every 𝜀 > 0, 
there is at least one point of 𝐴, other than 𝑎 itself, within distance 𝜀 of 𝑎. 
Hence, a subset 𝐴 of a metric space (𝑋, 𝑑) is “closed” with respect to the 
metric 𝑑 if and only if every accumulation point of 𝐴 is a member of 𝐴. 
Moreover, the closure of any subset 𝐴 of an arbitrary metric space (𝑋, 𝑑) 
is closed in (𝑋, 𝑑) (the closure of 𝐴 is the set consisting of all the points of 
𝐴 together with all the accumulation points of 𝐴). 
In a discrete metric space, every subset is both open and closed. Recall 
that the discrete metric says that 𝑑(𝑥, 𝑥) = 0, and 𝑑(𝑥, 𝑦) = 1 whenever 
𝑥 ≠ 𝑦. In a discrete metric space, consider an open ball of radius 0 < 𝑟 <
1, namely, 𝐵){J{"(𝑥). Then, due to the definition of the discrete metric, 
𝐵){J{"(𝑥)  contains only the point at which it is centered, that is, 
𝐵){J{"(𝑥) = {𝑥}. Thus, in a discrete metric space, any point 𝑥 in a set 𝐴 
has an open ball containing it (since we can always construct an open ball 
that only contains 𝑥), but, in this case, all sets are open, and, therefore, 
their complements are also open, while they are also closed as 
complements of open sets.  
Given a metric space (𝑋, 𝑑)  and a non-empty subset 𝐴  of 𝑋 , the 
“diameter” of 𝐴 is given by  
𝑑𝑖𝑎𝑚(𝐴) = 𝑠𝑢𝑝{𝑑(𝑥, 𝑦)|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴}, 
and, therefore, a set 𝐴 is “bounded” if and only if 𝑑𝑖𝑎𝑚(𝐴) < ∞. If 𝐴 ⊆
𝐵 , then 𝑑𝑖𝑎𝑚(𝐴) ≤ 𝑑𝑖𝑎𝑚(𝐵) . If 𝐴  contains only one element, then 
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𝑑𝑖𝑎𝑚(𝐴) = 0 . If (𝑋, 𝑑)  is a metric space, then we can define the 
“bounded metric” 𝑑0 for 𝑋 generated by 𝑑 as follows: 
𝑑0(𝑥, 𝑦) =

;(V,W)
"B;(V,W)

 or 𝑑0(𝑥, 𝑦) = 𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)}. 
Obviously, every non-empty subset of a bounded set is bounded. 
Moreover, it is easily checked that the union of two bounded sets is 
bounded. 
For an arbitrary ball 𝐵J(𝑎) of radius 𝑟, it holds that  
𝑑𝑖𝑎𝑚�𝐵J(𝑎)� ≤ 2𝑟.  
A simple example of a metric space where the diameter of a ball is not 
equal to twice the radius is the following: Consider the discrete metric 𝑑 
on a set 𝑋, that is, 

𝑑(𝑥, 𝑦) = {
0, 𝑖𝑓	𝑥 = 𝑦
1, 𝑖𝑓	𝑥 ≠ 𝑦, 

and consider the ball of radius 𝑟 = "
#
 centered at 𝑥. Then 𝐵J(𝑥) = {𝑥}, and, 

since, by definition, 𝑑𝑖𝑎𝑚(𝐴) = 𝑠𝑢𝑝{𝑑(𝑎, 𝑏)|𝑎, 𝑏 ∈ 𝐴} for any set 𝐴, the 
diameter of 𝐵J(𝑥) = {𝑥} is equal to zero. 
Moreover, it is evident that, if a point 𝑥 does not belong to an open ball 
𝐵J(𝑎), then 𝑑�𝑥, 𝐵J(𝑎)� ≥ 𝑑(𝑎, 𝑥) − 𝑟. 
In a discrete metric space, every set is bounded, since, in a discrete metric 
space, we have only two distances, namely, 0 and 1, and, therefore, if we 
take any two points 𝑥 and 𝑦 in a discrete metric space, then the distance 
𝑑(𝑥, 𝑦) is always less than 2, symbolically, 𝑑(𝑥, 𝑦) < 2. 
 
Continuity and uniform continuity: Given metric spaces (𝑋, 𝑑")  and 
(𝑌, 𝑑#), a mapping (function) 𝑓: 𝑋 → 𝑌  is said to be “continuous” at a 
point 𝑥) ∈ 𝑋 if and only if, given 𝜀 > 0, there exists a 𝛿 > 0 such that  
𝑑#�𝑓(𝑥), 𝑓(𝑥))� < 𝜀 whenever 𝑑"(𝑥, 𝑥)) < 𝛿 and 𝑥) ∈ 𝑋. 
Geometrically, the aforementioned definition of the continuity of the 
mapping 𝑓 at 𝑥)  means that 𝑓(𝑥) belongs to the open ball 𝐵T�𝑓(𝑥))� in 
the metric space (𝑌, 𝑑#) when 𝑥  belongs to the open ball 𝐵Q(𝑥)) in the 
metric space (𝑋, 𝑑") . Equivalently, we can say that 𝑓  is (𝑑", 𝑑#) -
continuous at 𝑥) ∈ 𝑋 if and only if, whenever (𝑥<) is a sequence in 𝑋 for 
which  
𝑥<

;"→ 𝑥) as 𝑘 → ∞, 
then the sequence 
𝑓(𝑥<)

;#→ 𝑓(𝑥)	) as 𝑘 → ∞. 
Hence, a function 𝑓 is continuous at a point 𝑥) if and only if the range of 𝑓 
over the neighborhood of 𝑥) shrinks to a single point 𝑓(𝑥)) as the width of 
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the neighborhood around 𝑥) shrinks to zeo. Intuitively, “continuous” at a 
point means “joined” at that point, and the continuity of a function means 
that the function has a gapless graph. If 𝑓 is continuous at every point of a 
subset 𝐴 in 𝑋, then we say that 𝑓 is continuous on 𝐴. 
We say that a mapping (function) 𝑓: 𝑋 → 𝑌 is “uniformly continuous” on 
𝑋 if, for every 𝜀 > 0, there exists a 𝛿 > 0 such that 𝑑"(𝑥, 𝑦) < 𝛿 implies 
that 𝑑#�𝑓(𝑥), 𝑓(𝑦)� < 𝜀 . “Uniform continuity” is a stronger condition 
than “continuity,” because “continuity” is defined at a point 𝑥), whereas 
“uniform continuity” is defined on a set 𝑋: in case of “continuity,” the 
point 𝑥) is part of the definition’s data, and it is kept fixed, just as 𝑓 itself, 
whereas “uniform continuity” requires the existence of a single 𝛿 > 0 that 
works for the whose set 𝑋, and not only in a neighborhood of 𝑥). For a 
function to be continuous, we can check “one 𝑥 at a time,” so that, for 
each 𝑥, we pick an 𝜀 and then we define a 𝛿 that depends on both 𝑥 and 𝜀 
so that 𝑑#�𝑓(𝑥), 𝑓(𝑦)� < 𝜀  whenever 𝑑"(𝑥, 𝑦) < 𝛿 ; but, if we want 
uniform continuity, then we must choose an 𝜀 and then define a 𝛿 that is 
good for all the 𝑥 values under consideration. Thus, uniform continuity 
implies continuity (since uniform continuity is a global property), but not 
all continuous functions are uniformly continuous (continuity is a local 
property).  
Example 1: The function 𝑓:ℝ → ℝ defined by 𝑓(𝑥) = 𝑥#  is continuous 
but not uniformly continuous. Firstly, we can prove that 𝑓(𝑥) = 𝑥#  is 
continuous at 𝑥 ∈ ℝ as follows: Let 𝜀 > 0. Then a 𝛿 > 0 must be found 
such that |𝑥 − 𝑥)| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥))| < 𝜀  for 𝑥, 𝑥) ∈ ℝ . In other 
words, by definition, 𝑓(𝑥) is continuous at 𝑥 = 𝑥) if, for any real number 
𝜀 > 0, we can find a real number 𝛿 > 0 such that 𝑥 ∈ (𝑥) − 𝛿, 𝑥) + 𝛿) ⇒
|𝑓(𝑥) − 𝑓(𝑥))| < 𝜀. For 𝑥 ∈ (𝑥) − 𝛿, 𝑥) + 𝛿), we have that 
|𝑥 − 𝑥)| < 𝛿 ⇒ |𝑥| < |𝑥)| + 𝛿, 
and 
|𝑓(𝑥) − 𝑓(𝑥))| = |𝑥# − 𝑥)#| = |(𝑥 + 𝑥))(𝑥 − 𝑥))| = |𝑥 + 𝑥)||𝑥 − 𝑥)| ≤
(|𝑥| + |𝑥)|)𝛿 ≤ 𝛿(2|𝑥)| + 𝛿).  
Hence, for any 𝜀 > 0, if we choose 𝛿 such that 𝛿(2|𝑥)| + 𝛿) < 𝜀, then the 
condition of continuity of 𝑓(𝑥) = 𝑥#  at 𝑥)  is satisfied. Now, we shall 
prove that we cannot establish the uniform continuity of 𝑓(𝑥) = 𝑥# on ℝ, 
by reducto ad absurdum. For the sake of contradiction, suppose that 
𝑓(𝑥) = 𝑥# is uniformly continuous over ℝ. Then, by definition, for every 
𝜀 > 0, there exists a 𝛿 > 0 such that |𝑥 − 𝑦| < 𝛿 ⇒ |𝑥# − 𝑦#| < 𝜀. But, 
if, say, 𝜀 = 1, then, if such a δ existed and 𝑦 = 𝑥 + Q

#
, we would obtain 

í𝑥# − Ã𝑥 + Q
#
Ä
#
í < 1 for all 𝑥 ∈ ℝ, 
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which would mean that Û𝑥𝛿 + Q#

A
Û < 1 for any real number 𝑥, which is not 

true for sufficiently large values of 𝑥; quod erat demonstrandum.  
Example 2: We can prove that the function 𝑓(𝑥) = √𝑥 defined on [0,∞) 
is uniformly continuous as follows: Let 𝜀 > 0, |𝑥 − 𝑦| < 𝛿, and 𝛿 = 𝜀#. 

Then we have: |𝑓(𝑥) − 𝑓(𝑦)| = Ö√𝑥 − Ù𝑦Ö = 0Ö√𝑥 − Ù𝑦Ö
#
≤

0Ö√𝑥 + Ù𝑦ÖÖ√𝑥 − Ù𝑦Ö = Ù|𝑥 − 𝑦| < √𝛿 = 𝜀, and, therefore, we have a 

𝛿  that satisfies the definition of uniform continuity; quod erat 
demonstrandum. 
 
Isometric embeddings, isometries, and embeddings with distortion: Given 
two arbitrary metric spaces (𝑋, 𝑑") and (𝑌, 𝑑#) , a mapping 𝑓: 𝑋 → 𝑌  is 
called an “isometric embedding” if and only if 
𝑑#�𝑓(𝑥), 𝑓(𝑦)� = 𝑑"(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋.                                             (1) 
In other words, if the distance between the transformed versions of two 
points (“image”) is the same as the distance between the original two 
points (“pre-image”), then such a transformation is said to be an “isometric 
embedding.” An isometric embedding is an injective mapping that 
preserves the distances between elements exactly, but it is not necessarily 
surjective. If an injective mapping preserves the distances between 
elements exactly, thus satisfying condition (1), and if it is surjective, then 
it is said to be an “isometry.” Notice that, if 𝑓: 𝑋 → 𝑌 is an isometry, then 
the inverse mapping 𝑓E": 𝑌 → 𝑋 is an isometry of  𝑌 onto 𝑋. Therefore, an 
isometry is an isomorphism for metric spaces. In fact, if two metric spaces 
are isometric, then, as metric spaces (that is, as regards their metric 
structure), they are structurally identical. 
A mapping 𝑇:ℝ% → ℝ% that maps every point 𝑝 ∈ ℝ% to 𝑝 + 𝑎 for a fixed 
𝑎 ∈ ℝ%  is called a “translation.” Moreover, notice that an orientation 
preserving linear mapping 𝑇:ℝ% → ℝ% that carries a set  
{𝑒", 𝑒#, … , 𝑒%}  
of orthogonal unit vectors at 0 to another set  
{𝑒"′ , 𝑒#′ , … , 𝑒%′ }  
of orthogonal unit vectors at 0 in such a way that  
𝑇(𝑒=) = 𝑒=′,  
where 𝑖 = 1,2, … , 𝑛, is called a “rotation” (about 0). It is easily verified 
that translations and rotations are isometries. 
Given two arbitrary metric spaces (𝑋, 𝑑") and (𝑌, 𝑑#), a mapping 𝑓: 𝑋 →
𝑌 is an “embedding with distortion 𝛼” if there exists a constant 𝑟 > 0 such 
that, for all 𝑥, 𝑦 ∈ 𝑋, 
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𝑟 ∙ 𝑑"(𝑥, 𝑦) ≤ 𝑑#�𝑓(𝑥), 𝑓(𝑦)� ≤ 𝛼𝑟 ∙ 𝑑"(𝑥, 𝑦).                                        (2) 
More precisely, the distortion of an embedding 𝑓 is the infimum of all 𝛼 
such that 𝑓  satisfies condition (2). The scaling by 𝑟 , in condition (2), 
implies that we only care about approximately preserving the ratio 
between distances. Thus, isometric embeddings are embeddings with 
distortion equal to 1. 
In general, given a metric space, consider the problem of finding a host 
metric space from within some class of “simpler” and “more convenient” 
metric spaces into which the original metric space can be embedded while 
preserving pairwise distances as much as possible. This is a key and 
fundamental problem in the theory of algorithms in general and in the 
algorithmic study of metric spaces in particular, since this process of 
simplification and approximation can provide the researcher with a new 
set of efficient algorithmic tools. In order to quantify the extent to which 
an embedding (generally, an injection between metric spaces) preserves 
distances (and, thus, the extent to which it is structurally faithful and 
informationally accurate), we consider the (multiplicative) distortion. In 
particular, if 𝑓 is an embedding from the metric space (𝑋, 𝑑") into another 
metric space (𝑌, 𝑑#), then we define: 

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑓) = 𝑠𝑢𝑝V,W∈e
𝑑#�𝑓(𝑥), 𝑓(𝑦)�

𝑑"(𝑥, 𝑦)
 

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑓) = 𝑠𝑢𝑝V,W∈e
𝑑"(𝑥, 𝑦)

𝑑#�𝑓(𝑥), 𝑓(𝑦)�
 

(where 𝑥 ≠ 𝑦 ), and then 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛(𝑓)  is defined as the product of 
𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑓) and 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑓), symbolically: 

𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛(𝑓) = 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑓) × 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑓) 
(notice that the lowest distortion we can hope for is 1, in which case all 
distances are preserved exactly, and the embedding is called isometric). 
Low-distortion embeddings have been used in several computer science 
applications.  
 
Connectedness: The intuitive meaning of a metric space 𝑋  being 
connected is that it constitutes one piece, meaning that it cannot be 
represented as the union of two separated sets 𝐴 and 𝐵. As I have already 
mentioned, two sets 𝐴 and 𝐵 are said to be disjoint if their intersection is 
the empty set. However, there is a stronger condition on 𝐴 and 𝐵  than 
disjointness, and this condition is known as “separation.” By “separated 
sets” 𝐴 and 𝐵, we mean that 𝐶𝑙𝑠(𝐴) ∩ B = ∅  and 𝐴 ∩ 𝐶𝑙𝑠(𝐵) = ∅, where 
𝐶𝑙𝑠  denotes “closure”: each set is disjoint from the other’s closure 
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(obviously, any two separated sets are automatically disjoint). Hence, 
separated sets not only do not overlap but do not even touch each other.  
For instance, let us consider the metric space ℝ  of all real numbers 
endowed with the usual metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ ℝ. The sets 
𝐴 = (−1,0), 𝐵 = {0}, and 𝐶 = (0,1) are pairwise disjoint. But 𝐶𝑙𝑠(𝐴) ∩
B = [−1,0] ∩ {0} = {0} ≠ ∅ , and, therefore, the sets 𝐴  and 𝐵  are not 
separated. Similarly, it can be shown that the sets 𝐵  and 𝐶  are not 
separated. However, 𝐶𝑙𝑠(𝐴) ∩ C = [−1,0] ∩ (0,1) = ∅ , and 𝐴 ∩
𝐶𝑙𝑠(𝐶) = (−1,0) ∩ [0,1] = ∅ , and, therefore, the sets 𝐴  and 𝐶  are 
separated in this metric space. 
Notice that, given two non-empty sets 𝐴, 𝐵 ⊆ (𝑋, 𝑑), where (𝑋, 𝑑) is a 
metric space, 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) = 𝑖𝑛𝑓{𝑑(𝑥, 𝑦)|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} 
meaning the minimum distance between the elements in sets 𝐴 and 𝐵. The 
condition of separation is not as strong as requiring that the distance 
between separated sets should be positive. For instance, the distance 
between the separated sets [0,1) and (1,2] is zero. 
A set (or a metric space) is “connected” if and only if it is not possible to 
be represented as the union of two separated sets 𝐴 and 𝐵. By a “domain,” 
we mean a non-empty connected open set in a metric space; and a 
bounded domain together with all its boundary points is said to be a 
“region.” If a set (or a metric space) is not connected, then it is said to be 
“disconnected.” For instance, the hyperbola 𝐻 = {(𝑥, 𝑦) ∈ ℝ#|𝑥# − 𝑦# =
1}  is disconnected, since the sets 𝐻" = {(𝑥, 𝑦) ∈ 	𝐻|𝑥 > 0}  and 𝐻# =
{(𝑥, 𝑦) ∈ 	𝐻|𝑥 < 0} form a disconnection of 𝐻. 
The real line ℝ is connected, as it can be easily shown by invoking the 
Dedekind Cut Axiom: Suppose that ℝ = 𝑈 ∪ 𝑉, where 𝑈 and 𝑉 are two 
non-empty sets such that 𝑈 ∩ 𝑉 = ∅. Without loss of generality, let 𝑢 ∈ 𝑈, 
𝑣 ∈ 𝑉, and 𝑢 < 𝑣. Let 𝑋 = {𝑢= ∈ 𝑈|𝑢= < 𝑣} and 𝑠 = 𝑠𝑢𝑝(𝑋). Then 𝑠 may 
or may not belong to 𝑈. If 𝑠 does not belong to 𝑈, then 𝑠 ∈ 𝐶𝑙𝑠(𝑈). If 𝑠 ∈
𝑈, then 𝑠 < 𝑣, so that all points between 𝑠 and 𝑣 belong to 𝑉, and 𝑠 is a 
limit point of 𝑈. Hence, either 𝐶𝑙𝑠(𝑈) ∩ 𝑉 ≠ ∅ or 𝑈 ∩ 𝐶𝑙𝑠(𝑉) ≠ ∅, quod 
erat demonstrandum. 
 
Complete metric spaces: Let 𝑢%  be a sequence in which the difference 
between any two terms becomes arbitrarily small as the index of the term 
increases. As I mentioned in Chapter 2, such a sequence is called a 
“Cauchy sequence.” In formal notation, a sequence 𝑢% in a metric space 
(𝑈, 𝑑) is a Cauchy sequence if and only if, for every 𝜀 > 0, there exists an 
integer 𝑁  such that 𝑑(𝑢%, 𝑢6) < 𝜀  for all 𝑛,𝑚 ≥ 𝑁 . Recall that, in the 
context of the real number system, every convergent sequence is a Cauchy 
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sequence, and every Cauchy sequence converges. However, a Cauchy 
sequence may not converge in the field ℚ. For instance the square root 
algorithm for the approximation of √8 gives the following sequence of 
rational numbers: 2,2.8,2.82,2.828,2.8284,… This is a Cauchy sequence, 
but it does not converge in the field of rational numbers, since √8 ∉ ℚ. 
The definition of a Cauchy sequence is importat for the study of metric 
spaces because it is based on the concept of a metric (distance function). A 
metric space 𝑀 is called “complete” if every Cauchy sequence of points in 
𝑀 has a well-defined limit that is also in 𝑀. In other words, a metric space 
(𝑋, 𝑑)  is said to be “complete” if every Cauchy sequence in (𝑋, 𝑑) 
converges to a point of 𝑋. A normed vector space that is complete as a 
metric space is called a “Banach space” (named after the Polish 
mathematician Stefan Banach). Notice that ℝ  with the usual norm is 
complete (this completeness property derives from the fact that any subset 
𝐴 of ℝ that is bounded from above has a supremum in ℝ). 
If 𝐴 is a closed subset of 𝑋, where (𝑋, 𝑑) is a complete metric space, then 
(𝐴, 𝑑)  is also a complete metric space; because: if (𝑥%)  is a Cauchy 
sequence in (𝐴, 𝑑) , then it is a Cauchy sequence in (𝑋, 𝑑) , so that it 
converges to some 𝜉 ∈ 𝑋 , and, since 𝐴  is given to be closed, 𝜉 ∈ 𝐴 . 
Moreover, if 𝐴 ⊆ 𝑋, and if (𝐴, 𝑑) is a complete metric space, then 𝐴 is a 
closed subset of 𝑋; because: if (𝑥%) is a sequence of elements of 𝐴 that 
converges to 𝜉 ∈ 𝑋, then we must show that 𝜉 ∈ 𝐴, and, indeed, this is the 
case, since (𝑥%) is a Cauchy sequence (since it converges), and the fact 
that (𝐴, 𝑑) is a complete metric space implies that (𝑥%) converges to a 
limit in 𝐴, that is, 𝜉 ∈ 𝐴.■ 
The Cantor Intersection Theorem for Complete Metric Spaces: Let (𝑋, 𝑑) 
be a complete metric space. Suppose that (𝑥%) is a sequence of points in 
𝑋, and that (𝑟%) is a sequence of positive real numbers such that 𝑟% → 0 as 
𝑛 → ∞, so that we obtain the closed balls …𝐵[𝑥%B", 𝑟%B"] ⊆ 𝐵[𝑥%, 𝑟%] ⊆
⋯ ⊆ 𝐵[𝑥", 𝑟"]. Then the intersection of these closed balls is non-empty, 
and, more precisely, there exists a point 𝜉 such that ∩%>"' 𝐵[𝑥%, 𝑟%] = {𝜉}. 
Proof:  Firstly, we shall show that the sequence (𝑥%) given in this theorem 
is a Cauchy sequence. Let 𝜀 > 0, and let 𝑛@ ∈ 	ℕ be chosen such that 𝑟%( <
𝜀. Then, if 𝑚,𝑛 ≥ 𝑛@ with 𝑚 ≥ 𝑛, it holds that 𝐵[𝑥6, 𝑟6] ⊆ 𝐵[𝑥%, 𝑟%], and, 
therefore, 𝑑(𝑥6, 𝑥%) ≤ 𝑟6 < 𝑟%( < 𝜀 . Hence, indeed, (𝑥%)  is a Cauchy 
sequence in (𝑋, 𝑑). Since (𝑋, 𝑑) is a complete metric space, (𝑥%), being a 
Cauchy sequence, converges to some 𝜉 ∈ 𝑋. Because, whenever 𝑛 ≥ 𝑚, it 
holds that (𝑥%) ⊆ 𝐵[𝑥6, 𝑟6] , for any 𝑚 ∈ 	ℕ , it holds that 𝜉 ∈
∩%>"' 𝐵[𝑥%, 𝑟%]. Now, we shall show that the aforementioned intersection 
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of closed balls contains only the point 𝜉. For the sake of contradiction, let 
𝜉, 𝑥 ∈∩%>"' 𝐵[𝑥%, 𝑟%]. Then, for any 𝑛 ∈ 	ℕ, it holds that 
𝑑(𝜉, 𝑥) ≤ 𝑑(𝜉, 𝑥%) + 𝑑(𝑥%, 𝑥) < 2𝑟%, 
and, by taking the limit as 𝑛 → ∞, we realize that 𝑑(𝜉, 𝑥) = 0 (since, by 
hypothesis, 𝑟% → 0 as 𝑛 → ∞). Therefore, 𝜉 = 𝑥, so that ∩%>"' 𝐵[𝑥%, 𝑟%] =
{𝜉}.■  
Characterization of complete metric spaces: A necessary and sufficient 
condition that a metric space (𝑋, 𝑑) is complete is that, for any decreasing 
sequence 𝐴" ⊇ 𝐴# ⊇ 𝐴* ⊇ ⋯  of non-empty closed sets with diameters 
approaching 0, the intersection ∩= 𝐴= is non-empty.  
Note: If 𝑑𝑖𝑎𝑚(𝐴=) → 0 as 𝑖 → ∞, then ∩= 𝐴=  is either empty or contains 
exactly one point due to Cantor’s Intersection Theorem.  
Proof (according to the method of G. Cantor): Suppose that (𝑋, 𝑑) is a 
complete metric space. Let 𝑥= be a point in 𝐴=, 𝑖 = 1,2,3, … If we consider 
any 𝜀 > 0, then there is a 𝜆 large enough so that 𝑑𝑖𝑎𝑚(𝐴M	) < 𝜀, that is, 
𝑑�𝑥= , 𝑥?� < 𝜀 for 𝑖, 𝑗 > 	𝜆. Therefore, (𝑥=) is a Cauchy sequence. Because 
(𝑋, 𝑑) is a complete metric space, (𝑥=) converges to some 𝑥 ∈ 𝑋. Claim 
that 𝑥 ∈ 𝐴=. Indeed, if we consider a specific set 𝐴?, it holds that 𝑖 ≥ 𝑗 ⇒
𝑥= ∈ 𝐴?; because 𝐴? is closed, it follows that 𝑥 ∈ 𝐴?. 
Conversely, given a Cauchy sequence (𝑥=) in (𝑋, 𝑑), we must show that it 
converges to a point in 𝑋 . Consider a set 𝐵=  containing the points 
𝑥= , 𝑥=B", … , so that 𝐵" ⊇ 𝐵# ⊇ ⋯  Additionally, 𝑑𝑖𝑎𝑚(𝐵=) → 0  because 
(𝑥=)  is a Cauchy sequence. If 𝐴= = 𝐶𝑙𝑠(𝐵=) , then 𝐴= ⊇ 𝐴=B" , and 
𝑑𝑖𝑎𝑚(𝐴=) → 0, 𝑖 = 1,2,3, … By hypothesis, the 𝐴=’s are non-empty, and, 
due to Cantor’s Intersection Theorem, there exists an element 𝜉 ∈∩= 𝐴= . 
Hence, the sequence (𝑥=)  converges to the point 𝜉 ; quod erat 
demonstrandum. 
Corollary: ℝ% equipped with the Euclidean metric 𝑑y is a complete metric 
space. 
Proof: Firstly, we shall prove that (ℝ, 𝑑y) is a complete metric space. 
Let (𝑥%) be a Cauchy sequence. Then, by definition, for any 𝜀 > 0, there 
exists a natural number 𝑛@  such that 𝑑(𝑥6, 𝑥%) = |𝑥6 − 𝑥%| < 𝜀  for all 
𝑚,𝑛 ≥ 𝑛@. 
For 𝜀 = "

#
> 0 , let 𝑛)  be the smallest natural number such that |𝑥6 −

𝑥%| <
"
#
 for all 𝑚,𝑛 ≥ 𝑛). 

For 𝜀 = "
##
> 0 , let 𝑛"  be the smallest natural number such that |𝑥6 −

𝑥%| <
"
##

 for all 𝑚,𝑛 ≥ 𝑛". 
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Continuing in the same way for 𝜀 = "
#$0"

> 0, we realize that there exists a 

smallest natural number 𝑛< such that |𝑥6 − 𝑥%| <
"

#$0"
 for all 𝑚,𝑛 ≥ 𝑛<. 

Thus, 𝑛) < 𝑛" < 𝑛# < ⋯ < 𝑛< < ⋯ Then we come up with the sequence 
�𝑥%$�, which is a subsequence of (𝑥%). Now, we shall show that �𝑥%$� is 
convergent. For this purpose, let us consider closed intervals 𝐼< =
Ú𝑥%$ −

"
#$
, 𝑥%$ +

"
#$
Ü , and then 𝐼<B" = Ú𝑥%$0" −

"
#$0"

, 𝑥%$0" +
"

#$0"
Ü , for 

any 𝑘. Now, we shall show that the sequence (𝐼<) is decreasing, that is, the 
diameter of 𝐼<  tends to 0 as 𝑘 → ∞. Since �𝑥%$�  is a subsequence of a 
Cauchy sequence, namely, of  (𝑥%), it follows that �𝑥%$� is also a Cauchy 
sequence, and, therefore, for 𝜀 = "

#$0"
> 0 , there must exist a natural 

number 𝑛′′  such that Ö𝑥%$0" − 𝑥%$Ö <
"

#$0"
 for all 𝑛<B", 𝑛< ≥ 𝑛′′ , so that 

− "
#$0"

< 𝑥%$0" − 𝑥%$ <
"

#$0"
. Then, we observe the following: 

− "
#$0"

< 𝑥%$0" − 𝑥%$,                                                                               (1) 
and 
𝑥%$0" − 𝑥%$ <

"
#$0"

.                                                                                   (2) 

Inequality (1) implies that 𝑥%$ −
"

#$0"
< 𝑥%$0" ⇒ 𝑥%$ −

"
#$
+ "

#$
− "

#$0"
<

𝑥%$0" ⇒ 𝑥%$ −
"
#$
+ #E"

#$0"
< 𝑥%$0" ⇒ 𝑥%$ −

"
#$
+ "

#$0"
< 𝑥%$0" ⇒ 𝑥%$ −

"
#$
< 𝑥%$0" −

"
#$0"

⇒ 𝑥%$ −
"
#$
< 𝑥%$0" −

"
#$0"

< 𝑥%$0" +
"

#$0"
 .              (3) 

Inequality (2) implies that 𝑥%$0" < 𝑥%$ +
"

#$0"
⇒ 𝑥%$0" < 𝑥%$ +

"
#$
− "

#$
+

"
#$0"

⇒ 𝑥%$0" < 𝑥%$ +
"
#$
− #E"

#$0"
⇒ 𝑥%$0" < 𝑥%$ +

"
#$
− "

#$0"
⇒ 𝑥%$0" +

"
#$0"

< 𝑥%$ +
"
#$

.                                                                                         (4) 
Combining inequalities (3) and (4), we obtain: 
𝑥%$ −

"
#$
< 𝑥%$0" −

"
#$0"

< 𝑥%$0" +
"

#$0"
< 𝑥%$ +

"
#$
⇒ Ú𝑥%$0" −

"
#$0"

, 𝑥%$0" +
"

#$0"
Ü ⊆ Ú𝑥%$ −

"
#$
, 𝑥%$ +

"
#$
Ü ⇒ 𝐼<B" ⊆ 𝐼<  for all 𝑘 . Hence, 

(𝐼<) is a decreasing sequence of closed intervals. Moreover, 𝑑𝑖𝑎𝑚(𝐼<) =
𝑠𝑢𝑝V,W∈f$𝑑(𝑥, 𝑦) = 𝑠𝑢𝑝V,W∈f$|𝑥 − 𝑦| = 𝑥%$ +

"
#$
− Ã𝑥%$ −

"
#$
Ä = 𝑥%$ +

"
#$
− 𝑥%$ +

"
#$
⇒ 𝑑𝑖𝑎𝑚(𝐼<) =

#
#$

, and, thus, 𝑑𝑖𝑎𝑚(𝐼<) =
"

#$2"
, which tends 

to 0 as 𝑘 → ∞. By Cantor’s Intersection Theorem, ∩< 𝐼< will have exactly 
one point, say 𝜉, that is, ∩< 𝐼< = {𝜉}. Then 𝜉 must belong to 𝐼< for all 𝑘, 
that is, 𝜉 ∈ Ú𝑥%$ −

"
#$
, 𝑥%$ +

"
#$
Ü for all 𝑘, meaning that Ö𝑥%$ − 𝜉Ö ≤

"
#$

 for 
all 𝑘. Hence, Ö𝑥%$ − 𝜉Ö → 0 as 𝑘 → ∞, so that 𝑥%$ → 𝜉 as 𝑘 → ∞, that is, 
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�𝑥%$� is a convergent subsequence of (𝑥%), and, therefore, (𝑥%) is also 
convergent, which proves the completeness of (ℝ, 𝑑y). 
Now, we shall use the completeness of (ℝ, 𝑑y) in order to deduce the 
completeness of (ℝ%, 𝑑y). Recall that (ℝ%, 𝑑y) is the set of all real 𝑛-
tuples (𝑥", 𝑥#, … , 𝑥%) endowed with the metric 
𝑑(𝑥, 𝑦) = Ù(𝑥" − 𝑦")# + (𝑥# − 𝑦#)# +⋯+ (𝑥% − 𝑦%)#, 
where 𝑥 = (𝑥", 𝑥#, … , 𝑥%) and 𝑦 = (𝑦", 𝑦#, … , 𝑦%) are elements of ℝ% . In 
order to prove the completeness of (ℝ%, 𝑑y), it suffices to prove that every 
Cauchy sequence in (ℝ%, 𝑑y)  is convergent. Let (𝑥%)  be a Cauchy 
sequence in ℝ%, whose terms are real 𝑛-tuples, namely: 
the first term of (𝑥%) is 𝑥" = (𝑥"", 𝑥#", … , 𝑥%"); 
the second term of (𝑥%) is 𝑥# = (𝑥"#, 𝑥##, … , 𝑥%#); 

⋮ 
the 𝑝th term of (𝑥%) is 𝑥F = �𝑥"

F, 𝑥#
F, … , 𝑥%

F�; 
⋮ 

the 𝑞th term of (𝑥%) is 𝑥H = �𝑥"
H , 𝑥#

H , … , 𝑥%
H�; 

⋮ 
Since (𝑥%) is a Cauchy sequence, it holds that, given any 𝜀 > 0, there 
exists an 𝑟 ∈ ℕ such that, for all 𝑝, 𝑞 ≥ 𝑟, 

𝑑(𝑥F, 𝑥H) < 𝜀 ⇒ 0�𝑥"
F − 𝑥"

H�# +⋯+ �𝑥%
F − 𝑥%

H�# < 𝜀 ⇒ �𝑥"
F − 𝑥"

H�# +

⋯+ �𝑥%
F − 𝑥%

H�# < 𝜀#. Snce this is a summation of positive numbers, each 
term is less than 𝜀#, namely, for all 𝑝, 𝑞 ≥ 𝑟, and for each 𝑖 = 1,2, … , 𝑛, it 
holds that 
�𝑥=

F − 𝑥=
H�# < 𝜀# ⇒ Ö𝑥=

F − 𝑥=
HÖ < 𝜀, 

by taking the square root. Hence, we have proved that, for each 𝑖 =
1,2, … , 𝑛 , �𝑥=

F�  is a Cauchy sequence in ℝ  (i.e., each component is a 
Cauchy sequence). Due to the completeness of (ℝ, 𝑑y), the sequence �𝑥=

F� 
converges to some 𝑥=  for each 𝑖 = 1,2, … , 𝑛 . Set 𝑥 = (𝑥", 𝑥#, … , 𝑥%) , 
which obviously belongs to ℝ% . Given any 𝜀 > 0, we have T

√%
> 0. Set 

T
√%
= 𝜀@ . Given this 𝜀@ , and since �𝑥=

F�  converges to 𝑥=  for each 𝑖 =
1,2, … , 𝑛, it holds that, for each 𝑖 = 1,2, … , 𝑛, there exists an 𝑟= ∈ ℕ such 
that Ö𝑥=

F − 𝑥=Ö < 𝜀@ for all 𝑝 ≥ 𝑟=. Let 𝑟 = 𝑚𝑎𝑥{𝑟", 𝑟#, … , 𝑟%}. Then 
Ö𝑥=
F − 𝑥=Ö < 𝜀@ = T

√%
 for all 𝑝 ≥ 𝑟 and for all 𝑖. Hence, 
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𝑑(𝑥F, 𝑥) = 0�𝑥"
F − 𝑥"�

# + �𝑥#
F − 𝑥#�

# +⋯+ �𝑥%
F − 𝑥%�

# <

0T#

%
+ T#

%
+⋯+ T#

%
= 0𝑛 T#

%
= 𝜀, for all 𝑝 ≥ 𝑟.  

In other words, 𝑑(𝑥F, 𝑥) < 𝜀  for all 𝑝 ≥ 𝑟 , and this means that (𝑥%) 
converges to 𝑥, which, in turn, means that (ℝ%, 𝑑y) is complete.■ 
 
Compactness: In real analysis, the property known as the “local 
compactness of ℝ” states that every bounded sequence has a convergent 
subsequence (this result was proved in Chapter 2). The local compactness 
of ℝ highlights the significance of bounded closed intervals, since every 
sequence (𝑥%) in a bounded closed interval [𝑎, 𝑏] has a subsequence �𝑥%$� 
that is convergent to a point in [𝑎, 𝑏]. Given a metric space (𝑋, 𝑑), a subset 
𝐴 of 𝑋 is said to be “compact” if and only if every sequence (𝑥%) in 𝐴 has 
a subsequence �𝑥%$� that is convergent to a point of 𝐴.  
For instance, given a metric space (𝑋, 𝑑) , any finite subset 𝐴 =
{𝑥<|𝑘 = 1,2, … , 𝑛} is a compact set: in any infinite sequence formed from 
members of 𝐴, at least one of the values must appear infinitely many 
times, because, if each value appears only finitely many times, then the 
sequence itself would be a finite number of values appearing finitely many 
times, that is, it would be finite, which contradicts the assumption that it is 
infinite; and, therefore, one of the values appears infinitely many times. 
Then the subsequence that is formed by the value that appears infinitely 
many times is obviously convergent to a point of 𝐴.  
On the other hand, for instance, in ℝ with the usual metric, the subset 
(0,1] is not compact: the sequence Ã"

%
Ä converges to 0, which is not a point 

of (0,1] , and, thus, all subsequences of Ã"
%
Ä  converge to 0 , and no 

subsequence of Ã"
%
Ä converges to a point of (0,1]. 

Consider a metric space (𝑋, 𝑑) and a subset 𝐴 of 𝑋. A collection of subsets 
{𝑈<} of 𝑋 is called a “cover” for 𝐴 if 𝐴 ⊆∪< 𝑈<. For instance, if 𝑈" is the 
set of all odd numbers (1,3,5, …), if 𝑈#  is the set of all even numbers 
(0,2,4,6, … ), and if 𝒞 = {𝑈", 𝑈#} , then every element of the set 𝑈 =
{0,1,2,3,4,5,6} belongs either to 𝑈"  or to 𝑈# , that is, 𝑈 ⊂ 𝑈" ∪ 𝑈# , and, 
therefore, 𝒞 is a cover of the set 𝑈. Moreover, another simple example is 
the following: the collection 𝒞 = {(−𝑛, 𝑛)|𝑛 ∈ ℕ} is an open cover of ℝ, 
since ℝ ⊆∪%∈ℕ (−𝑛, 𝑛).  
Any subcollection of {𝑈<} that is itself a cover for 𝐴 is called a “subcover” 
for 𝐴. A cover is called “finite” if it contains only a finite number of sets. 



 
 

 

229 

A cover 𝒞 of a set 𝑆 is said to be an “open cover” of 𝑆 if each member of 
𝒞 is an open set. 
Let us consider the closed interval 𝑈 = {𝑥 ∈ ℝ|0 ≤ 𝑥 ≤ 1}. If 𝜀 > 0 is 
fixed, then the collection 𝒞 = {(𝛼 − 𝜀,𝛼 + 𝜀)|𝛼 ∈ 𝑈} is an open cover of 
𝑈 . This open cover provides many subcovers. For instance, we may 
choose the family 𝒞 ′ = e(𝛽 − 𝜀,𝛽 + 𝜀)|𝛽 ∈ {𝑥 ∈ ℚ|0 ≤ 𝑥 ≤ 1}f, which is 
an open cover of 𝑈 , since every irrational number 𝑥 ∈ [0,1]  can be 
approximated to within 𝜀 by some rational number, and 𝒞 ′ is a subset of 𝒞, 
meaning that 𝒞 ′  is a subcover of 𝑈 . Similarly, the family 𝒞 ′′ =
e(𝛾 − 𝜀, 𝛾 + 𝜀)|𝛾 ∈ {𝑥 ∈ ℚ~|0 ≤ 𝑥 ≤ 1}f is an open cover of 𝑈 , and it 
consists of uncountably many sets. 
Thus, given a metric space (𝑋, 𝑑), a subset 𝐴 is “compact” (or “ball cover 
compact”) if every cover for 𝐴 by open balls with centers in 𝐴 has a finite 
subcover. It is easily seen that this definition of compactness, which is 
based on the notions of a cover and a finite subcover, is semantically 
equivalent to the definition of compactness that is based on the notions of 
a convergent sequence and a convergent subsequence (in the former case, 
we think in terms of collections of open balls, while, in the latter, we think 
in terms of sequences of points and the limit of a sequence). Notice that 
the definition of convergence and the fact that open balls are open sets in a 
metric space imply that every convergent sequence in a metric space has 
an open cover consisting of open balls centered at the limit point. 
In general, if a subset 𝐴 of a metric space (𝑋, 𝑑) is compact, then it is: (i) 
bounded and (ii) closed.  
Proof: (i) For the sake of contradiction, let 𝐴 be an unbounded subset of 
(𝑋, 𝑑). Then, given an 𝑥) ∈ 𝐴, it holds that, for each natural number 𝑛, 
there exists an 𝑥% ∈ 𝐴 such that 𝑑(𝑥%, 𝑥)) > 𝑛. Hence, the sequence (𝑥%)  
in 𝐴  is unbounded, and, therefore, every subsequence of (𝑥%)  is 
unbounded. This fact implies that no subsequence of (𝑥%)  can be 
convergent, and, therefore, 𝐴  is not compact, which contradicts the 
hypothesis. 
(ii) For the sake of contradiction, suppose that 𝐴 is not bounded. Then 
there exists a cluster point 𝑥)  of 𝐴  in 𝑋 − 𝐴 , and, thus, there exists a 
sequence (𝑥%)  in 𝐴  that converges to 𝑥) , which is a point of 𝑋 − 𝐴 . 
Moreover, all subsequences of (𝑥%)  converge to 𝑥) ∈ 𝑋 − 𝐴 , and, 
therefore, no subsequence of (𝑥%) converges to a point of 𝐴, meaning that 
𝐴 is not compact, which contradicts the hypothesis.■ 
However, a closed and bounded subset of a metric space (𝑋, 𝑑) need not 
be compact. For instance, consider a metric space (ℝ, 𝑑) where 𝑑 is the 
discrete metric, and let 𝐴 = [0,1]. Then the subset 𝐴 = [0,1] of (ℝ, 𝑑) is 
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closed and bounded but not compact: I have already mentioned that, in a 
discrete metric space, every set is both open and closed. Moreover, I have 
already mentioned that, in a discrete metric space, every set is bounded. 
Then 𝐴 is a closed and bounded subset of ℝ with the discrete metric 𝑑. 
Now, we shall prove that 𝐴  is not compact. Let 𝐾 = e{𝑥}|𝑥 ∈ 𝐴f  be a 
collection of open sets in the discrete metric space (ℝ, 𝑑), where by the 
definition of a discrete metric space, we are allowed to call the sets {𝑥} 
open. Obviously, 𝐴 =∪V∈( {𝑥}, meaning that 𝐾  is an open cover of 𝐴 . 
Thus, we have to prove that 𝐾 has no finite subcover for 𝐴, in order to 
prove that 𝐴 is not compact. For the sake of contradiction, suppose that 𝐾 
has a finite subcover for 𝐴 , say 𝐾@ = e{𝑥"}, {𝑥#}, … , {𝑥%}f . Then this 
means that 𝐾@ can also cover 𝐴, that is, 𝐴 =∪=>"% {𝑥=} = {𝑥"} ∪ {𝑥#} ∪ …∪
{𝑥%} = {𝑥", 𝑥#, … , 𝑥%}. But, by hypothesis, 𝐴 = [0,1], which has infinitely 
many elements, whereas {𝑥", 𝑥#, … , 𝑥%} is a finite set, and, therefore, 𝐴 ≠
∪=>"% {𝑥=}. This contradiction proves that 𝐾 has no finite subcover for 𝐴, 
and, therefore, 𝐴 is not compact. 
Nevertheless, in real analysis, compact sets have a very simple 
characterization, which is known as the Heine–Borel theorem (named after 
the German mathematician Eduard Heine and the French mathematician 
Émile Borel). 
Heine–Borel Theorem: Every open cover of a closed and bounded set in ℝ 
equipped with the Euclidean metric 𝑑y  admits a finite subcover, and, 
therefore, by the definition of a compact set, such a set is compact. 
Moreover, every compact set in ℝ equipped with the Euclidean metric 𝑑y 
is closed and bounded. Hence, 

(𝑐𝑙𝑜𝑠𝑒𝑑	𝑎𝑛𝑑	𝑏𝑜𝑢𝑛𝑑𝑒𝑑) ⇔ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 
in (ℝ, 𝑑y). 
Proof: Let 𝑆 be a closed and bounded set, and let 𝒞 = {𝑈�|𝛼 ∈ 𝒜} be an 
open cover of 𝑆, so that 𝑆 ⊆∪�∈𝒜 𝑈�. Moreover, because 𝑆 is bounded (by 
hypothesis), there exist two real numbers 𝑎 and 𝑏 such that 𝑆 ⊆ [𝑎, 𝑏]. For 
the sake of contradiction, assume that 𝑆 does not have a finite subcover. 
Let us bisect [𝑎, 𝑏]  at 𝑐 , so that we obtain two subintervals [𝑎, 𝑐]  and 
[𝑐, 𝑏]. Then at least one of these subintervals contains a subset of 𝑆 that 
does not have a finite subcover, and we rename this subinterval as [𝑎", 𝑏"]. 
The length of [𝑎", 𝑏"] is 𝑏" − 𝑎" =

0E1
#

. Subsequently, we bisect [𝑎", 𝑏"] at 
point 𝑐", and we select that subinterval as [𝑎#, 𝑏#] which contains a subset 
of 𝑆  that does not have a finite subcover. Repeating this process of 
bisection and selection, we obtain nested closed intervals [𝑎%, 𝑏%], where 
𝑛 = 1,2,…, such that:  
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i. the length of [𝑎%, 𝑏%], which is equal to 0E1
#'

, tends to 0 as 𝑛 → ∞, 
and  

ii. each [𝑎%, 𝑏%] contains a subset of 𝑆 that does not have a finite 
subcover. 

Hence, applying Cantor’s Intersection Theorem, we obtain [𝑎%, 𝑏%] ⊂
(𝜀 − 𝛿, 𝜀 + 𝛿)  for 𝛿 > 0 , and ∩%∈ℕ [𝑎%, 𝑏%] = {𝜀} , so that 𝜀  is an 
accumulation point of the set 𝑆. Because 𝑆 is a closed set (by hypothesis), 
𝜀 ∈ 𝑆. Moreover, 𝒞 is an open cover of 𝑆, so that, for some 𝑛, 𝜀 ∈ 𝑈%, and, 
since 𝑈%  is an open set, 𝜀 ∈ (𝜀 − 𝛿, 𝜀 + 𝛿) ⊂ 𝑈% . Hence, condition (i) 
implies that [𝑎%, 𝑏%] ⊂ 𝑈%  for some 𝑛 , so that [𝑎%, 𝑏%]  is covered by a 
single member 𝑈% of 𝒞, which contradicts condition (ii). Therefore, 𝑆 has 
a finite subcover.  
Regarding the converse (i.e., the statement that every compact set is closed 
and bounded), I have already proved that, if a subset 𝐴 of any metric space 
(𝑋, 𝑑) is compact, then it is: (i) bounded and (ii) closed (in our proof, we 
used the concepts of a convergent sequence and a convergent 
subsequence).■ 
Remark: The above theorem is due to Émile Borel (1871–1956), who gave 
its formal statement in 1895. The reason for attaching Heine’s name is that 
Eduard Heine (1821–81) used the underlying idea in 1872 in order to 
prove that a real function which is continuous on a finite closed interval is 
uniformly continuous. As we did in the proof of the completeness of 
(ℝ%, 𝑑y) , we can generalize the Heine–Borel theorem in (ℝ%, 𝑑y) . 
Therefore, we obtain the following characterization of compact sets: a set 
𝑆 in (ℝ%, 𝑑y) is closed and bounded if and only if it is compact, that is, 
every open cover of 𝑆 admits a finite subcover (for 𝑆). 
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Chapter 8 
Infinitesimal Calculus:  

Functions, Limits, Continuity, the Topology 
of ℝ𝒏, Differentiation, and Integration 

 
“Infinitesimal calculus” is a branch of mathematics that concerns itself 
with the systematic study of the concept of an “infinitely small function,” 
a function of a variable 𝑥  whose absolute value, |𝑓(𝑥)| , becomes and 
remains smaller than any given number as a result of variation of 𝑥. The 
method of the “infinitesimals” (“infinitely small” quantities), whose origin 
can be traced back to ancient Greek mathematicians, underpins the 
analytic way of thinking. The analytic way of thinking is based on the 
awareness that, when we treat geometric figures and the motions of 
physical bodies as “wholes,” we cannot demonstrate significant apparent 
similarities between them, but, when we analyze them into (sufficiently) 
“small” pieces, they display great similarities to each other. Hence, the 
major problem of seventeenth-century mathematics consisted of 
determining the proper processes for dividing the “whole” into “small” 
parts, which would be more easily and more rigorously studied than the 
“whole,” as well as of determining the proper processes for reassembling 
the behavior of the “whole” from the behavior of its “small” parts. In 
particular, the “small” parts into which an object of scientific research is 
divided are similar to the “small” parts into which another object of 
scientific research is divided, and, thus, we can formulate generalizations 
(scientific laws) as the dimensions of such “small” parts tend to zero 
(hence, we have to work with “infinitesimals”). 
The ancient Greek mathematician and physicist Archimedes can be 
considered to be the most important ancient pioneer of infinitesimal 
calculus. Some other great pioneers of infinitesimal calculus are the 
Flemish Jesuit and mathematician Gregory of Saint Vincent (1584–1667), 
the Dutch-French philosopher and mathematician René Descartes (1596–
1650), the Italian mathematician and Jesuate Bonaventura Francesco 
Cavalieri (1598–1647), the French lawyer and amateur mathematician 
Pierre de Fermat (1607–65), the English clergyman and mathematician 
John Wallis (1616–1703), the English Christian theologian and 
mathematician Isaac Barrow (1630–77), and the Scottish mathematician 
and astronomer James Gregory (1638–75). 
Infinitesimal calculus is primarily aimed at solving problems concerning 
“change.” Thus, infinitesimal calculus is used in many scientific 
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disciplines, including physics, engineering, biology, economics, statistics, 
mathematical psychology, neuroscience, and strategic studies (including 
warfare problems and arms races). In the seventeenth century, 
infinitesimal calculus was erected as a rigorous framework of science as a 
result of the revolutionary achievements that took place in the scientific 
discipline of celestial mechanics, whose protagonists were Nicolaus 
Copernicus, Galileo Galilei, Tycho Brahe, Johannes Kepler, and Isaac 
Newton. In its contemporary rigorous form, infinitesimal calculus was 
formulated independently in England by Isaac Newton and in Germany by 
Gottfried Wilhelm Leibniz in the last quarter of the seventeenth century, 
using the algebraic set-up and, especially, the Cartesian set-up, which had 
been introduced and developed by their predecessors.  
 

Functions 
 

Whenever, by a known value of one quantity, we can find the value of 
another quantity, we say that there is a “functional dependence” between 
these quantities. For instance, if the length 𝑥 of the side of a square is 
known, then its area can be found by the formula 𝐴 = 𝑥#. In this way, we 
specify the functional dependence between the length of the side of a 
square and its area.  
As already explained, the specification of a “numerical function” requires 
a set of numbers 𝑋 and a rule 𝑓, according to which every number 𝑥 that 
belongs to the set 𝑋 is associated with a certain number (the value of the 
function). An independent variable taking on values from the set 𝑋 is said 
to be the “argument” of the function. Given a member 𝑎 of the set 𝑋, the 
value of the function 𝑓 for the argument 𝑎 is denoted by 𝑓(𝑎).  
If a function 𝑓 is specified on a set 𝑋, then the set 𝑋 is said to be the 
“domain” of this function, and the set of all the values of the function is 
said to be its “range.” As already mentioned, a function 𝑓: 𝑋 → 𝑌 assigns 
to each element 𝑥 ∈ 𝑋 exactly one element 𝑦 ∈ 𝑌.  
We can read the expression 𝑦 = 𝑓(𝑥) as follows: “𝑦 is a function of 𝑥,” 
meaning that, as the variable 𝑥 varies, the variable 𝑦 also varies according 
to some rule 𝑓 ; in this case, 𝑦  is the dependent variable, and 𝑥  is the 
independent variable.  
Analytic representation of a function: Assume that we are given a 
collection of operations that must be performed with the argument 𝑥 in 
order to obtain a function value. Then the function is said to be represented 
by an “analytic expression.” For instance, consider the following 
functions: 𝑦 = 𝑥# + 𝑥 + 1 , 𝑥 ∈ [0,1] ; 𝑦 = 𝑥# + 𝑥 + 1 , 𝑥 ∈ [−2,3] ; and 
𝑦 = 𝑥# + 𝑥 + 1, 𝑥 ∈ (−∞,+∞). Even though the analytic expressions of 
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these functions are the same in form, we have three different functions, 
because they are defined on three different sets (their domains are 
different). 
Graphical representation of a function: Assume that a function 𝑓 is given 
by an analytic expression 𝑓(𝑥), that is, 𝑦 = 𝑓(𝑥) with 𝑥 ∈ 𝑋, where 𝑋 is 
the corresponding real interval, on which 𝑓 is defined. The “graph” of the 
function 𝑓 is a set of points of the coordinate plane that have coordinates 
�𝑥, 𝑓(𝑥)�, where 𝑥 ∈ 𝑋. If a function is even, then its graph is symmetric 
with respect to the axis of ordinates (i.e., its graph remains unchanged 
after reflection about the 𝑦-axis). If a function is odd, then its graph is 
symmetric about the origin.  
A function 𝑦 = 𝑓(𝑥) is defined to be “increasing” on its domain if, for any 
two of its points 𝑥"  and 𝑥#  such that 𝑥" < 𝑥# , the inequality 𝑓(𝑥") ≤
𝑓(𝑥#) is satisfied; in other words, if to a greater value of the argument 
there corresponds a greater value of the function. If 𝑓(𝑥") < 𝑓(𝑥#) 
whenever 𝑥" < 𝑥#, then the fuction 𝑓(𝑥) is called “strictly increasing.” A 
function 𝑦 = 𝑓(𝑥) is defined to be “decreasing” on its domain if, for any 
two of its points 𝑥"  and 𝑥#  such that 𝑥" < 𝑥# , the inequality 𝑓(𝑥") ≥
𝑓(𝑥#)  is satisfied; in other words, if a smaller value of the function 
corresponds to a greater value of the argument. If 𝑓(𝑥") > 𝑓(𝑥#) 
whenever 𝑥" < 𝑥#, then the fuction 𝑓(𝑥) is called “strictly decreasing.” 
A function 𝑓 is said to have a “period” 𝑇 if, for any value of 𝑥 for which 𝑓 
is defined, the following equalities hold:  
𝑓(𝑥 − 𝑇) = 𝑓(𝑥) = 𝑓(𝑥 + 𝑇). 
The aforementioned definition implies that, if a function 𝑓 with period 𝑇 is 
defined at the point 𝑥, it is also defined at the points 𝑥 + 𝑇 and 𝑥 − 𝑇. If a 
function 𝑓 has a non-zero period 𝑇, then it is said to be “periodic.” For 
instance, if time is measured in years, then the distance from the Earth to 
the Sun is given by a periodic function whose period is equal to 1. In 
general, the period of a periodic function represents the interval of 𝑥 
values on which one copy of the repeated pattern occurs. For instance, the 
functions 𝑠𝑖𝑛𝑥 and 𝑐𝑜𝑠𝑥 have period 2𝜋, and the functions 𝑡𝑎𝑛𝑥 and 𝑐𝑜𝑡𝑥 
have period 𝜋. “Frequency” is defined to be the reciprocal of period, that 
is, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = "

FZJ=X;
= 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑡𝑖𝑚𝑒. 

One of the simplest functions is the “linear function” (or “linear 
equation”), where 𝑦 = 𝑚𝑥 + 𝑐 . In this, 𝑦 and 𝑥  are “variables” (that is, 
they can take on many values), while 𝑚 and 𝑐 are “constants” (that is, they 
have fixed values). As already explained, if we plot 𝑦  against 𝑥  on a 
diagram, the result will be a straight line, hence the name. A “nonlinear 
function” (“nonlinear equation”) is any other sort of function (equation). 
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For instance, 𝑦 = 𝑥# is a quadratic equation that is downward-sloping for 
negative values of 𝑥  and upward-sloping for positive values of 𝑥 . 
Functions come in many forms, and they are very useful as models of the 
real world when they are simple or can be satisfactorily approximated by, 
or manipulated into simple forms. 
 

The Limit of a Function 
 

The concept of a limit, or a limiting process, is central to all mathematical 
analysis. In fact, one can argue that, from the perspective of mathematical 
analysis, “analysis” means taking limits. In his book entitled Cours 
d’analyse, the French mathematician Augustin-Louis Cauchy (1789–
1857), one of the founders of modern mathematical analysis, explained the 
concept of a limit of a function in a clear, formal, and arithmetic, rather 
than geometric, way by arguing as follows: “when the successive values 
attributed to a variable approach indefinitely a fixed value so as to end by 
differing from it by as little as one wishes, this last is called the limit of all 
the others” (quoted in: Boyer, The History of Calculus and Its Conceptual 
Development, p. 272). 
Consider an arbitrary function 𝑓(𝑥)  defined at all values in an open 
interval of the number line ℝ containing a point 𝑥) , with the possible 
exception of 𝑥) itself, and let 𝐿 be a real number. The “limit of a function” 
𝑓(𝑥)  at a point 𝑥)  is 𝐿  if and only if the values of 𝑥  (where 𝑥 ≠ 𝑥)) 
approach the number 𝑥)  (notice that 𝑓(𝑥))  may not be defined, since, 
according to the definition of a limit, 𝑥 tends to 𝑥), but 𝑥 never becomes 
equal to 𝑥)). In other words, as 𝑥 gets closer to 𝑥), 𝑓(𝑥) gets closer and 
stays close to 𝐿; symbolically: 
𝑙𝑖𝑚V→V6𝑓(𝑥) = 𝐿.  
Remark: Let 𝑎 be a real number and 𝑐 a constant. Then 
𝑙𝑖𝑚V→1𝑥 = 𝑎, and 
𝑙𝑖𝑚V→1𝑐 = 𝑐. 
Let us recall that the distance between any two points 𝑎  and 𝑏  on the 
number line ℝ is |𝑎 − 𝑏|. Therefore, the statement 

|𝑓(𝑥) − 𝐿| < 𝜀 
means that the distance between 𝑓(𝑥) and 𝐿 is less than 𝜀 , and, by the 
definition of an absolute value, the statement 

0 < |𝑥 − 𝑎| < 𝛿 
is equivalent to the statement  

𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿, so that 𝑥 ≠ 𝑎. 
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Thus, the Cauchy epsilon-delta definition of a limit is the following: 
assume that, for all 𝑥 ≠ 𝑎, an arbitrary function 𝑓(𝑥) is defined over an 
open interval containing 𝑎. Then  

𝑙𝑖𝑚V→1𝑓(𝑥) = 𝐿 
if and only if, for every 𝜀 > 0 , there exists a 𝛿 > 0  such that, if 0 <
|𝑥 − 𝑎| < 𝛿 , then |𝑓(𝑥) − 𝐿| < 𝜀 . The statement (with the universal 
quantifier) “for every 𝜀 > 0” means “for every positive distance 𝜀 from 
𝐿”; the statement (with the existential quantifier) “there exists a 𝛿 > 0” 
means that there is a positive distance 𝛿  from 𝑎 ; and the conditional 
statement “if 0 < |𝑥 − 𝑎| < 𝛿 , then |𝑓(𝑥) − 𝐿| < 𝜀” means that, if 𝑥  is 
closer than 𝛿 to 𝑎, and 𝑥 ≠ 𝑎, then the value of 𝑓(𝑥) is closer than 𝜀 to 𝐿. 
Hence, in the 1-dimensional Euclidean metric space, the Cauchy epsilon-
delta definition of a limit means that, if, for each 𝜀 > 0, there exists a 
sufficiently small 𝛿 > 0 such that, for all points 𝑥 that belong to an open 
1-dimensional ball centered at 𝑎 and of radius 𝛿 , except possibly for 𝑎 
itself (i.e., this open 1-dimensional ball is a deleted neighborhood of 𝑎), 
the vale of 𝑓(𝑥) belongs to an open 1-dimensional ball centered at 𝐿 and 
of radius 𝜀, then we say that the limit of 𝑓(𝑥) as 𝑥 tends to 𝑎 is 𝐿 (recall 
that an open ball in ℝ is an open interval).  
Limit laws: If  𝑙𝑖𝑚V→1𝑓(𝑥) = 𝐿" and 𝑙𝑖𝑚V→1𝑔(𝑥) = 𝐿#, then: 
𝑙𝑖𝑚V→1�𝑓(𝑥) ± 𝑔(𝑥)� = 𝑙𝑖𝑚V→1𝑓(𝑥) ± 𝑙𝑖𝑚V→1𝑔(𝑥) = 𝐿" ± 𝐿#; 
𝑙𝑖𝑚V→1�𝑓(𝑥)𝑔(𝑥)� = 𝑙𝑖𝑚V→1𝑓(𝑥)𝑙𝑖𝑚V→1𝑔(𝑥) = 𝐿"𝐿#; 
𝑙𝑖𝑚V→1

](V)
:(V)

= 4=65→/](V)
4=65→/:(V)

= �"
�#

, provided that 𝐿# ≠ 0. 
Squeeze Theorem: Suppose that, for all 𝑥 ∈ [𝑝, 𝑞] (except possibly at 𝑥 =
𝑎 ), it holds that 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ(𝑥) . Moreover, suppose that 
𝑙𝑖𝑚V→1𝑔(𝑥) = 𝑙𝑖𝑚V→1ℎ(𝑥) = 𝐿  for some 𝑝 ≤ 𝑎 ≤ 𝑞 . Then 
𝑙𝑖𝑚V→1𝑓(𝑥) = 𝐿. 
Proof: The Squeeze Theorem follows from the definition of the limit of a 
function as follows: By the definition of limits,  
𝑙𝑖𝑚V→1𝑔(𝑥) = 𝐿 means that 
∀𝜀 > 0, ∃𝛿" > 0||𝑥 − 𝑎| < 𝛿" ⇒ |𝑔(𝑥) − 𝐿| < 𝜀. 
Hence, |𝑥 − 𝑎| < 𝛿" ⇒ −𝜀 < 𝑔(𝑥) − 𝐿 < 𝜀.                                           (1) 
Similarly, 𝑙𝑖𝑚V→1ℎ(𝑥) = 𝐿 means that 
∀𝜀 > 0, ∃𝛿# > 0||𝑥 − 𝑎| < 𝛿# ⇒ |ℎ(𝑥) − 𝐿| < 𝜀. 
Hence, |𝑥 − 𝑎| < 𝛿# ⇒ −𝜀 < ℎ(𝑥) − 𝐿 < 𝜀.                                           (2) 
By hypothesis, 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ(𝑥), and, thus,  
𝑔(𝑥) − 𝐿 ≤ 𝑓(𝑥) − 𝐿 ≤ ℎ(𝑥) − 𝐿. 
Choosing 𝛿 = 𝑚𝑖𝑛{𝛿", 𝛿#}, and using inequalities (1) and (2), we obtain 
the following results: whenever |𝑥 − 𝑎| < 𝛿,  
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−𝜀 < 𝑔(𝑥) − 𝐿 ≤ 𝑓(𝑥) − 𝐿 ≤ ℎ(𝑥) − 𝐿 < 𝜀 ⇒ −𝜀 < 𝑓(𝑥) − 𝐿 < 𝜀 ⇒
𝑙𝑖𝑚V→1𝑓(𝑥) = 𝐿.■ 
The small angle approximation: A very important limit is the following:  
𝑙𝑖𝑚V→)

p=%V
V
= 1, 

which can be restated as follows: 𝑠𝑖𝑛𝑥 ≈ 𝑥 for small 𝑥, meaning that, for 
small values of angle 𝑥 , the sine of 𝑥  is approximately equal to 𝑥 . 
Following Leonhard Euler’s Foundations of Differential Calculus, we can 
prove this limit geometrically by thinking as follows: Consider the unit 
circle, centered at (0,0) of radius equal to 1. Let 𝑥 be the length of an arc 
along the unit circle, from the point (1,0) in a counter-clockwise direction 
to some point (𝑐𝑜𝑠𝑥, 𝑠𝑖𝑛𝑥)  on the circle. Then, obviously, 𝑠𝑖𝑛𝑥  is the 
height of this point above the 𝑥-axis. Now, let us imagine what happens if 
𝑥 → 0. Then the arc is just an infinitely short vertical line, and the height 
of the endpoint above the 𝑥-axis is just the length of the arc. Hence, when  
𝑥 → 0, 𝑠𝑖𝑛𝑥 ≈ 𝑥, meaning that 𝑙𝑖𝑚V→)

p=%V
V
= 1. 

Corollary: 𝑙𝑖𝑚V→)
5XpVE"

V
= 0. Proof: Using the above result, we work as 

follows: 
𝑙𝑖𝑚V→)

5XpVE"
V

= 𝑙𝑖𝑚V→)
(5XpVE")(5XpVB")

V(5XpVB")
= 𝑙𝑖𝑚V→)

5Xp#VE"
V(5XpVB")

. 
Recall that 𝑐𝑜𝑠#𝑥 + 𝑠𝑖𝑛#𝑥 = 1 ⇒ 𝑐𝑜𝑠#𝑥 − 1 = −𝑠𝑖𝑛#𝑥. 
Hence, the last equation becomes  
𝑙𝑖𝑚V→)

5XpVE"
V

= 𝑙𝑖𝑚V→)
Ep=%#V

V(5XpVB")
= 𝑙𝑖𝑚V→) ÚÃ

p=%V
V
Ä Ã Ep=%V

5XpVB"
ÄÜ =

𝑙𝑖𝑚V→)
p=%V
V
𝑙𝑖𝑚V→)

Ep=%V
5XpVB"

= (1)(0) = 0. 
 
We can adapt the above definition of a limit to define a limit of a function 
in 𝑛-variables, that is, in the 𝑛-dimensional Euclidean metric space, as 
follows: if, for each 𝜀 > 0, there exists a sufficiently small 𝛿 > 0 such 
that, for all points (𝑥", … , 𝑥%) that belong to an open 𝑛-dimensional ball 
centered at (𝑎", … , 𝑎%) and of radius 𝛿 , except possibly for (𝑎", … , 𝑎%) 
itself (i.e., this open 𝑛 -dimensional ball is a deleted neighborhood of 
(𝑎", … , 𝑎%)), the vale of 𝑓(𝑥", … , 𝑥%) is less than 𝜀 away from 𝐿, then we 
say that the limit of 𝑓(𝑥", … , 𝑥%) as (𝑥", … , 𝑥%) approaches (𝑎", … , 𝑎%) is 
𝐿; symbolically: 
𝑙𝑖𝑚(V",…,V')→(1",…,1')𝑓(𝑥", … , 𝑥%) = 𝐿. 
For instance, in ℝ#, the limit of 𝑓(𝑥", 𝑥#) as (𝑥", 𝑥#) approaches (𝑎", 𝑎#) 
is 𝐿, written 𝑙𝑖𝑚(V",V#)→(1",1#)𝑓(𝑥", 𝑥#) = 𝐿, if and only if, for each 𝜀 > 0, 
there exists a sufficiently small 𝛿 > 0 such that, for all points (𝑥", 𝑥#) in 
an open 2-dimensional ball (i.e., in an open disc) centered at (𝑎", 𝑎#) and 
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of radius 𝛿, except possibly for (𝑎", 𝑎#) itself, the value of 𝑓(𝑥", 𝑥#) is less 
than 𝜀  away from 𝐿 , that is, |𝑓(𝑥", 𝑥#) − 𝐿| < 𝜀  whenever 0 <
Ù(𝑥" − 𝑎")# + (𝑥# − 𝑎#)# < 𝛿. 
The same limit laws hold for functions in 𝑛-variables. 
 

Continuity, Topological Structures, and 
Homeomorphisms 

 
In Chapter 7, I defined “continuity” and “uniform continuity” using the 
concept of distance (i.e., in the context of metric spaces). In this section, I 
shall revisit the concept of continuity in order to study some more details 
regarding the definition of this concept and its difference from the 
definition of a limit, as well as in order introduce the concept of a 
topological structure, which enables us to define continuity without 
depending on a metric. Moreover, I shall explain the meaning of a 
homeomorphism, which is an isomorphism in the category of topological 
spaces.  
Consider a function 𝑓 whose domain is 𝐷]. Let 𝑎 be an interior point of 
𝐷]. Then 𝑓 is said to be “continuous at the point” 𝑎 if and only if 
𝑙𝑖𝑚V→1𝑓(𝑥) exists finitely and 
𝑙𝑖𝑚V→1𝑓(𝑥) = 𝑓(𝑎), 
meaning: if and only if the limit of 𝑓(𝑥) as 𝑥 tends to 𝑎 is equal to the 
value of 𝑓(𝑥) at 𝑎. If 𝑎 is a boundary point of 𝐷]  (i.e., in this case, an 
endpoint of a closed interval), then we distinguish the following two cases:  

i. if 𝐷] = (𝑥", 𝑎], then 𝑓(𝑥) is said to be “continuous from the left” 
at 𝑎 if 𝑙𝑖𝑚V→12𝑓(𝑥) = 𝑓(𝑎); 

ii. if 𝐷] = [𝑎, 𝑥#) , then 𝑓(𝑥)  is said to be “continuous from the 
right” at 𝑎 if 𝑙𝑖𝑚V→10𝑓(𝑥) = 𝑓(𝑎). 

The aforementioned definition of continuity (known as the limit definition 
of continuity) can also be given in the following equivalent forms: 

(i) A function 𝑓  is continuous at 𝑎 ∈ 𝐷]  if and only if, for every 
sequence (𝑥%) with 𝑙𝑖𝑚%→'𝑥% = 𝑎, where 𝑥% ∈ 𝐷] , it holds that 
𝑙𝑖𝑚%→'𝑓(𝑥%) = 𝑓(𝑎). As I explained in Chapter 2, an infinite 
sequence (𝑥%) of real numbers 𝑥", 𝑥#, … , 𝑥%  has a limit 𝑎 if and 
only if the distance |𝑥% − 𝑎| tends to zero as the indices of the 
terms of this sequence become greater than some value 𝑛). This 
means that, after a finite set of 𝑛)  terms of this sequence, the 
remaining infinitely many terms of the given sequence, namely, 
𝑥%6B", 𝑥%6B#, 𝑥%6B*, …, converge indefinitely to the value 𝑎. The 
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sequential definition of continuity was originally developed by the 
German mathematician Eduard Heine (1821–81).  

(ii) A function 𝑓 is continuous at 𝑥 = 𝑎 ∈ 𝐷] if and only if:  
 ∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀.  

A function 𝑓 is said to be “continuous over (or on, or in) an open interval” 
(𝑥", 𝑥#) if 𝑓 is continuous at every point in that interval (𝑥" may be −∞, 
and/or 𝑥# may be +∞). A function 𝑓 is said to be “continuous over (or on, 
or in) the closed interval” [𝑥", 𝑥#] if the following conditions hold: firstly, 
𝑓 is continuous at every 𝑥 in the open interval (𝑥", 𝑥#); secondly,	𝑓(𝑥") 
and 𝑓(𝑥#)  both exist; and, thirdly, 𝑙𝑖𝑚V→V"0𝑓(𝑥) = 𝑓(𝑥") , and 
𝑙𝑖𝑚V→V#2𝑓(𝑥) = 𝑓(𝑥#).  
If we compare the definition of the limit of a function with the definition 
of the continuity of a function, we realize that they have the same 
structure, but they also have the following differences:  

i. In the case of the limit of a function (Cauchy epsilon-delta 
definition), we have 0 < |𝑥 − 𝑎| < 𝛿, or	𝑥 ≠ 𝑎, whereas, in the 
case of continuity, we have only |𝑥 − 𝑎| < 𝛿, meaning that the 
definition of continuity holds also when 𝑥 = 𝑎.  

ii. Instead of the value 𝐿 that is used in the definition of the limit of a 
function, the definition of the continuity of a function uses the 
value𝑓(𝑎) , meaning that, in the case of the continuity of a 
function, the function must be defined at the point 𝑎. Indeed, it is 
meaningless to talk about the continuity (or the discontinuity) of a 
function at a point that does not belong to its domain.  

iii. In the definition of the limit of a function (Cauchy epsilon-delta 
definition), the point 𝑎  must be an accumulation point of the 
domain 𝐷]  of the corresponding function. Therefore, it may not 
belong to	𝐷] . However, in the definition of the continuity of a 
function, the point 𝑎  must belong to the domain 𝐷]  of the 
corresponding function.  

For instance, notice that every polynomial function is continuous 
everywhere, since: constant functions are continuous, 𝑥  (the identity 
mapping) is continuous, multiplication is continuous, addition is 
continuous, and composition of continuous functions is continuous. 
Polynomials are precisely functions obtained by repeatedly composing 
addition, multiplication, constants, and 𝑥.  
Let 𝐴 ⊆ ℝ� . Then a function 𝑓: 𝐴 → ℝ is said to be “continuous” at a 
point 𝑃) ∈ 𝐴 if and only if: for every 𝜀 > 0, there exists a 𝛿 > 0 such that, 
for every 𝑃 ∈ 𝐴  with ‖𝑃𝑃)‖ < 𝛿 , it holds that ‖𝑓(𝑃) − 𝑓(𝑃))‖ < 𝜀 . 
Equivalently, we can say that a function 𝑓: 𝐴 → ℝ , where 𝐴 ⊆ ℝ� , is 
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continuous at a point 𝑃)(𝑥"@ , 𝑥#@ , … , 𝑥%@ ) ∈ 𝐴 if and only if: for every 𝜀 > 0, 
there exist 𝛿= > 0 , 𝑖 = 1,2, … , 𝑛 , such that, for every point 
𝑃(𝑥", 𝑥#, … , 𝑥%) ∈ 𝐴 with |𝑥= − 𝑥=@| < 𝛿=, 𝑖 = 1,2, … , 𝑛, it holds that  
‖𝑓(𝑥", 𝑥#, … , 𝑥%) − 𝑓(𝑥"@ , 𝑥#@ , … , 𝑥%@ )‖ < 𝜀. 
A third equivalent definition of the continuity of a function in 𝑛  real 
variables is the following: Let 𝐴 ⊆ ℝ� , and let 𝐴@  be the set of the 
accumulation points of 𝐴. Then a function 𝑓: 𝐴 → ℝ is continuous at a 
point 𝑃) ∈ 𝐴 ∩ 𝐴@ if and only if 𝑙𝑖𝑚K→K6𝑓(𝑃) = 𝑓(𝑃)). 
 
Properties of continuous functions: If a function 𝑓  is continuous at 𝑥) , 
which belongs to the domain of 𝑓, and if 𝑓(𝑥)	) ≠ 0, then there exists a 
neighborhood of 𝑥)  (specifically, there exists an open and bounded 
interval centered at 𝑥)) wherein 𝑓(𝑥) ≠ 0. In other words, there exists a 
𝛿 > 0 such that 𝑓(𝑥) ≠ 0 for all 𝑥 ∈ 𝑁Q(𝑥)) ∩ 𝐷], where 𝑁Q(𝑥)) denotes 
a 𝛿-neighborhood of 𝑥), and 𝐷] denotes the domain of 𝑓. In particular, if 
𝑓(𝑥)) > 0 (resp. 𝑓(𝑥)) < 0), then 𝑓(𝑥) > 0 (resp. 𝑓(𝑥) < 0) for all 𝑥 ∈
𝑁Q(𝑥)) ∩ 𝐷]. Proof: Given that 𝑓 is continuous at 𝑥), it holds that 
∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑥)| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥))| < 𝜀, 
where 𝑥 is any element of the domain of 𝑓. Since 𝑓(𝑥)	) ≠ 0, if we set 
𝜀 = "

#
|𝑓(𝑥)	)|, then we shall get 

|𝑓(𝑥) − 𝑓(𝑥))| <
"
#
|𝑓(𝑥)	)|, ∀𝑥 ∈ 𝐷] with |𝑥 − 𝑥)| < 𝛿, so that 

𝑓(𝑥)) −
"
#
|𝑓(𝑥)	)| < 𝑓(𝑥) < 𝑓(𝑥)) +

"
#
|𝑓(𝑥)	)|. 

Hence, if 𝑓(𝑥)) > 0, then 𝑓(𝑥) > 𝑓(𝑥)) −
"
#
𝑓(𝑥)	) =

"
#
𝑓(𝑥)	) > 0, and, if 

𝑓(𝑥)) < 0 , then 𝑓(𝑥) < 𝑓(𝑥)) −
"
#
𝑓(𝑥)	) =

"
#
𝑓(𝑥)	) < 0 , ∀𝑥 ∈ 𝐷]  with 

|𝑥 − 𝑥)| < 𝛿, that is, ∀𝑥 ∈ 𝑁Q(𝑥)) ∩ 𝐷], quod erat demonstrandum. 
Given two functions 𝑓  and 𝑔  that have the same domain, if they are 
continuous at 𝑥), which is an element of their common domain, then the 
functions  
𝑘𝑓 (for any constant 𝑘), 
𝑓 ± 𝑔,  
𝑓 ∙ 𝑔,  
|𝑓|, and  
 ]
:
 (with 𝑔 ≠ 0) 

are also continuous at 𝑥). These properties follow directly from the limit 
definition of continuity and the properties of limits. Moreover, given that 
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𝑚𝑖𝑛{𝑓, 𝑔} = "
#
(𝑓 + 𝑔 − |𝑓 − 𝑔|)  and 𝑚𝑎𝑥{𝑓, 𝑔} = "

#
(𝑓 + 𝑔 + |𝑓 − 𝑔|) , 

the above properties of continuity imply that, if 𝑓 and 𝑔 are continuous at 
𝑥), then 𝑚𝑖𝑛{𝑓, 𝑔} and 𝑚𝑎𝑥{𝑓, 𝑔} are also continuous at 𝑥). 
If 𝑓 and 𝑔 are functions such that 𝑔 is continuous at 𝑥) and 𝑓 is continuous 
at 𝑔(𝑥)), then the composition 𝑓�𝑔(𝑥)� is continuous at 𝑥); since, given a 
convergent sequence 𝑥% , 	𝑛 ∈ ℕ , with 𝑥% → 𝑥) , the fact that 𝑔(𝑥)  is 
continuous implies that 𝑔(𝑥%) → 𝑔(𝑥)) as 𝑥% → 𝑥), and the fact that 𝑓(𝑥) 
is continuous implies that 𝑓�𝑔(𝑥%)� → 𝑓(𝑔(𝑥))	) as 𝑥% → 𝑥), as required. 
 
Discontinuities: In intuitive terms, a function is said to be continuous if it 
varies with no abrupt breaks or jumps. Hence, points of continuity are 
characterized by the fact that, for small changes in the argument, the value 
of the function changes but little, whereas points of discontinuity are 
characterized by the fact that, for small changes in the argument, the 
function can change considerably. For instance, consider a load that is 
suspended on a thread above a table. Due to this load (supposed to be a 
material particle), the thread extends, and the distance 𝑙 from the load to 
the point of thread suspension is a function of the mass 𝑚 of the load, 
symbolically, 𝑙 = 𝑓(𝑚), where 𝑚 ≥ 0. For small changes in the mass of 
the load, the distance 𝑙 will change but little. But, if the mass of the load 
approaches the tensile strength 𝑚) of the thread, then a small increase in 
the mass of the load may cause a break in the thread. Thus, the distance 𝑙 
will increase jump-wise and become equal to the distance 𝐿  from the 
suspension point to the surface of the table. On the half-closed interval 
[0,𝑚)), the graph of the function 𝑙 = 𝑓(𝑚) is a continuous line, and, at 
the point 𝑚) , it suffers a discontinuity. Consequently, we get a graph 
consisting of two branches: at all points except 𝑚), the function 𝑙 = 𝑓(𝑚) 
is continuous, in the sense that it exhibits a smooth change. At the point 
𝑚), however, it has a discontinuity, in the sense that it exhibits a jump-
wise change. In Figure 8-1, we see an example of a “jump discontinuity.” 
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Figure 8-1: Jump discontinuity. 
 

 
 
In case of a “jump discontinuity,” the right-hand limit and the left-hand 
limit both exist, but they are not equal. In fact, the size of the jump is the 
difference between the right-hand limit and the left-hand limit. For 
instance, the piecewise function 

𝑓(𝑥) = {
1	𝑖𝑓	𝑥 < 0
2	𝑖𝑓𝑥 > 0  

has a jump discontinuity at 𝑥 = 0, where the value of the function changes 
suddenly from 1 to 2.  
In case of an “infinite discontinuity,” the one-sided limits exist, and at 
least one of them is equal to ±∞. A common example of a function with 
an infinite discontinuity is the function 𝑓(𝑥) = "

V
, which has a vertical 

asymptote at 𝑥 = 0. The function 𝑓(𝑥) = "
V
 is continuous on (0,∞) and on 

(−∞, 0), but it has a single point of discontinuity, namely, 𝑥 = 0, and, in 
particular, it has an infinite discontinuity there.  
 
Continuity on a Closed Interval: If a function 𝑓: [𝑎, 𝑏] → ℝ is continuous 
on the closed interval [𝑎, 𝑏] , then 𝑓  is bounded in [𝑎, 𝑏] . Proof: This 
theorem means that that, if 𝑓: [𝑎, 𝑏] → ℝ , is continuous on the closed 
interval [𝑎, 𝑏], then there exists an 𝑀 > 0 such that, for all 𝑥 ∈ [𝑎, 𝑏], it 
holds that |𝑓(𝑥)| ≤ 𝑀. For the sake of contradiction, suppose that this 
does not hold, so that, for any 𝑀 > 0, there exists some 𝑥 ∈ [𝑎, 𝑏] such 
that |𝑓(𝑥)| > 𝑀. For 𝑀 = 𝑛, in particular, let’s assume that there exists a 
sequence 𝑥% ∈ [𝑎, 𝑏]  with |𝑓(𝑥%)| > 𝑛 . The sequence 𝑥% , 𝑛 ∈ ℕ , is 
bounded, since 𝑎 ≤ 𝑥% ≤ 𝑏  for all 𝑛 ∈ ℕ . Therefore, by the Bolzano–
Weierstrass Theorem (proved in Chapter 2), there exists a convergent 
subsequence, say 𝑥<' , 𝑛 ∈ ℕ, with 𝑙𝑖𝑚%→'𝑥<' = 𝑥). Because 𝑥) ∈ [𝑎, 𝑏] 
and 𝑓 is continuous at 𝑥), it must hold that 𝑙𝑖𝑚%→'𝑓�𝑥<'� = 𝑓(𝑥)) ∈ ℝ. 
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Hence, 𝑓�𝑥<'�  is convergent and, therefore, bounded. But this result 
contradicts the assumed property that Ö𝑓�𝑥<'�Ö > 𝑘% . Consequently, 𝑓 is 
bounded in [𝑎, 𝑏], quod erat demonstrandum.  
Weierstrass’s Extreme Value Theorem: If a function 𝑓: [𝑎, 𝑏] → ℝ  is 
continuous on the closed interval [𝑎, 𝑏], then 𝑓 attains its supremum (least 
upper bound) and infimum (greatest lower bound) in [𝑎, 𝑏] . Proof: 
According to the previous theorem, continuity of a function on a closed 
interval implies boundedness of the function. Therefore, 𝑓: [𝑎, 𝑏] → ℝ is 
bounded in [𝑎, 𝑏] , meaning that it has a supremum, say 𝑀 , and an 
infimum, say 𝑚. We shall prove that there exist 𝑥� and 𝑥6 in [𝑎, 𝑏] such 
that 𝑓(𝑥�) = 𝑀  and 𝑓(𝑥6) = 𝑚 . If, for the sake of contradiction, we 
assume that there exists no 𝑥� ∈ [𝑎, 𝑏]  such that 𝑓(𝑥�) = 𝑀 , then it 
should hold that 𝑓(𝑥) < 𝑀 for all 𝑥 ∈ [𝑎, 𝑏]. Then 𝑀− 𝑓(𝑥) is positive 
and continuous on [𝑎, 𝑏]. Moreover, the function 
𝑔(𝑥) = "

�E](V)
, 𝑥 ∈ [𝑎, 𝑏], 

is continuous on [𝑎, 𝑏] and, therefore, bounded. Because it is positive, it 
has a positive supremum, say 𝑘, so that  
𝑔(𝑥) = "

�E](V)
≤ 𝑘, ∀𝑥 ∈ [𝑎, 𝑏], 

which implies that 𝑓(𝑥) ≤ 𝑀 − "
<
< 𝑀 for all 𝑥 ∈ [𝑎, 𝑏]. This means that 

𝑀− "
<
 is an upper bound of the range of 𝑓 strictly smaller than 𝑀. But this 

is impossible, because 𝑀 = 𝑠𝑢𝑝(𝑓). Therefore, there exists an 𝑥� ∈ [𝑎, 𝑏] 
such that 𝑓(𝑥�) = 𝑀. The proof for the infimum is similar; quod erat 
demonstrandum.  
The Intermediate Value Theorem (due to Bolzano and Cauchy): Suppose 
that a function 𝑓: [𝑎, 𝑏] → ℝ is continuous on the closed interval [𝑎, 𝑏] and 
𝑓(𝑎) ≠ 𝑓(𝑏). If 𝑁 is any value between 𝑓(𝑎) and 𝑓(𝑏), then there exists 
an 𝑥) ∈ (𝑎, 𝑏)  such that 𝑓(𝑥)) = 𝑁 . Proof: Without loss of generality, 
suppose that 𝑓(𝑎) < 𝑓(𝑏)  and 𝑓(𝑎) < 𝑁 < 𝑓(𝑏)  (we can work 
analogously in case 𝑓(𝑎) > 𝑓(𝑏) ). Let’s consider the set 𝐴 =
{𝑥 ∈ [𝑎, 𝑏]|𝑓(𝑥) ≤ 𝑁}. Then 𝐴 ≠ ∅, since 𝑎 ∈ 𝐴 and 𝐴 is bounded from 
above by 𝑏. Hence, the supremum of 𝐴 exists, and let 𝑠𝑢𝑝(𝐴) = 𝑥). We 
shall prove that 𝑓(𝑥)) = 𝑁. Indeed, if 𝑓(𝑥)) > 𝑁, then 𝑥) > 𝑎, and, since 
𝑓 is continuous at 𝑥), there exists some 𝜀 > 0 such that 𝑓(𝑥) > 𝑁 over the 
interval 𝑥) − 𝜀 < 𝑥 ≤ 𝑥) (since I have already proved that, if a function 𝑓 
is continuous at 𝑥) and 𝑓(𝑥)	) ≠ 0, then there exists a neighborhood of 𝑥) 
wherein 𝑓(𝑥) ≠ 0, and, in particular, if 𝑓(𝑥)) > 0 (resp. 𝑓(𝑥)) < 0), then 
𝑓(𝑥) > 0  (resp. 𝑓(𝑥) < 0 ) for all 𝑥  in the intersection of this 
neighborhood of 𝑥  and the domain of 𝑓). Therefore, 𝑥) − 𝜀  is an upper 



 

 

244 

bound for 𝐴 , which contradicts the assumption that 𝑠𝑢𝑝(𝐴) = 𝑥) . If 
𝑓(𝑥)) < 𝑁 , then 𝑥) < 𝑏 , and, since 	𝑓  is continuous at 𝑥) , there exists 
some 𝜀 > 0  such that 𝑓(𝑥) < 𝑁  over the interval 𝑥) ≤ 𝑥 < 𝑥) + 𝜀 , 
meaning that there exist values of 𝑥 that are greater than 𝑥) and belong to 
𝐴  for which it holds that 𝑓(𝑥) < 𝑁  and, therefore, 𝑥) ≠ 𝑠𝑢𝑝(𝐴) , thus 
contradicting our assumption that 𝑠𝑢𝑝(𝐴) = 𝑥) . Consequently, 𝑓(𝑥)) =
𝑁, quod erat demonstrandum.  
Corollary 1: If a function 𝑓: [𝑎, 𝑏] → ℝ  is continuous on the closed 
interval [𝑎, 𝑏] and 𝑘 ∈ ℝ such that 
𝑖𝑛𝑓�𝑓([𝑎, 𝑏])� ≤ 𝑘 ≤ 𝑠𝑢𝑝�𝑓([𝑎, 𝑏])�, 
then there exists an 𝑥) ∈ [𝑎, 𝑏] such that 𝑓(𝑥)) = 𝑘. In other words, every 
continuous function defined on a closed and bounded interval takes on all 
the values between its smallest value and its largest value in this interval. 
This corollary follows from the above Intermediate Value Theorem, given 
that, by Weierstrass’s Extreme Value Theorem, there exist 𝑥� and 𝑥6 in 
[𝑎, 𝑏] such that 𝑖𝑛𝑓�𝑓([𝑎, 𝑏])� = 𝑓(𝑥6) ≤ 𝑘 ≤ 𝑓(𝑥�) = 𝑠𝑢𝑝�𝑓([𝑎, 𝑏])�. 
Corollary 2: In case, 𝑁 = 0 , the above Intermediate Value Theorem 
reduces to the following corollary, known as Bolzano’s theorem: If a 
function 𝑓: [𝑎, 𝑏] → ℝ  is continuous on the closed interval [𝑎, 𝑏]  and 
𝑓(𝑎) ∙ 𝑓(𝑏) < 0, then there exists some 𝑥) ∈ (𝑎, 𝑏) such that 𝑓(𝑥)) = 0. 
Remark: The geometric significance of the above-mentioned Intermediate 
Value Theorem is the following: If the graph of a continuous function 
passes from one side of a horizontal line to the other, then it necessarily 
intersects that line somewhere. The geometric significance of the above-
mentioned Bolzano’s theorem (Corollary 2) is the following: If a 
continuous function on [𝑎, 𝑏] has values of opposite sign at the interval’s 
endpoints, then it has at least one root in that interval. 
 
Continuity and the Topology of ℝ%: The epsilon-delta definition of a limit 
and the definition of continuity that is based on the epsilon-delta definition 
of a limit, as well as, generally, the study of limits and continuity in the 
context of metric spaces, depend on the concept of distance and assume 
that we have a clear rule for measuring distances. Moreover, these 
definitions are based on the concept of closeness. Thus, one may ask 
whether we can go up to such a high level of abstraction that we can 
rigorously define the continuity of a function in terms of closeness alone, 
without having to resort to distance measurement, that is, without having a 
metric. The answer to this question is positive and is one of the 
fundamental topics studied in topology.  
Topology is a highly abstract kind of qualitative geometric knowledge, in 
the sense that it deals with the qualitative concept of nearness to spaces 
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that might be conceptually close, without, however, using the quantitative 
concept of a distance function. Hence, intuitively, topology offers tools to 
model the concept of nearness in a set. In the context of topology, instead 
of using a ruler, we can think of two points 𝑥 and 𝑦 as being near each 
other if there are many open sets that contain both 𝑥 and 𝑦, whereas, if 
there are no open sets containing two given points, then these two points 
are far apart (of course, the whole space is considered to be an open set 
containing every point under consideration). It is conventional to call the 
qualitative properties “topological properties.”  
In order to understand what we mean by the qualitative properties of 
geometric figures, one can imagine a solid sphere to be a rubber ball that 
can be stretched and shrunk in any manner without being torn or gluing 
any two of its points together. Such transformations of a sphere are called 
homeomorphisms, and the different replicas that can be obtained as a 
result of homeomorphisms are said to be homeomorphic to each other. In 
other words, “homeomorphisms” are isomorphisms in the category of 
topological spaces. Hence, the qualitative properties of the sphere are 
those that it shares with all its homeomorphic replicas, that is, those which 
are preserved under homeomorphisms. For instance, one of the qualitative 
(“topological”) properties of the sphere is its integrity, namely, 
“connectedness.” 
In few words, “topology” is the study of continuous shapes, and it is 
mainly preoccupied with properties that survive continuous deformation. 
In topology, we are allowed to deform objects, and, as long as we deform 
them continuously, we agree that they are topologically the same. From 
the topological point of view, it doesn’t matter if we bend, distort, or twist 
a geometric figure. To the topologist, homeomorphic spaces are 
indistinguishable, in the sense that they have the same topological 
properties (the term “homeomorphic” means being equal in the topological 
sense). 
For instance, a topologist is not concerned with the differences between a 
circle and a square, since, from a topologist’s perspective, both a circle 
and a square are just simple closed curves (a curve is said to be “simple” if 
it does not cross itself, and a curve is said to be “closed” if it has no 
endpoints and, thus, forms a closed loop). A topologist is interested in 
those properties of a thing that, while they are in a sense geometric, are the 
most permanent, namely, the ones that will remain invariant after bending, 
distorting, or twisting a geometric figure. The roundness of a circle will 
not remain invariant, because we can tie or glue the ends of a bit of string 
together and make it into a circle, and, subsequently, without cutting or 
disconnecting it, we can make it into a square. But the facts that a circle 
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has no endpoints and does not cross itself remain invariant (and, thus, 
every simple closed plane curve is homeomorphic to a circle). The 
straightness of a straight line is not a topological property (since, in 
topology, a straight line does not have to remain straight in the Euclidean 
sense, since it may be drawn on a globe and become a “geodesic”), but a 
straight line retains the quality of being continuously connected along 
itself, and it is this connectedness and this continuity that topology holds 
on to; and for this reason, in topology, deformations are only allowed if 
one does not disconnect what was connected, nor connect what was not. 
As I mentioned in Chapter 7, the concept of connectedness generalizes an 
intuitive concept of the wholeness or unseparatedness of a geometric 
figure, and the concept of a disconnected space generalizes the concept of 
the negation of wholeness, that is, separatedness. 
According to the topological concept of a homeomorphism, we can take a 
doughnut-shaped (or, formally, a torus-shaped) lump of clay and make up 
a mug with a handle, and vice versa, without any tearing or gluing 
together, thus showing that a doughnut and a mug with a handle are 
topologically equivalent (the hole in the doughnut corresponds to the hole 
in the mug’s handle), as shown in Figure 8-2. In view of Figure 8-2, the 
torus can be construed as a surface of revolution (revolving a small circle 
along a line made by a bigger circle) and, equivalently, as the solid sphere 
with one handle. By contrast, a round lump of clay without a hole (i.e., a 
solid sphere without a handle) and a mug with a handle are not 
topologically equivalent, because a round lump of clay cannot be 
transformed into such a mug (with a handle) without giving it a handle, 
and, since a round lump of clay (solid sphere) does not have a hole, it 
cannot be continuously deformed into a mug, which has a hole in the 
handle. 
In topology, an object is said to be “simply connected” if and only if (like 
the lump of clay without a hole) it consists of one piece and does not have 
any “holes” that pass all the way through it. Notice that neither a doughnut 
(torus) nor a mug (with a handle) is simply connected, but a round lump of 
clay (solid sphere) is simply connected, in the sense that it can 
(continuously) contract to a point.  In other words, connectedness can be 
defined as follows: a space is “connected” if and only if there are no two 
open sets that cover the entire space and have no points in common; 
whereas “simple connectedness” can be defined as follows: a space is said 
to be “simply connected” if and only if it is connected and every simple 
closed curve in the space can be continuously shrunk to a single point (i.e., 
in a simply connected domain 𝐷 , every simple closed curve within it 
encloses only points of 𝐷). 
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Figure 8-2: A homeomorphism between a mug (with a handle) and a doughnut 
(source: Wikimedia Commons: Author: CHW; 
https://commons.wikimedia.org/wiki/Category:Homeomorphisms#/media/File:Ho
meo_tasse.png). 
 

 
 
Some of the most important pioneers and founders of topology are the 
French mathematician, epistemologist, and theoretical physicist Henri 
Poincaré (1854–1912), the German mathematician Felix Hausdorff (1868–
1942), and the Soviet mathematicians Pavel Sergeyevich Alexandrov 
(1896–1982) and Andrey Nikolayevich Tikhonov (1906–93). 
Topology is the weakest structure (that is, the most “economical” structure 
in terms of assumptions) that can be established on a set and secure a good 
definition of continuity of mappings. By the term “topological space,” we 
mean a set endowed with a topology defined on it. By the term “topology” 
(or “topological structure”), we mean a collection of subsets of the given 
set that are declared to be open. In fact, the intention of defining and using 
open sets in the context of topology is to give a meaning for “nearby,” in 
the sense that two points are, in some sense, “nearby” if they are both in an 
open set. However, it does not suffice to declare a set open, since we want 
our open sets to have additional qualities, and we want to be able to 
perform set operations on them to preserve the given sets’ qualities. In 
fact, in ℝ%, the union of any collection of open sets is an open set, and the 
intersection of a finite collection of open sets is an open set. Thus, with 
these conditions and with the declarations that the empty set and the whole 
set are open sets, we come up with the “Euclidean topology” 𝒯y of ℝ%. In 
general, a topology endows a set with a structure based on the concept of a 
neighborhood, and, thus, a topology organizes a set into chunks of nearby 
points. The formal definition of a topology is the following: A “topology” 
𝒯 on a non-empty set 𝑋 is a collection of subsets of 𝑋, called open sets, 
such that: 

(T1)  the empty set, ∅, and 𝑋 are open, symbolically, ∅, 𝑋 ∈ 𝒯; 
(T2)  the union of any collection of open sets is open, symbolically, 

if 𝑈1 ∈ 𝒯 for 𝑎 ∈ 𝒜, then ∪1∈𝒜 𝑈1 ∈ 𝒯;  
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(T3)  the intersection of a finite collection of open sets is open, 
symbolically, if 𝑈= ∈ 𝒯 for 𝑖 = 1,2, … , 𝑛, then ∩=>"% 𝑈= ∈ 𝒯. 

Then the pair (𝑋,𝒯) is called a “topological space.” Whereas the concept 
of a metric space is based on the concept of a distance (or, more 
specifically, on the concept of a distance function), the concept of a 
topological space is based on the more abstract concept of closeness alone, 
or, more specifically, on the concept of a neighborhood. Notice that, if 𝑋 is 
a topological space and 𝑈 a subset, then 𝑈 is said to be “open” in 𝑋	if and 
only if, for each 𝑝 ∈ 𝑈, 𝑈 is a neighborhood of 𝑝; and a subset 𝑌 is said to 
be “closed” in 𝑋	if and only if 𝑋 − 𝑌 is open. 
For instance, given the set 𝑋 = {1,2,3,4,5} , the family 𝐹" =
e∅, 𝑋, {1}, {3,4}, {1,3,4}, {2,3,4}f is not a topology on 𝑋, because {1,3,4} 
and {2,3,4} belong to 𝐹", but {1,3,4} ∪ {2,3,4} = {1,2,3,4} ∉ 𝐹", whereas 
the family 𝐹# = e∅, 𝑋, {1}, {3,4}, {1,3,4}, {2,3,4,5}f is a topology on 𝑋 (it 
satisfies conditions (T1), (T2), and (T3)). 
In a metric space (𝑋, 𝑑), open sets are defined in terms of the metric 𝑑 as 
open balls as follows: 
(𝐴 ⊆ 𝑋, 𝐴	𝑜𝑝𝑒𝑛	𝑠𝑒𝑡) ⇔ (∀𝑥 ∈ 𝐴, ∃𝑟 > 0|𝐵J(𝑥) ⊆ 𝐴), 
where 𝐵J(𝑥) is an open ball centered at 𝑥 and of radius 𝑟 in the metric 
space (𝑋, 𝑑). Similarly, in a normed space (𝐸,‖∙‖), open sets are defined 
in terms of the norm ‖∙‖ as open balls as follows: 
(𝐴 ⊆ 𝐸, 𝐴	𝑜𝑝𝑒𝑛	𝑠𝑒𝑡) ⇔ (∀𝑥 ∈ 𝐴, ∃𝑟 > 0|𝐵J(𝑥) ⊆ 𝐴), 
where 𝐵J(𝑥) is an open ball centered at 𝑥 and of radius 𝑟 in the normed 
space (𝐸,‖∙‖). The so defined open sets satisfy the conditions (T1), (T2), 
and (T3) mentioned in the above definition of a topology, and, therefore, 
they define a topology on the corresponding metric or normed space, 
respectively.  
Notice that a metric space is a topological space with the properties 
required to define a metric (distance function), meaning that metric spaces 
have a richer structure than topological spaces. Hence, sameness of 
topology does not imply sameness of metric geometry.  
The “usual” or “standard” topology on the real line is the topology whose 
open subsets are (unions of) open intervals, that is, they are sets of the 
form {𝑥 ∈ ℝ|𝑎 < 𝑥 < 𝑏} , where 𝑎, 𝑏 ∈ ℝ ∪ {−∞,+∞} , and unions 
thereof (we have extended the order relation on ℝ by declaring that −∞ <
+∞, −∞ < 𝑥, and 𝑥 < +∞, for any 𝑥 ∈ ℝ). Notice that, in geometry, a 
“point at infinity,” or an “ideal point,” is an idealized limiting point that 
represents the “end” of each line, and, thus, a point at infinity completes a 
line into a topologically closed curve. The real line equipped with a point 
at infinity is called the “real projective line,” extending from an original 
point 0 to an ideal point ∞, as shown in Figure 8-3.  
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Figure 8-3: The real projective line (source: Wikimedia Commons: Author: 
DerSpezialist; https://commons.wikimedia.org/wiki/File:Projective_Reals.svg). 
 

 
 
Let 𝑓 be an one-to-one mapping of the extended real line into ℝ defined as 
follows: 
𝑓(−∞) = −1, 
𝑓(𝑥) = V

"B|V|
, 𝑥 ∈ ℝ, 

𝑓(+∞) = 1. 
Then the function 

𝑑(𝑥, 𝑦) = |𝑓(𝑥) − 𝑓(𝑦)|	∀𝑥, 𝑦 ∈ ℝ ∪ {−∞, +∞} 
is a metric on the extended real line, and the metric space of the extended 
real line is denoted by ℝ� . Notice that ℝ�  is isometric to the metric space 
that consists of the closed interval [−1,1] with the Euclidean metric 𝑑y 
(this metric space, which can be simply denoted by [−1,1], is called a 
subspace of ℝ). Arguably, the 𝑛-dimensional sphere is the simplest non-
Euclidean geometry. However, notice that Euclidean geometry is a local 
geometry on the sphere (in regions where the curvature of the sphere tends 
to zero), and the geometry on the sphere (Riemannian geometry) is a 
generalization of Euclidean geometry. 
Given a metric space (𝑋, 𝑑), the set of all open sets is a topology on 𝑋, and 
it is called the “metric topology” on 𝑋. The open sets of the Euclidean 
topology 𝒯y on ℝ% are given by arbitrary unions of the open balls 𝐵J(𝑝), 
defined as 𝐵J(𝑝) = {𝑥 ∈ ℝ%|𝑑y(𝑝, 𝑥) < 𝑟}, for all 𝑟 > 0 and for all 𝑝 ∈
ℝ%, where 𝑑y is the Euclidean metric. In fact, the circle 𝑆" is a topological 
space, in the sense that all the points that are on the circle lie in the set 𝑆", 
and, by analogy, the sphere 𝑆#, which is embedded in ℝ* and inherits the 
topology 𝒯y  from the embedding topological space (ℝ*,𝒯y) , is a 
topological space, too (a 2-sphere is an ordinary 2-dimensional sphere in 
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3-dimensional Euclidean space, and it is the boundary of an ordinary 3-
ball).  
Notice that, given a non-empty set 𝑋, the collection {∅, 𝑋}, consisting of 
the empty set and the whole set, is a topology on 𝑋, and it is known as the 
“trivial topology” on 𝑋. The power set ℘(𝑋) of 𝑋, consisting of all the 
subsets of 𝑋, is a topology on 𝑋, and it is called the “discrete topology” on 
𝑋. 
A topological space is called “Hausdorff” if and only if, for any two 
distinct points 𝑝 and 𝑞, there exist neighborhoods 𝑈 of 𝑝 and 𝑉 of 𝑞 such 
that 𝑈 ∩ 𝑉 = ∅  (i.e., distinct points are separated by disjoint 
neighborhoods). For instance, any Euclidean space is Hausdorff (the 
Euclidean topology is Hausdorff because, for any two distinct points in a 
Euclidean space, there exist disjoint open sets containing each point, and 
this property ensures that points can be separated). 
Consider a topological space 𝑋 and its subsets 𝐴 and 𝐵. As I have already 
mentioned, 𝐴 and 𝐵 are separated if and only if 𝐶𝑙𝑠(𝐴) ∩ B = ∅  and 𝐴 ∩
𝐶𝑙𝑠(𝐵) = ∅ , where 𝐶𝑙𝑠  denotes “closure.” A topological space 𝑋  is 
“disconnected” if and only if it can be represented as the union of two non-
empty separated sets, whereas a topological space not satisfying this 
condition is said to be “connected.” The simplest examples of connected 
topological spaces are a one-point space 𝑋 = {∗} and an arbitrary set 𝑋 
equipped with the “trivial topology” on 𝑋 . The simplest example of a 
disconnected topological space is a two-point set 𝑋  equipped with the 
“discrete topology” on 𝑋. 
If 𝑋 and 𝑌 are topological spaces, then a mapping 𝑓 from 𝑋 to 𝑌 is said to 
be a “continuous mapping” if and only if 𝑓E"(𝐴) is open in 𝑋 (i.e., 𝑓E"(𝐴) 
belongs to the topology of 𝑋) whenever 𝐴 is open in 𝑌 (i.e., 𝐴 belongs to 
the topology of 𝑌). Notice that 𝑓: 𝑋 → 𝑌 would be discontinuous if nearby 
points in the domain 𝑋  were sent far apart in the codomain 𝑌 ; and, 
reversing the direction of this statement, we require that all nearby points 
in 𝑋 must be nearby in 𝑌, thus securing the continuity of 𝑓: 𝑋 → 𝑌. 
Equivalently, we can say: If 𝑋  and 𝑌  are topological spaces, then a 
mapping 𝑓 from 𝑋 to 𝑌 is said to be a “continuous mapping” if and only if, 
given 𝑓(𝑥) ∈ 𝑌  and a neighborhood 𝑁](V)  of 𝑓(𝑥) , there exists a 
neighborhood 𝑁V  of 𝑥 such that 𝑓(𝑁V) ⊆ 𝑁](V). Therefore, the continuity 
of a mapping signifies the preservation of the nearness of points. 
According to Pavel Sergeyevich Alexandrov, topology was born more in 
connection with clarifying the foundations of mathematical analysis, and it 
is in essence the most abstract theory of continuity. In topology, the 
concept of continuity is based on the existence of relations that are defined 
as local or neighborhood relations. Thus, according to Alexandrov, a 
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topological space can be construed as a set in which certain subsets are 
defined and are associated to the points of the space as their 
neighborhoods. 
Geometry is concerned with the study of such concepts as length, angle, 
area, and volume, whereas topology is concerned with the study of 
“closeness,” or “connection,” so that geometry will inform you about the 
length and the direction of a path between two points, but topology will 
tell you whether or not there is a path between two points. In other words, 
geometry is the branch of mathematics that you use in order to answer 
questions like “how far is it to get from point 𝑥  to point 𝑦?” whereas 
topology is the branch of mathematics that you use in order to answer 
questions like “can I even get from point 𝑥 to point 𝑦?” Thus, topology is 
frequently described as the study of shapes that can be stretched, squished, 
and otherwise distorted while keeping nearby points together (no tearing is 
allowed). Whereas geometry deals with specific kinds of spaces, topology 
deals with the most general kind of space possible. Topology transcends 
the particularities of different geometries, and it studies a common 
conception of “space,” which amounts to considering one or more sets of 
objects (e.g., points, lines, etc.) endowed with a structure (namely, with a 
set of axioms describing the relations between these objects). Hence, a 
topological space can be intuitively construed as a geometric space in 
which “closeness” is defined in a rigorous way, but it cannot necessarily 
be measured in respect of a numeric distance. 
If a topological space admits a metric, then it is called “metrizable.” For 
instance, a metrizable topological space is ℝ endowed with the discrete 
topology. The discrete topology is induced by the discrete metric. 
However, if ℝ is endowed with the trivial topology 𝒯 = {𝑋, ∅}, then this 
topological space is not metrizable (in this case, the only closed subsets of 
ℝ are ∅ and the space ℝ, but we know that, in a metric space, singletons 
are closed sets; if (ℝ,𝒯) was metrizable, then its singletons should also be 
closed). 
Given two topological spaces, (𝑋",𝒯") and (𝑋#,𝒯#), a function 
𝑓: (𝑋",𝒯") → (𝑋#,𝒯#)  
is said to be a “homeomorphism” if and only if 𝑓 is a bijection (i.e., one-
to-one and onto), 𝑓  is continuous, and 𝑓E"  is continuous. If such a 
function exists, then the spaces 𝑋" and 𝑋# are said to be “homeomorphic” 
or “topologically equivalent” (they are actually, topologically speaking, 
the “same” space). Moreover, if the function 𝑓∗: 𝑋" → 𝑓(𝑋"), obtained by 
restricting the range of 𝑓 , is a homeomorphism, then 𝑓  is called an 
“embedding” of the space 𝑋"  into 𝑋#  (notice that 𝑓(𝑋")  carries the 
subspace topology inherited from 𝑋#). 
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Example 1: On the real (number) line with the usual (or standard) 
topology, the following open sets are homeomorphic (where 𝑎, 𝑏, 𝑐, 𝑑 ∈
ℝ): 

i. (𝑎, 𝑏)  and (𝑐, 𝑑) : The function 𝑓(𝑥) = ;E5
0E1

(𝑥 − 𝑎) + 𝑐 , 

where 𝑥 ∈ (𝑎, 𝑏) , with 𝑓E"(𝑦) = 0E1
;E5

(𝑦 − 𝑐) + 𝑎 , where 
𝑦 ∈ (𝑐, 𝑑), is a homeomorphism (notice that both 𝑓 and 𝑓E" 
are continuous, being linear functions). 

ii. (𝑎, 𝑏)  and ℝ : The function 𝑓(𝑥) = 𝑡𝑎𝑛 Ú o
0E1

Ã𝑥 − 1B0
#
ÄÜ , 

where 𝑥 ∈ (𝑎, 𝑏) , with 𝑓E"(𝑦) = 0E1
o
𝑡𝑎𝑛E"𝑦 + 1B0

#
, where 

𝑦 ∈ ℝ, is a homeomorphism (notice that both 𝑓 and 𝑓E" are 
continuous, because both 𝑡𝑎𝑛𝑥 and 𝑡𝑎𝑛E"𝑦 are continuous).  

iii. (𝑎, 𝑏)  and (𝑐, +∞) : The function 𝑓(𝑥) = "
VE1

+ 𝑐 − "
0E1

, 

where 𝑥 ∈ (𝑎, 𝑏) , with 𝑓E"(𝑦) = "
WE5B "

*2/
+ 𝑎 , where 𝑦 ∈

(𝑐, +∞), is a homeomorphism (notice that the continuity of 
both 𝑓 and 𝑓E" follows from the continuity of the function 
"
V
). 

iv. (𝑎, 𝑏)  and (−∞, 𝑐) : The function 𝑓(𝑥) = − "
VE1

+ 𝑐 + "
0E1

, 

where 𝑥 ∈ (𝑎, 𝑏) , with 𝑓E"(𝑦) = "
EWB5B "

*2/
+ 𝑎 , where 𝑦 ∈

(−∞, 𝑐), is a homeomorphism (notice that the continuity of 
both 𝑓 and 𝑓E" follows from the continuity of the function 
"
V
). 

Remark: The functions mentioned in the above four cases are not the 
only homeomorphisms between the corresponding sets, but they are 
simple in terms of operations, and this is the reason why I chose them 
in order to show that the corresponding sets are homeomorphic.  

Example 2: The 2-sphere is locally homeomorphic to the Euclidean plane, 
in the sense that, for each 𝑝 ∈ 𝑆#, there is a neighborhood 𝑈 of 𝑝 such that 
𝑈  is homeomorphic to ℝ# . In the 𝑋𝑌𝑍-coordinate system (i.e., in ℝ* ), 
consider a unit 2-sphere with the origin as the center, namely, a subset of 
points of ℝ* that satisfy |𝑝| = Ù𝑝"# + 𝑝## + 𝑝*# = 1. We denote the upper 
half of this sphere (i.e., 𝑧 > 0) whose pole is (0,0,1) by 𝑆B. It is easily 
noticed that each point (𝑞", 𝑞#, 𝑞*) ∈ 𝑆B  is projected to the point 
(𝑞", 𝑞#, 0) of an open disc 𝐷 of radius 1 in the 𝑋𝑌-plane (see also Figure 
6-16). The point (𝑞", 𝑞#, 0)  can be naturally identified with the point 
(𝑞", 𝑞#) ∈ ℝ# , since 𝐷  is a domain (an open disc) in ℝ#  consisting of 
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points (𝑢, 𝑣) such that 𝑢# + 𝑣# < 1. Thus, we obtain a homeomorphism 
(and, in fact, an embedding) 

𝑓:𝐷 → 𝑆# ⊂ ℝ* 
defined by 

𝑓(𝑢, 𝑣) = Ã𝑢, 𝑣,Ù1 − 𝑢# − 𝑣#Ä ≡ (𝑥, 𝑦, 𝑧) 
(it is easily seen that (𝑢, 𝑣) can be treated as coordinates of a point on the 
sphere). The pair (𝑓(𝐷), 𝑓E") constitutes a coordinate pair covering 𝑆B . 
By analogy, we can construct five other coordinate pairs by taking 
(0,0, −1), (0, ±1,0), or (±1,0,0) as the poles. In fact, each hemisphere is 
mapped by a homeomorphism onto an open disc, and the coordinates of 
the points in the disc can be used in order to describe coordinates of points 
in the corresponding hemisphere. The 2-sphere is covered by a family of 
six coordinate neighborhoods each of which meets four other members of 
this family.  
A topological space 𝑋  each of whose points has a neighborhood 
homeomorphic to the open 2-disc (i.e., to the set of all points (𝑥, 𝑦) ∈ ℝ# 
for which 𝑥# + 𝑦# < 𝑟# for some 𝑟 ∈ ℝ	) is a “two-dimensional manifold” 
(as we saw above, 𝑆# is a 2-dimensional submanifold of ℝ*). In general, 
by a “topological 𝑛 -dimensional manifold” 𝑀% , we mean a connected 
Hausdorff space such that everyone of its points has a neighborhood 
homeomorphic to an open set in ℝ%. If 𝑀% is a topological 𝑛-dimensional 
manifold, then an indexed system 𝑉 = {𝑉<} of open sets is said to be a 
“covering” of 𝑀% if each point of 𝑀% belongs to at least one of these sets, 
and the union of these 𝑉<’s equals 𝑀%. Associated with each of these 𝑉<’s 
are an open set 𝑈< of ℝ% and a homeomorphism 𝜑<: 𝑉< → 𝑈<. 
Notice that, since a manifold is locally Euclidean while its global structure 
may be non-Euclidean, different geometries can be simultaneously valid, 
in the sense that they have different metrics, but they are logically 
isomorphic axiomatic systems (that is, their underlying manifolds are 
homeomorphic). In these cases, the choice of the appropriate geometry 
(e.g., plane geometry or spherical geometry) depends on our practical 
needs, the purpose of our work. For instance, locally, the Earth appears flat 
(ignoring hills, etc.), but long-distance observation leads us to the 
awareness that the Earth is roughly spherical.  
Example 3: Any isometry is a homeomorphism. As mentioned in Chapter 
7, given two arbitrary metric spaces (𝑋, 𝑑") and (𝑌, 𝑑#), an isometry is a 
bijective mapping 𝑓: 𝑋 → 𝑌  such that 𝑑#�𝑓(𝑥), 𝑓(𝑦)� = 𝑑"(𝑥, 𝑦)  for all 
𝑥, 𝑦 ∈ 𝑋. In order to show that 𝑓 is continuous, notice that, given 𝜀 > 0, if 
𝑑"(𝑥, 𝑦) < 𝜀 , then 𝑑#�𝑓(𝑥), 𝑓(𝑦)� = 𝑑"(𝑥, 𝑦) < 𝜀 , meaning that 𝑓  is 
(uniformly) continuous for 𝛿 = 𝜀. In order to show that 𝑓E" is continuous, 
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simply notice that it is an isometry, and, therefore, by the first part, it is 
(uniformly) continuous as well. 
Example 4: A torus is defined as the Cartesian product 𝑆" × 𝑆", where 𝑆" 
is the 1-sphere, that is, a circle (roll a square so that two opposite edges 
meet to form a cylinder and then glue the cylinder’s top and bottom edges 
to obtain a torus: this is a distorted square with all four vertices identified 
and with two pairs of opposite edges identified). A torus 𝑇 = 𝑆" × 𝑆" is 
not homeomorphic to 𝑆# (the 2-sphere), because a simple closed curve on 
𝑆# can always be shrunk to a point, whereas this is not always the case on 
𝑆" × 𝑆" (some simple closed curves on 𝑆" × 𝑆" can be shrunk to a point, 
but others cannot, since a torus has a hole). Therefore, the 2-sphere and the 
torus are not topologically the same, since simple closed curves on 
homeomorphic surfaces behave in the same way. 
Another very important concept in topology is that of compactness. As I 
have already mentioned in Chapter 7, compactness can be intuitively 
construed as a sort of completed infinity: the concept of a compact space is 
a generalization of the concept of a closed and bounded subset of the real 
line. Let 𝑋 be a set, and 𝐴 ⊆ 𝑋. A collection 𝒞 of subsets of 𝑋 is called 
a”cover” for 𝐴 if and only if  
𝐴 ⊆∪ {𝐶|𝐶 ∈ 𝒞}, 
and, if this is the case, we say that 𝒞 covers 𝐴. If a subcollection of 𝒞 also 
covers 𝐴, then it is said to be a “subcover” of 𝒞 for 𝐴. If 𝑋 is a topological 
space, then an “open cover” is a cover each of whose members is open, 
and a “closed cover” is a cover each of whose members is closed. A 
topological space 𝑋 is said to be “compact” if and only if every open cover 
for 𝑋 contains a finite subcover (a subcover consisting of finitely many 
sets). Thus, a compact space has no “punctures” or “missing endpoints,” 
so that it includes all its limit points. Since compactness is defined in 
terms of open sets, it is a topological property.  
A compact Hausdorff space (i.e., a topological space that is both compact 
and Hausdorff) is a topological space in which every limit of a sequence 
that should exist does exist and does so uniquely. Hence, in topology, 
when we refer to a “compact space,” we precisely mean a Hausdorff space 
with the property that every open cover contains a finite subcover.  
If 𝑓: 𝑋 → 𝑌  is a continuous mapping of a compact space 𝑋  onto a 
Hausdorff space 𝑌, then 𝑌 is compact: Given an open cover of 𝑌, where 
the individual sets are denoted by 𝑈= (with the 𝑖 running over some set of 
indices), the sets 𝑓E"(𝑈=) form a cover of 𝑋 that, due to the continuity of 
𝑓 , is open. Because 𝑋  is compact, a finite collection, say 
𝑓E"(𝑈"), … , 𝑓E"(𝑈%) , will cover it, and then 𝑈", … , 𝑈%  form a finite 
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subcover of the given cover of 𝑌, and, since we have assumed that 𝑌 is 
Hausdorff, it follows that 𝑌 is compact.  
 

Curves and Surfaces in ℝ𝐧 
 
Mathematically, dimensions are degrees of freedom. Consider a set of 𝑛 
real independent variables 𝑥", 𝑥#, … , 𝑥%. Such an 𝑛-tuple may be regarded 
as the coordinates of a current point in an 𝑛-dimensional space 𝑉%, in the 
sense that each set of values of the variables defines a point of 𝑉%. The 
totality of the points that correspond to values of the variables lying 
between certain specified limits constitutes a “region” of 𝑉%.  
The assemblage of points of 𝑉% whose coordinates may be expressed as 
functions of a single parameter 𝑡  is said to be a “curve” in the 𝑛 -
dimensional space 𝑉% . Intuitively, a curve is an one-dimensional object, 
that is, an object that can be described by a single parameter. Hence, the 
equations 
𝑥= = 𝑥=(𝑡), 𝑖 = 1,2, … , 𝑛, 
define a curve. However, points of 𝑉% whose coordinates may be expressed 
as functions of two independent parameters 𝑢, 𝑣 constitute a “surface” in 
the 𝑛-dimensional space 𝑉%.  
The totality of points whose coordinates may be expressed as functions of 
𝑘 independent parameters is said to be a 𝑘-dimensional “algebraic variety” 
or a 𝑘-dimensional “subspace” of 𝑉%, and it may be denoted by 𝑉< (i..e., an 
algebraic variety is the set of solutions of a system of polynomial 
equations over some field). Any such subspace is said to be “immersed” in 
𝑉%. If 𝑘 = 𝑛 − 1, then 𝑉< is said to be a “hypersurface” of 𝑉%. 
Notice that, by a “constraint equation,” we mean an equation of several 
variables that shows the relation between these variables. Usually, each 
constraint equation reduces the dimension by one, so that, usually, a set 
defined by 𝑚 constraint equations in 𝑛 variables is (𝑛 −𝑚)-dimensional. 
Thus, an equation of the form 

𝜑(𝑥", 𝑥#, … , 𝑥%) = 0 
is a constraint equation that determines a hypersurface in the 𝑛 -
dimensional space 𝑉% , since such a relation reduces the number of 
independent variables to 𝑛 − 1. Notice that, for instance, a line in ℝ# can 
be defined as the algebraic variety (the set of zeros) of the linear 
polynomial 𝑥 + 𝑦 = 0. 
Moreover, if 𝑐 is an arbitrary constant, then  

𝜑(𝑥", 𝑥#, … , 𝑥%) = 𝑐 
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represents a family of hypersurfaces, each value of 𝑐  determining a 
hypersurface. If the function 𝜑 is single-valued, then one hypersurface of 
the family passes through each point of 𝑉%. 
For instance, the constraint equation 𝑥 + 2𝑦 + 3𝑧 = 5  (one constraint 
equation in three variables) determines a 2-dimensional set (specifically, a 
plane); and the constraint equations 𝑥# + 𝑦# + 𝑧# = 100  and 𝑥 + 2𝑦 +
3𝑧 = 5  (two constraint equations in three variables) determine an 1 -
dimensional set (specifically, a circle, arising from the intersection of a 
sphere and a plane). 
 

Differential Calculus in ℝ 
 

Assume that a function 𝑦 = 𝑓(𝑥) is defined at the points 𝑥 and 𝑥". The 
difference 𝑥" − 𝑥  is called the “increment of the argument,” and it is 
denoted by 𝛥𝑥 (or sometimes simply by ℎ). The difference 𝑓(𝑥") − 𝑓(𝑥) 
is called the “increment of the function,” and it is denoted by 𝛥𝑓 or 𝛥𝑦. 
Therefore, 𝛥𝑥 = 𝑥" − 𝑥 ⇔ 𝑥" = 𝑥 + 𝛥𝑥 , and 𝛥𝑓 = 𝑓(𝑥") − 𝑓(𝑥) =
𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥). Using this formula, we can compute the value of 𝛥𝑓 
for any given 𝑥  and 𝛥𝑥 . Moreover, notice that a function 𝑦 = 𝑓(𝑥)  is 
continuous at a point 𝑥 = 𝑎 if and only if 𝑙𝑖𝑚bV→)𝛥𝑓 = 0, where 𝛥𝑥 =
𝑥 − 𝑎  and 𝛥𝑓 = 𝑓(𝑥) − 𝑓(𝑎) . Indeed, the function 𝑦 = 𝑓(𝑥)  is 
continuous at the point 𝑥 = 𝑎 if and only if 𝑙𝑖𝑚V→1𝑓(𝑥) = 𝑓(𝑎) or, which 
is the same, if 𝑙𝑖𝑚VE1→)�𝑓(𝑥) − 𝑓(𝑎)� = 0, that is, if 𝑙𝑖𝑚bV→)𝛥𝑓 = 0. 
Let 𝑓(𝑥) be a function defined on an interval [𝑎, 𝑏], and let 𝑝 ∈ (𝑎, 𝑏). 
Assume that the limit  
𝑙𝑖𝑚V→F

](V)E](F)
VEF

  
exists. Then the function 𝑓(𝑥) is said to be “differentiable” at the point 
𝑝 ∈ (𝑎, 𝑏), and the limit 𝑙𝑖𝑚V→F

](V)E](F)
VEF

 is called the “derivative” of 𝑓 at 

𝑝, and it is denoted by 𝑓@(𝑝), or 𝑦@|V>F, or ;](F)
;V

. Symbolically: 
;](F)
;V

≡ 𝑓@(𝑝) ≡ 𝑦@|V>F = 𝑙𝑖𝑚V→F
](V)E](F)

VEF
. 

The “right-hand derivative” of 𝑓(𝑥)  at 𝑥 = 𝑝  is defined as 𝑓B@(𝑝) =
𝑙𝑖𝑚V→F0

](V)E](F)
VEF

, provided that the limit exists. The “left-hand derivative” 

of 𝑓(𝑥)  at 𝑥 = 𝑝  is defined as 𝑓E@(𝑝) = 𝑙𝑖𝑚V→F2
](V)E](F)

VEF
, provided that 

the limit exists. Hence, 𝑓@(𝑝) exists if and only if 𝑓B@(𝑝) = 𝑓E@(𝑝).  
A function is said to be differentiable on a closed interval [𝑎, 𝑏] if it is 
differentiable at all points of (𝑎, 𝑏) and has a right-hand derivativative at 𝑎 
and a left-hand derivative at 𝑏.  
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Let 𝛥𝑥 = 𝑑𝑥  be an increment given to 𝑥 , and let the increment in 𝑦 =
𝑓(𝑥) be 𝛥𝑦 = 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥). If the function 𝑓(𝑥) is continuous and 
the derivative 𝑓@(𝑥) is also continuous on an interval, then the increment 
𝛥𝑦 = 𝑓@(𝑥)𝛥𝑥 + 𝜀𝛥𝑥 = 𝑓@(𝑥)𝑑𝑥 + 𝜀𝑑𝑥, where 𝜀 → 0 as 𝛥𝑥 → 0.  
The first member of the right-hand side, that is, the term 𝑓@(𝑥)𝑑𝑥, is called 
the “differential of 𝑦,” and it is denoted by 𝑑𝑦. Hence,  
𝑑𝑦 = 𝑓@(𝑥)𝑑𝑥, 
and 𝑑𝑥 is called the “differential of 𝑥.” In general, 𝛥𝑦 ≠ 𝑑𝑦, but, if 𝛥𝑥 =
𝑑𝑥, which is an infinitesimal, then the infinitesimal 𝑑𝑦 approximates 𝛥𝑦 
closely. Therefore, we write: 
;W
;V
≡ 𝑓@(𝑥) = 𝑙𝑖𝑚bV→)

](VBbV)E](V)
bV

= 𝑙𝑖𝑚bV→)
bW
bV

. 

Notice that ;W
;V
≡ 𝑓@(𝑥) is a new function defined at every such point 𝑥 at 

which the indicated limit exists; this function is called the “derivative of 
the function 𝑦 = 𝑓(𝑥) ,” and it measures the rate of change of 𝑦  with 
regard to 𝑥.  
The geometric significance of the derivative of a function: Given a 
function 𝑦 = 𝑓(𝑥), we realize that, in order to find the rate of change of 𝑦 
with regard to 𝑥 at a particular point, we need to find the slope of the 
tangent line to the curve at that point. In differential calculus, a main 
objective is to try to understand tangents to curves, as shown in Figure 8-4. 
Hence, it is important to define a tangent line to an arbitrary plane curve in 
a rigorous way. A tangent line cannot be rigorously defined as a straight 
line having only one common point with the corresponding curve. In order 
to define a tangent line to an arbitrary plane curve in a rigorous way, we 
must use the concept of a limit. Let 𝐿 be an arc of some curve, and 𝑀) be a 
point of this curve. We draw a secant 𝑀)𝑁 through the point 𝑀). If the 
point 𝑁, moving in the curve, approaches the point 𝑀), then the secant 
𝑀)𝑁 turns about the point 𝑀). Thus, it may so happen that, as the point 𝑁 
approaches 𝑀), the secant tends to a certain limit position 𝑀)𝑇, so that 
𝑀)𝑇 is referred to as the “secant” to the curve 𝐿 at the point 𝑀), as shown 
in Figure 8-4. Then the “tangent line” to the curve 𝐿 at the point 𝑀) is 
defined as the limit position of the secant 𝑀)𝑁 as 𝑁 → 𝑀). 
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Figure 8-4: A tangent line to a curve.  
 

 
 
Let us try to compute the slope of the tangent line for the case when the 
curve 𝐿 is the graph of a certain function 𝑦 = 𝑓(𝑥). Let 𝑀) be a point of 
the graph with abscissa 𝑥)  and ordinate 𝑦) = 𝑓(𝑥)). Assuming that the 
tangent line to the curve 𝐿 at the point 𝑀) does exist, we take one more 
point 𝑁(𝑥) + 𝛥𝑥, 𝑦) + 𝛥𝑦) on the curve, as shown in Figure 8-5, and we 
draw a straight line through the points 𝑀) and 𝑁. If 𝜑 is the slope of this 
secant to the positive direction of the 𝑥-axis, then 
|𝐵𝑁| = 𝛥𝑦, |𝑀)𝐵| = 𝛥𝑥, and 𝑡𝑎𝑛𝜑 = |Lg|

|�6L|
= bW

bV
, 

so that 𝑘Y1% = 𝑙𝑖𝑚g→�6𝑡𝑎𝑛𝜑 = 𝑙𝑖𝑚bV→)𝑡𝑎𝑛𝜑. 
If we denote the slope of the tangent line to the axis of abscissas with 𝜃, as 
shown in Figure 8-5, then the slope of the tangent line is 
𝑘Y1% = 𝑡𝑎𝑛𝜃 = 𝑙𝑖𝑚bV→)𝑡𝑎𝑛𝜑 = 𝑙𝑖𝑚bV→)

bW
bV

. 
 
Figure 8-5: The slope of a tangent line. 
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Consequently, in order to draw a non-vertical tangent line to the graph of 
the function 𝑦 = 𝑓(𝑥)  at a point with abscissa 𝑥) , it is necessary and 
sufficient that, at this point, the limit 𝑙𝑖𝑚bV→)

bW
bV

 exists (finitely); and this 
limit is equal to the slope of the tangent line. In other words, we create an 
infinite sequence of slopes, and then we say that the slope of the given 
tangent line is the infinite limit of this sequence. Hence, infinitesimal 
calculus provides us with abstract objects (such as a tangent to a curve) at 
which only infinite tasks can arrive through the concept of a limit. The 
concept of a limit has a deep philosophical significance, because it secures 
the theoretical convenience of being able to do an infinite number of tasks 
through a theoretical concept—namely, that of a limit—without actually 
doing each one of them, which would be practically impossible. This 
abstraction underpins the foundations of calculus as it was articulated by 
Newton and Leibniz in the seventeenth century. In view of the foregoing, 
the slope of the tangent line to the graph of a function 𝑦 = 𝑓(𝑥) at the 
point 𝑥) is equal to the value of the derivative at the point of tangency; 
symbolically: 𝑘Y1% = 𝑓@(𝑥) . This is the geometric significance of the 
derivative of a function. 
Theorem: If a function 𝑓 is differentiable at 𝑥 having a finite derivative, 
then 𝑓 is continuous at 𝑥. However, the converse is not necessarily true. 
Proof: Suppose that 𝑓 is differentiable at 𝑥 = 𝑝. Then the limit  

𝑙𝑖𝑚V→F
𝑓(𝑥) − 𝑓(𝑝)

𝑥 − 𝑝  

exists, it is finite, and, by definition, it is equal to 𝑓@(𝑝). Then notice that: 

𝑙𝑖𝑚V→F�𝑓(𝑥) − 𝑓(𝑝)� = 𝑙𝑖𝑚V→F 1
](V)E](F)

VEF
∙ (𝑥 − 𝑝)2 =

𝑙𝑖𝑚V→F
](V)E](F)

VEF
∙ 𝑙𝑖𝑚V→F(𝑥 − 𝑝) = 𝑓@(𝑝) ∙ 0. 

Hence,  
𝑙𝑖𝑚V→F�𝑓(𝑥) − 𝑓(𝑝)� = 0 ⇔ 𝑙𝑖𝑚V→F𝑓(𝑥) = 𝑓(𝑝), 
and this proves that the function 𝑓 is continuous at 𝑥 = 𝑝. We have, thus, 
proved that, whenever a function has a finite derivative at a point, it is 
continuous there. In order to prove that the converse is not necessarily 
true, it suffices to give a counterexample. Indeed, consider, for instance, 
the function 𝑓(𝑥) = |𝑥|  for all 𝑥 ∈ ℝ . Then, at 𝑥 = 0 , the function is 
continuous, because 𝑙𝑖𝑚V→)𝑓(𝑥) = 𝑓(0) , but the function is not 
differentiable at 𝑥 = 0, because 𝑓B@(0) ≠ 𝑓E@(0); and, in fact, for 𝑓(𝑥) =
|𝑥| , 𝑓B@(0) = 𝑙𝑖𝑚m→)0

](m)E]())
m

= 𝑙𝑖𝑚m→)0
|m|E)
m

= 𝑙𝑖𝑚m→)0
|m|
m

, which is 

equal to 𝑙𝑖𝑚m→)0
m
m
= 1 , since, in this case, ℎ > 0 , whereas 𝑓E@(0) =
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𝑙𝑖𝑚m→)2
](m)E]())

m
= 𝑙𝑖𝑚m→)2

|m|
m

, which is equal to 𝑙𝑖𝑚m→)2
Em
m
= −1 , 

since, in this case, ℎ < 0.■ 
 
Techniques and rules of differentiation: The formula for the derivative of 
𝑥  (for any 𝑥 ∈ ℝ ) is given by ;V

;V
≡ (𝑥)@ = 1 . Indeed, using the limit 

definition of the derivative, if 𝑓(𝑥) = 𝑥, then we obtain: 
;V
;V
= 𝑙𝑖𝑚bV→)

VBbVEV
bV

= 𝑙𝑖𝑚bV→)
bV
bV
= 𝑙𝑖𝑚bV→)1 = 1. 

The intuition behind this result is that, given that the derivative of a 
function at a point represents the slope of the tangent drawn to the graph of 
that function at that particular point, and given that 𝑓(𝑥) = 𝑥 represents a 
straight line, the derivative of 𝑥 will be 1 at all points.  
Obviously, ;

;V
(𝑐) = 0 for any constant 𝑐  (the slope, that is, the rate of 

change, of a constant function is zero; constant functions 𝑓(𝑥) = 𝑐  are 
always horizontal lines parallel to the 𝑥-axis and cutting the 𝑦-axis at 𝑐). 
If 𝑛 is a positive integer, then 𝑓(𝑥) = 𝑥% can be differentiated as follows: 
First of all, by definition, we shall have 
𝑓@(𝑎) = 𝑙𝑖𝑚V→1

](V)E](1)
VE1

= 𝑙𝑖𝑚V→1
V'E1'

VE1
.                                              (1) 

Moreover, it holds that 
𝑥% − 𝑎% = (𝑥 − 𝑎)(𝑥%E" + 𝑎𝑥%E# + 𝑎#𝑥%E* +⋯+ 𝑎%E*𝑥# + 𝑎%E#𝑥 +
𝑎%E"),                                                                                                        (2) 
and we notice that there are 𝑛 terms in the second factor (we shall use this 
observation in the sequel). By substituting (2) into (1), we obtain: 
𝑓@(𝑎) = 𝑙𝑖𝑚V→1

(VE1)�V'2"B1V'2#B1#V'2!B⋯B1'2!V#B1'2#VB1'2"�
VE1

=
𝑙𝑖𝑚V→1(𝑥%E" + 𝑎𝑥%E# + 𝑎#𝑥%E* +⋯+ 𝑎%E*𝑥# + 𝑎%E#𝑥 + 𝑎%E") =
𝑎%E" + 𝑎𝑎%E# + 𝑎#𝑎%E* +⋯+ 𝑎%E*𝑎# + 𝑎%E#𝑎 + 𝑎%E" = 𝑛𝑎%E" . By 
replacing the 𝑎  with an 𝑥 , we obtain (𝑥%)@ = 𝑛𝑥%E" , for any positive 
integer 𝑛. This result is known as the “power rule.” 
Let 𝑋 ⊆ ℝ be an interval, 𝑎 ∈ 𝑋, and 𝑓: 𝑋 → ℝ and 𝑔: 𝑋 → ℝ be functions 
that are differentiable at 𝑎. Then, by the limit definition of the derivative, 
the following relations hold: 
If 𝑘 ∈ ℝ, then the function 𝑘𝑓 is differentiable at 𝑎, and 

(𝑘𝑓)@(𝑎) = 𝑘𝑓@(𝑎). 
The function 𝑓 ± 𝑔 is differentiable at 𝑎, and 

(𝑓 ± 𝑔)@(𝑎) = 𝑓@(𝑎) ± 𝑔@(𝑎). 
The function 𝑓 ∙ 𝑔 is differentiable at 𝑎, and 

(𝑓 ∙ 𝑔)@(𝑎) = 𝑓@(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔@(𝑎).  
If 𝑔(𝑎) ≠ 0, then the function ]

:
 is differentiable at 𝑎, and 
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Ã]
:
Ä
@
(𝑎) = ]((1):(1)E](1):((1)

:(1)#
. 

Differentiation of a composite function (the”chain rule”): Ã𝑓�𝑔(𝑥)�Ä
@
=

𝑓@�𝑔(𝑥)� ∙ 𝑔@(𝑥). This result is known as the “chain rule.” 
In other words, if 𝑦 = 𝑦�𝑢(𝑥)�, then ;W

;V
= ;W

;q
∙ ;q
;V

. 
For instance, to apply the chain rule to 𝑓(𝑥) = (𝑥# + 1)") , the outside 
function is ℎ(∙) = (∙)"), and, by the “power rule,” its derivative is 10(∙)D; 
while the inside function is 𝑔(𝑥) = 𝑥# + 1 , whose derivative is 2𝑥 . 
Therefore, the chain rule implies that 𝑓@(𝑥) = 10(𝑥# + 1)D2𝑥. 
Implicit differentiation: If, in a function 𝑓(𝑥), one variable is not directly 
expressed in terms of the other variable, then this fuction is called 
“implicit.” Implicit differentiation is illustrated in the following example: 
𝑥A + 𝑦* = 7 . Since 𝑦 = 𝑓(𝑥) , (𝑥A)@ + (𝑦*)@ = (7)@ ⇔ 4𝑥* + 3𝑦# ;W

;V
=

0 ⇔ 3𝑦# ;W
;V
= −4𝑥* ⇔ ;W

;V
= − AV!

*W#
. 

Higher order derivatives: It is evident that the first derivative ;W
;V

 expresses 

the rate of change of 𝑦 with respect to 𝑥 (e.g., velocity). Then ;
;V
Ã;W
;V
Ä ≡

;#W
;V#

≡ 𝑦@@  expresses the rate of change of the first derivative of 𝑦  with 

respect to 𝑥 (e.g., acceleration), and ;
!W

;V!
≡ 𝑦@@@ ≡ 𝑦(*) expresses the rate of 

change of the second derivative of 𝑦  with respect to 𝑥  (e.g., jerk). Of 
course, we can compute the 𝑛th derivative of 𝑦 = 𝑓(𝑥), denoted by ;

'W
;V'

≡
𝑦(%), where 𝑛 is called the order of the derivative.  
Basic differentiation formulae (following from the limit definition of the 
derivative): 

i. ;
;V
(𝑎%𝑥% + 𝑎%E"𝑥%E" +⋯+ 𝑎"𝑥 + 𝑎)) = 𝑎% ∙ 𝑛𝑥%E" +

𝑎%E" ∙ (𝑛 − 1)𝑥%E# +⋯+ 𝑎" , by the sum rule and the power 
rule. 

ii. ;
;V
(𝑒V) = 𝑒V; which can be proved as follows: If 𝑓(𝑥) = 𝑒V, so 

that 𝑓(𝑥 + ℎ) = 𝑒VBm, then the limit definition of the derivative 
implies that 𝑓@(𝑥) = 𝑙𝑖𝑚m→)

Z508EZ5

m
= 𝑙𝑖𝑚m→)

Z5�Z8E"�
m

=

𝑒V𝑙𝑖𝑚m→)
Z8E"
m

. Set 𝑒m − 1 = 𝑛 , so that, as ℎ → 0, 𝑛 → 0.Then 
𝑒m = 𝑛 + 1 ⇒ 𝑙𝑛𝑒m = 𝑙𝑛(𝑛 + 1) ⇒ ℎ = 𝑙𝑛(𝑛 + 1) . Therefore, 
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𝑓@(𝑥) = 𝑒V𝑙𝑖𝑚%→)
%

4%(%B")
= 𝑒V𝑙𝑖𝑚%→)

%
4%(%B")

×
"
'
"
'
=

𝑒V𝑙𝑖𝑚%→)
"

"
'4%(%B")

= 𝑒V𝑙𝑖𝑚%→)
"

4%(%B")
"
'
= 𝑒V "

4%�4=6'→6(%B")
"
'�

 

where 𝑙𝑛 Ã𝑙𝑖𝑚%→)(𝑛 + 1)
"
'Ä = 𝑙𝑛𝑒 = 1, since 𝑙𝑖𝑚%→)(𝑛 + 1)

"
' =

𝑒, and, hence, we have proved that ;
;V
(𝑒V) = 𝑒V. 

iii. ;
;V
(𝑙𝑛𝑥) = "

V
; notice that the method of implicit differentiation 

implies that, since 𝑦 = 𝑙𝑛𝑥, 𝑒W = 𝑥 ⇔ 𝑒W ;W
;V
= 1 ⇔ ;W

;V
= "

Z9
= "

V
. 

Using logarithmic differentiation and implicit differentiation, we 
can prove the power rule for any real number 𝑛 as follows: 
Let us define 𝑦 = 𝑥%, and then take the natural logarithm of both 
sides: 𝑙𝑛𝑦 = 𝑙𝑛𝑥% ⇒ 𝑙𝑛𝑦 = 𝑛𝑙𝑛𝑥 ⇒ W(

W
= 𝑛 "

V
⇒ 𝑦@ = 𝑦 %

V
=

𝑥% %
V
= 𝑛𝑥%E". 

iv. ;
;V
(𝑎V) = 𝑎V𝑙𝑛𝑎, since we can set 𝑦 = 𝑎V ⇔ 𝑙𝑛𝑦 = 𝑥 ∙ 𝑙𝑛𝑎 and 

then differentiate both sides implicitly with respect to 𝑥, obtaining 
"
W
𝑦@ = 𝑙𝑛𝑎 ⇒ 𝑦@ = 𝑦𝑙𝑛𝑎, where 𝑦 = 𝑎V. 

v. ;
;V
(𝑥V) = 𝑥V(1 + 𝑙𝑛𝑥); notice that we can set 𝑦 = 𝑥V ⇔ 𝑙𝑛𝑦 =

𝑙𝑛𝑥V = 𝑥𝑙𝑛𝑥 (and then we apply the product rule). 
vi. ;

;V
(𝑙𝑜𝑔1𝑥) =

"
V4%1

, since, by the method of implicit 
differentiation, setting 𝑦 = 𝑙𝑜𝑔1𝑥, we get 𝑎W = 𝑥 ⇔ (𝑙𝑛𝑎) ∙ 𝑎W ∙
;W
;V
= 1 ⇔ ;W

;V
= "

4%1
∙ "
19
= "

4%1
∙ "
V
, 𝑥 > 0. 

vii. ;
;V
(𝑠𝑖𝑛𝑥) = 𝑐𝑜𝑠𝑥, 𝑥 ∈ ℝ; and ;1J5p=%V

;V
= "

t"EV#
 for  −1 < 𝑥 < 1. 

Remark: We can prove ;
;V
(𝑠𝑖𝑛𝑥) = 𝑐𝑜𝑠𝑥  by applying the limit 

definition of the derivative, some basic trigonometric formulae, 
and the small angle approximation (i.e., 𝑙𝑖𝑚V→)

p=%V
V
= 1 ). If 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥, then we have: 
 𝑓@(𝑥) = 𝑙𝑖𝑚m→)

](VBm)E](V)
m

= 𝑙𝑖𝑚m→)
p=%(VBm)Ep=%(V)

m
, and, by 

using the sum and difference of angles in trigonometry (i.e., 
𝑠𝑖𝑛(𝐴 + 𝐵) = 𝑠𝑖𝑛𝐴𝑐𝑜𝑠𝐵 + 𝑐𝑜𝑠𝐴𝑠𝑖𝑛𝐵 ), the above limit can be 
restated as follows: 𝑓@(𝑥) = 𝑙𝑖𝑚m→)

p=%V5XpmB5XpVp=%mEp=%V
m

=

𝑙𝑖𝑚m→)
[Ep=%V("E5Xpm)B5XpVp=%m]

m
= 𝑙𝑖𝑚m→)

[Ep=%V("E5Xpm)]
m

+
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𝑙𝑖𝑚m→)
5XpVp=%m

m
= (−𝑠𝑖𝑛𝑥) Ú𝑙𝑖𝑚m→)

("E5Xpm)
m

Ü +

(𝑐𝑜𝑠𝑥)𝑙𝑖𝑚m→)
p=%m
m

. 

Now, by using the half-angle formula 1 − 𝑐𝑜𝑠ℎ = 2𝑠𝑖𝑛# m
#

, the 
above equation can be restated as follows: 

𝑓@(𝑥) = (−𝑠𝑖𝑛𝑥)𝑙𝑖𝑚m→)
2𝑠𝑖𝑛# m

#
ℎ + (𝑐𝑜𝑠𝑥)𝑙𝑖𝑚m→)

𝑠𝑖𝑛ℎ
ℎ

= (−𝑠𝑖𝑛𝑥) F𝑙𝑖𝑚m→) ô
𝑠𝑖𝑛 m

#
m
#

õ ∙ 𝑙𝑖𝑚m→)𝑠𝑖𝑛
ℎ
2G

+ (𝑐𝑜𝑠𝑥)𝑙𝑖𝑚m→)
𝑠𝑖𝑛ℎ
ℎ  

which, by the small angle approximation, gives 
𝑓@(𝑥) = (−𝑠𝑖𝑛𝑥) Ã1 ∙ 𝑠𝑖𝑛 )

#
Ä + 𝑐𝑜𝑠𝑥(1) = (−𝑠𝑖𝑛𝑥)(0) + 𝑐𝑜𝑠𝑥 =

𝑐𝑜𝑠𝑥.  
In order to compute ;1J5p=%V

;V
, we work as follows: Set 𝑦 =

𝑠𝑖𝑛E"𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 and 𝑠𝑖𝑛𝑦 = 𝑥, and then take the derivative of 
both sides of the equation and solve for 𝑦@, namely: 𝑠𝑖𝑛𝑦 = 𝑥 ⇒
(𝑐𝑜𝑠𝑦) ∙ 𝑦@ = 1 ⇒ 𝑦@ = "

5XpW
. Recall that 𝑐𝑜𝑠#𝑦 + 𝑠𝑖𝑛#𝑦 = 1 ⇒

𝑐𝑜𝑠𝑦 = Ù1 − 𝑠𝑖𝑛#𝑦 , 𝑐𝑜𝑠𝑦 > 0  on the range of 𝑦 = 𝑠𝑖𝑛E"𝑥 . 
Plugging this in the above equation for 𝑦@, we obtain 
𝑦@ = "

5XpW
= "

t"Ep=%#W
= "

t"EV#
. 

Following similar techniques, we can prove the derivatives of the 
other trigonometric functions.  

viii. ;
;V
(𝑐𝑜𝑠𝑥) = −𝑠𝑖𝑛𝑥 , 𝑥 ∈ ℝ ; and ;1J55XpV

;V
= E"

t"EV#
 for −1 < 𝑥 <

1. 
ix. ;

;V
(𝑡𝑎𝑛𝑥) = "

5Xp#V
= 𝑠𝑒𝑐#𝑥; and ;1J5Y1%V

;V
= "

"BV#
. 

x. ;
;V
(𝑐𝑜𝑡𝑥) = − "

p=%#V
= −𝑐𝑠𝑐#𝑥; and ;1J55XYV

;V
= E"

"BV#
. 

xi. Hyperbolic functions: ;
;V
(𝑠𝑖𝑛ℎ𝑥) = ;

;V
ÃZ

5EZ25

#
Ä = "

#
Ú ;
;V
(𝑒V) −

;
;V
(𝑒EV)Ü = "

#
(𝑒V + 𝑒EV) = 𝑐𝑜𝑠ℎ𝑥 ; and, similarly, we find 

;
;V
(𝑐𝑜𝑠ℎ𝑥) = 𝑠𝑖𝑛ℎ𝑥 , ;

;V
(𝑡𝑎𝑛ℎ𝑥) = 𝑠𝑒𝑐ℎ#𝑥 , and ;

;V
(𝑐𝑜𝑡ℎ𝑥) =

−𝑐𝑠𝑐ℎ#𝑥. 
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Investigation of the behavior of a function using differential calculus: If a 
function 𝑦 = 𝑓(𝑥) is differentiable on an interval (𝑎, 𝑏), then: 

i. 𝑓 is increasing on the interval (𝑎, 𝑏) if and only if its derivative is 
non-negative in this interval; symbolically: 𝑓@(𝑥) ≥ 0	∀	𝑥 ∈
(𝑎, 𝑏); 

ii. 𝑓 is decreasing on the interval (𝑎, 𝑏) if and only if its derivative is 
non-positive in this interval; symbolically: 𝑓@(𝑥) ≤ 0	∀	𝑥 ∈
(𝑎, 𝑏). 

Geometric significance: A differentiable function increases where its 
graph has positive slopes, and decreases where its graph has negative 
slopes. If 𝑓@(𝑥) = 0, then 𝑓(𝑥) is constant (in a sense, it increases and 
decreases simultaneously).   
We often have to solve optimization problems―that is, to choose from 
various variants the best one for some reasons. For instance, builders must 
know how to select the dimensions of a square beam in order to ensure its 
best tensile strength, aircraft builders must know what orbit ensures 
minimum fuel consumption, agronomists must know what seeding rate 
will guarantee the richest harvest, logistics managers must know how to 
minimize the transportation cost, production managers must know how to 
minimize costs and maximize utility, artillery officers must know what 
inclination of a gun tube will result in the greatest range of fire, and so on. 
Most optimization problems reduce to finding the extreme values, 
meaning the greatest and the lowest values, of a function.  
A point 𝑥 = 𝑐 is called a “point of maximum” (resp. “minimum”) for a 
function 𝑦 = 𝑓(𝑥) if there is a neighborhood (𝑐 − 𝛿, 𝑐 + 𝛿) of this point in 
which the inequality 𝑓(𝑥) ≤ 𝑓(𝑐) (resp. 𝑓(𝑥) ≥ 𝑓(𝑐)) holds. If a function 
𝑦 = 𝑓(𝑥) has an extremum (i.e., a maximum or a minimum) at a point 𝑥) 
of its domain, then the derivative of the given function either does not 
exist or is equal to zero at this point; because, at a point of extremum, the 
tangent line to the graph of the function is either horizontal or, in case the 
gaph has a cusp (i.e., a sharp bend or a corner), does not exist at all. In 
particular, at a “cusp” 𝑥), the right-hand derivative is not equal to the left-
hand derivative, that is, 𝑓B@(𝑥)) ≠ 𝑓E@(𝑥)); and a characteristic example of a 
cusp is the point �0, 𝑓(0)� where 𝑓(𝑥) = |𝑥|. 
Assume that a function 𝑦 = 𝑓(𝑥) is continuous at a point 𝑥 = 𝑐, and that 
there exists a neighborhood (𝑐 − 𝛿, 𝑐 + 𝛿)  of this point such that the 
inequality 𝑓@(𝑥) > 0 holds in the interval  (𝑐 − 𝛿, 𝑐), and the inequality 
𝑓@(𝑥) < 0  holds in the interval (𝑐, 𝑐 + 𝛿) . Then 𝑥 = 𝑐  is a “point of 
maximum” for 𝑓(𝑥) . In other words, if 𝑓(𝑥)  increases in the interval 
(𝑐 − 𝛿, 𝑐) to the left of 𝑐, and decreases in the interval (𝑐, 𝑐 + 𝛿) to the 
right of 𝑐, then 𝑥 = 𝑐 is a “point of maximum” for 𝑓(𝑥).  



 
 

 

265 

On the other hand, assume that a function 𝑦 = 𝑓(𝑥) is continuous at a 
point 𝑥 = 𝑐 , and that, for some 𝛿 > 0 , it holds that 𝑓@(𝑥) < 0  in the 
interval (𝑐 − 𝛿, 𝑐), and 𝑓@(𝑥) > 0 in the interval (𝑐, 𝑐 + 𝛿). Then 𝑥 = 𝑐 is 
a “point of minimum” for 𝑓(𝑥). In other words, if 𝑓(𝑥) decreases in the 
interval (𝑐 − 𝛿, 𝑐) to the left of 𝑐, and increases in the interval (𝑐, 𝑐 + 𝛿) 
to the right of 𝑐, then 𝑥 = 𝑐 is a “point of minimum” for 𝑓(𝑥).  
Consequently, we obtain the following algorithm for investigating a 
function 𝑦 = 𝑓(𝑥) for an extremum (maximum or minimum): 

i. Find the derivative 𝑓@(𝑥). 
ii. Find the critical points, that is, the points at which the function is 

continuous and the derivative 𝑓@(𝑥) is either equal to zero or does 
not exist.  

iii. Consider the neighborhood of each critical point found that does 
not contain another critical point and investigate the sign of the 
derivative to the left and to the right of the critical point under 
consideration.  

iv. Using the aforementioned sufficient conditions for a maximum 
and a minimum, draw relevant conclusions (when passing through 
a maximum, the derivative changes sign from plus to minus, 
whereas, when passing through a minimum, the derivative 
changes sign from minus to plus). 

For instance, let us investigate the function 𝑓(𝑥) = 𝑥* − 9𝑥# + 24𝑥 for an 
extremum. We work as follows: 

i. We have 𝑓@(𝑥) = 3𝑥# − 18𝑥 + 24.  
ii. Equating the derivative to zero, we find the two roots (solutions) 

of the equation 3𝑥# − 18𝑥 + 24 = 0, namely: 𝑥" = 2 and 𝑥# = 4 
(the curve has horizontal tangents at these values). In this case, the 
derivative is defined everywhere, and, therefore, there are no 
other critical points. 

iii. We study the behavior of the function in a neighborhood of the 
point 𝑥" = 2 and in a neighborhood of the point 𝑥# = 4. We see 
the following: when passing through the point 𝑥" = 2 , the 
derivative changes sign from plus to minus, whereas, when 
passing through the point 𝑥# = 4 , the derivative changes sign 
from minus to plus. 

iv. At 𝑥" = 2, the function has a maximum 𝑓61V = 20. At 𝑥# = 4, 
the function has a minimum 𝑓6=% = 16. 

We have, thus, learnt that the first derivative of a function, 𝑓@, provides 
important information about 𝑓. Now, we shall apply the same techniques 
to 𝑓@ itself, and learn what this tells us about 𝑓. Therefore, we shall study 
𝑓@@. 
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A function 𝑓(𝑥) is said to be “concave up” on an interval 𝑋  if all the 
tangents to	𝑓(𝑥) on 𝑋 are below the graph of 𝑓(𝑥), as shown, for instance, 
in Figure 8-6 (i.e., it “opens” up). A function 𝑓(𝑥) is said to be “concave 
down” on an interval 𝑋 if all the tangents to	𝑓(𝑥) on 𝑋 are above the graph 
of 𝑓(𝑥), as shown, for instance, in Figure 8-7 (i.e., it “opens” down).  
 
Figure 8-6: A concave-up function. 

 
 
 
Figure 8-7: A concave-down function. 
 

 
 
Let 𝑓 be a function differentiable on (𝑎, 𝑏). (i) If 𝑓@ is increasing (namely, 
if 𝑓@@(𝑥) > 0  on (𝑎, 𝑏) ), then 𝑓  is concave up on (𝑎, 𝑏) . (ii) If 𝑓@  is 
decreasing (namely, if 𝑓@@(𝑥) < 0 on (𝑎, 𝑏)), then 𝑓 is concave down on 
(𝑎, 𝑏). (iii) If 𝑓@ is constant, then the graph of 𝑓 has no concavity.  
If 𝑓: (𝑎, 𝑏) → ℝ changes its direction of concavity at 𝑥) , then the point 
(𝑥), 𝑓(𝑥))) is said to be a “point of inflection.” In other words, 𝑥) is a 
point of inflection if 𝑥) ∈ (𝑎, 𝑏) so that either 𝑓 is concave down in (𝑎, 𝑥)) 
and concave up in (𝑥), 𝑏), or 𝑓 is concave up in (𝑎, 𝑥)) and concave down 
in (𝑥), 𝑏).  
Notice that, if 𝑥) is a critical point of 𝑓(𝑥) and the second derivative of 
𝑓(𝑥)) is positive (resp. negative), then 𝑥) is a “local minimum” (resp. a 
“local maximum”) of 𝑓(𝑥). In other words, if the critical point has positive 
concavity (i.e., 𝑓@@(𝑥)) > 0), then it is a local minimum; and, if the critical 
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point has negative concavity (i.e., 𝑓@@(𝑥)) < 0 ), then it is a local 
maximum.  
 
Rolle’s Theorem: Let 𝑓: [𝑎, 𝑏] → ℝ be a function satisfying the following 
conditions: 

i. 𝑓 is continuous on the closed interval [𝑎, 𝑏], 
ii. 𝑓 is differentiable on the open interval (𝑎, 𝑏), and 
iii. 𝑓(𝑎) = 𝑓(𝑏).  

Then there exists at least one point 𝑐 ∈ (𝑎, 𝑏) such that 𝑓@(𝑐) = 0. 
Proof: Since 𝑓 is continuous on the closed interval [𝑎, 𝑏], it is bounded 
and attains its supremum (least upper bound) and its infimum (greatest 
lower bound) in [𝑎, 𝑏] . Let inf	(𝑓) = 𝑚 , sup	(𝑓) = 𝑀 , and 𝑓(𝑎) =
𝑓(𝑏) = 𝑘. Then it must hold that 𝑚 ≤ 𝑘 ≤ 𝑀.  
First case: If 𝑚 = 𝑘 = 𝑀 (i.e., if 𝑓 is a constant function), then 𝑓(𝑥) = 𝑘, 
and, therefore, 𝑓@(𝑐) = 0	∀𝑐 ∈ (𝑎, 𝑏). 
Second case: If 𝑚 ≠ 𝑀 , then 𝑚 < 𝑘  or 𝑘 < 𝑀 . Suppose that 𝑘 < 𝑀 . 
There exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 𝑀, since, if 𝑓 is continuous on 
the closed interval [𝑎, 𝑏], then it attains its supremum and its infimum in 
[𝑎, 𝑏] . Moreover, 𝑓@(𝑐)  exists, because 𝑎 < 𝑐 < 𝑏 . Notice that 𝑓(𝑥) ≤
𝑀	∀𝑥 ∈ [𝑎, 𝑏] . Therefore, if 𝑎 ≤ 𝑥 < 𝑐 , then ](V)E](5)

VE5
= ](V)E�

VE5
≥ 0 , so 

that 𝑙𝑖𝑚V→52
](V)E](5)

VE5
≥ 0 ⇔ 𝑓E′ (c) ≥ 0 . If 𝑐 < 𝑥 ≤ 𝑏 , then ](V)E](5)

VE5
=

](V)E�
VE5

≤ 0 , so that 𝑙𝑖𝑚V→50
](V)E](5)

VE5
≤ 0 ⇔ 𝑓B′ (𝑐) ≤ 0 . Consequently, 

0 ≤ 𝑓E′ (𝑐) = 𝑓 ′(𝑐) = 𝑓B′ (𝑐) ≤ 0 ⇒ 𝑓@(𝑐) = 0	. We can work similarly in 
order to prove the theorem for 𝑚 < 𝑘.■  
Geometric interpretation of Rolle’s Theorem: Under the above conditions, 
there exists a point 𝑐 at which the tangent line to the graph of 𝑦 = 𝑓(𝑥) is 
parallel to the 𝑥-axis, as shown in Figure 8-8. In particular, conditions (i) 
and (ii) imply that the curve 𝑦 = 𝑓(𝑥) is continuous from 𝑥 = 𝑎 to 𝑥 = 𝑏, 
and it has a definite tangent at each point between 𝑥 = 𝑎 and 𝑥 = 𝑏; and 
condition (iii) implies that the ordinates at the endpoints 𝑎 and 𝑏 are equal.  
Algebraic interpretation of Rolle’s Theorem: Since, according to condition 
(iii), 𝑓(𝑎) = 𝑓(𝑏) , let 𝑓(𝑎) = 𝑓(𝑏) = 0 . Then Rolle’s Theorem means 
that, if 𝑓(𝑥) is a polynomial in 𝑥 , and if 𝑎  and 𝑏  are two roots of the 
equation 𝑓(𝑥) = 0 , then the equation 𝑓@(𝑥) = 0  has at least one root 
between 𝑎 and 𝑏. In fact, the French mathematician Michel Rolle, after 
whom the above theorem is named, proved the given theorem in 1691 only 
in the case of polynomial functions, and a general proof of this theorem 
was achieved and published by Augustin-Louis Cauchy in 1823. The name 
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“Rolle’s Theorem” was first used by the German mathematician, logician, 
psychologist, and philosopher Moritz Wilhelm Drobisch in the 1830s. 
 
Figure 8-8: Rolle’s Theorem (source: Wikimedia Commons: Author: 
Benboyadjian; 
https://commons.wikimedia.org/wiki/File:Teorema_de_Rolle_(caso_2).jpg?uselan
g=it). 
 

 
 
In mathematical analysis, the mean value theorems play a very important 
role, because they examine the relationship between the values of a 
function and the values of the derivative of the given function. The Italian-
French mathematician and astronomer Joseph-Louis Lagrange (1736–
1813) proved the following mean value theorem, which allows us to 
express the increment of a function on an interval through the value of the 
derivative at an intermediate point of the corresponding segment: 
 
Lagrange’s Mean Value Theorem: If 𝑓: [𝑎, 𝑏] → ℝ  is a function 
continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), then there exists a point 
𝑐 ∈ (𝑎, 𝑏) such that 𝑓@(𝑐) = ](0)E](1)

0E1
⇔ 𝑓(𝑏) − 𝑓(𝑎) = 𝑓@(𝑐)(𝑏 − 𝑎). 

Proof: On [𝑎, 𝑏], we define another function 𝑔(𝑥) as follows: 
𝑔(𝑥) = 𝑓(𝑥) − 𝑘𝑥 for all 𝑥 ∈ [𝑎, 𝑏], 
where 𝑘 is a constant defined in such a way that 
𝑔(𝑎) = 𝑔(𝑏). 
Thus, 𝑓(𝑎) − 𝑘𝑎 = 𝑓(𝑏) − 𝑘𝑏 ⇒ 𝑘 = ](0)E](1)

0E1
. 

The assumptions that 𝑓: [𝑎, 𝑏] → ℝ is a function continuous on [𝑎, 𝑏] and 
differentiable on (𝑎, 𝑏)  and the above value of 𝑘  imply that the above 
function 𝑔(𝑥) satisfies every condition of Rolle’s theorem. Therefore, by 
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Rolle’s theorem, there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑔@(𝑐) = 0 ⇒ 𝑓@(𝑐) −
𝑘 = 0 ⇒ 𝑓@(𝑐) = 𝑘 = ](0)E](1)

0E1
, quod erat demonstrandum.  

Geometric interpretation of Lagrange’s Mean Value Theorem: As shown 
in Figure 8-9, Lagrange’s Mean Value Theorem implies that the slope of 
the chord passing through the points of the graph corresponding to the 
ends of the segment 𝑎 and 𝑏 is equal to 𝑘 = 𝑡𝑎𝑛𝜃 = ](0)E](1)

0E1
, and then 

there exists a point 𝑥 = 𝑐  inside the closed interval [𝑎, 𝑏] such that the 
tangent to the graph at 𝑥 = 𝑐 is parallel to the chord. In other words, if a 
function 𝑓 is continuous on the closed interval [𝑎, 𝑏] and differentiable on 
the open interval (𝑎, 𝑏), then there exists a point 𝑐 in the interval (𝑎, 𝑏) 
such that 𝑓@(𝑐)  is equal to the function’s average rate of change over 
[𝑎, 𝑏]. 
 
Figure 8-9: Lagrange’s Mean Value Theorem. 
 

 
 
Corollary 1: If 𝑓@(𝑥) = 0  for all 𝑥 ∈ (𝑎, 𝑏) , then 𝑓(𝑥)  is constant on 
(𝑎, 𝑏). 
Proof: Let 𝑥" and 𝑥# be two arbitrary elements of the interval (𝑎, 𝑏). Then, 
since 𝑓(𝑥)  is continuous and differentiable on (𝑎, 𝑏) , it must also be 
continuous and differentiable on [𝑥", 𝑥#] . Therefore, we can apply the 
Mean Value Theorem for 𝑥"  and 𝑥# . This means that 𝑓(𝑥#) − 𝑓(𝑥") =
𝑓@(𝑐)(𝑥# − 𝑥")  where 𝑥" < 𝑐 < 𝑥# . By hypothesis, 𝑓@(𝑐) = 0 . Hence, 
𝑓(𝑥#) − 𝑓(𝑥") = 0 ⇒ 𝑓(𝑥#) = 𝑓(𝑥") , and, since 𝑥"  and 𝑥#  are two 
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arbitrary elements of the interval (𝑎, 𝑏), the function 𝑓 is a constant on 
(𝑎, 𝑏).■ 
Corollary 2: If 𝑓@(𝑥) = 𝑔@(𝑥)  for all 𝑥 ∈ (𝑎, 𝑏) , then, in this interval, 
𝑓(𝑥) = 𝑔(𝑥) + 𝑐, where 𝑐 is a constant. 
Proof: This is a direct result of Corollary 1.■ 
 
Example 1: Given 𝑓(𝑥) = 𝑥# + 𝑥 + 1, if we are asked to find the point 𝑐 
at which 𝑓@(𝑥) gets its mean value over	[0,2], then we work as follows: 
we confirm that the hypotheses of Lagrange’s Mean Value Theorem are 
satisfied, and, therefore, ∃𝑐 ∈ (𝑎, 𝑏)| ](0)E](1)

0E1
= 𝑓@(𝑐) ⇒ ](#)E]())

#E)
= 3 =

𝑓@(𝑐) = 2𝑐 + 1 ⇒ 𝑐 = 1. 
Example 2: Let 0 < 𝑎 < 𝑏. Then we can prove that  

1 −
𝑎
𝑏 < 𝑙𝑛

𝑏
𝑎 <

𝑏
𝑎 − 1 

as follows: Set 𝑓(𝑥) = 𝑙𝑛𝑥. By Lagrange’s Mean Value Theorem, 
𝑓@(𝑐) = ](0)E](1)

0E1
, 𝑎 < 𝑐 < 𝑏, 

so that "
5
= 4%0E4%1

0E1
= 4%0 1⁄

0E1
. 

We have: 𝑎 < 𝑐 < 𝑏 ⇒ "
0
< "

5
< "

1
 because 0 < 𝑎 < 𝑏. Therefore, 

"
0
< 4%0 1⁄

0E1
< "

1
⇒ 0E1

0
< 𝑙𝑛 0

1
< 0E1

1
⇒ 1− 1

0
< 𝑙𝑛 0

1
< 0

1
− 1 , quod erat 

demonstrandum.  
 
Cauchy’s Mean Value Theorem: If functions 𝑓(𝑥)  and 𝑔(𝑥)  are 
continuous on a closed interval [𝑎, 𝑏]  and differentiable on the open 
interval (𝑎, 𝑏), then there exists some point 𝑐 ∈ (𝑎, 𝑏) such that 
[𝑓(𝑏) − 𝑓(𝑎)]𝑔@(𝑐) = [𝑔(𝑏) − 𝑔(𝑎)]𝑓@(𝑐), 
which, for 𝑔@(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏), can be equivalently restated as 
]((5)
:((5)

= ](0)E](1)
:(0)E:(1)

. 
Proof: Consider the function 
ℎ(𝑥) = [𝑓(𝑥) − 𝑓(𝑎)][𝑔(𝑏) − 𝑔(𝑎)] − [𝑓(𝑏) − 𝑓(𝑎)][𝑔(𝑥) − 𝑔(𝑎)]. 
This function is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), with 
ℎ@(𝑥) = 𝑓@(𝑥)[𝑔(𝑏) − 𝑔(𝑎)] − 𝑔@(𝑥)[𝑓(𝑏) − 𝑓(𝑎)]. 
Moreover, ℎ(𝑎) = 0 = ℎ(𝑏). Hence, by Rolle’s theorem, there exists a 
point 𝑐 ∈ (𝑎, 𝑏)  such that ℎ@(𝑐) = 0 , and then [𝑓(𝑏) − 𝑓(𝑎)]𝑔@(𝑐) =
[𝑔(𝑏) − 𝑔(𝑎)]𝑓@(𝑐).■ 
Remark: When 𝑔(𝑥) = 𝑥 , Cauchy’s Mean Value Theorem reduces to 
Lagrange’s Mean Value Theorem. Cauchy’s Mean Value Theorem can be 
geometrically interpreted as follows: the functions 𝑓(𝑥)  and 𝑔(𝑥) 
determine a plane curve with parametric equations 𝑥 = 𝑓(𝑡)  and 𝑦 =
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𝑔(𝑡), where 𝑡 ∈ [𝑎, 𝑏], and then Cauchy’s Mean Value Theorem states 
that, for some 𝑐 ∈ (𝑎, 𝑏), there exists a point �𝑓(𝑐), 𝑔(𝑐)� on this plane 

curve such that the slope ]
((5)
:((5)

 of the tangent line to the curve at this point 
is equal to the slope of the chord that joins the endpoints of the curve.  
 
Optimization problems:  

i. Maximum area enclosed by a fence: Assume that a man has a 
farm that is adjacent to a river, and he wants to build a 
rectangular pen for his cows with 500𝑓𝑡. of fencing. Given 
that one side of the pen is the river, which functions as a 
natural fence (since cows will not swim away), the largest 
area of the pen that he can build can be calculated as follows: 
This rectangular field needs to be fenced on 3 sides, and two 
of these sides (which need to be fenced), say side 𝑠" and side 
𝑠#, are equal to each other. Let 𝑠" = 𝑠# = 𝑥	𝑓𝑡, meaning that 
this man will use 2𝑥	𝑓𝑡  of fencing for these two sides, and 
the remaining amount of fencing will be 500 − 2𝑥	𝑓𝑡 , 
corresponding to the third side of this rectangular farm. Then 
(given that 𝑎𝑟𝑒𝑎 = 𝑤𝑖𝑑𝑡ℎ × 𝑙𝑒𝑛𝑔𝑡ℎ) we have to maximize 
the area function 𝐴(𝑥) = 𝑥(500 − 2𝑥	) . We have to 
differentiate and find the critical points: 𝐴@(𝑥) = 500 − 4𝑥. 
We want to know where 𝐴@(𝑥) is equal to zero and where 
𝐴@(𝑥) is undefined. However, 𝐴@(𝑥) = 500 − 4𝑥	is defined 
for all values of 𝑥. Setting 𝐴@(𝑥) = 500 − 4𝑥 = 0, we obtain 
𝑥 = 125, which is the critical point of 𝐴(𝑥). By checking the 
behavior of 𝐴@(𝑥)  around 𝑥 = 125 , we realize that, when 
passing through the point 𝑥 = 125, the derivative changes 
sign from plus to minus, and, therefore, 𝑥 = 125  is a 
maximum for 𝐴(𝑥). Therefore, the area of the largest pen 
that this man can build is 𝐴(125) = 125(500 − 2 × 125) =
31,250𝑓𝑡#. 

ii. Closest points (minimum distance between a curve and a 
point): We can determine the points on 𝑦 = 6 − 𝑥# that are 
closest to the point (0,3) as follows: we have to minimize the 
distance function 𝑑# = (𝑥 − 0)# + (𝑦 − 3)#  subject to the 
constraint of  𝑦 = 6 − 𝑥#. Hence,  
𝑑 = 𝑓(𝑥) = Ù(𝑥 − 0)# + (𝑦 − 3)# =
Ù𝑥# + (6 − 𝑥# − 3)# ⇒ 𝑓(𝑥) = Ù𝑥# + (3 − 𝑥#)#. 
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Now, we have to minimize 𝑓(𝑥), and, therefore, we have to 
find its critical points, that is, the points at which the 
derivative 𝑓@(𝑥) is equal to zero or undefined. Firstly, we 
have to compute 𝑓@(𝑥), using the chain rule: 

𝑓@(𝑥) =
1
2
[𝑥# + (3 − 𝑥#)#]E

"
#[2𝑥 + 2(3 − 𝑥#)(−2𝑥)]

=
−10𝑥 + 4𝑥*

2Ù𝑥# + (3 − 𝑥#)#
 

(the derivative is equal to zero when the numerator is equal 
to zero, and the derivative is undefined when the 
denominator is equal to zero; but notice that, in the 
denominator of this fraction, the expression 
Ù𝑥# + (3 − 𝑥#)#  is 𝑑 = 𝑓(𝑥), and, therefore, it will never 
be equal to zero, since it represents the distance between a 
point on the 𝑦-axis, specifically, (0,3), and the parabola 𝑦 =
6 − 𝑥# , meaning that the denominator is always different 
from zero, and, therefore, the derivative is always defined). 
The derivative 𝑓@(𝑥) = 0  when −10𝑥 + 4𝑥* = 0 ⇒

𝑥(4𝑥# − 10) = 0 ⇒ 4𝑥 Ã𝑥# − ")
A
Ä = 0 ⇒ 4𝑥 K𝑥# −

10C
#
2
#

L = 4𝑥 1𝑥 −0C
#
21𝑥 +0C

#
2 = 0, 

and, therefore, we obtain three solutions, which are the three 

critical values of 𝑓(𝑥) , namely: 0 , 0C
#
, and −0C

#
; and we 

have to find out which of them is the minimum value. 
Investigating the manner in which the sign of the derivative 
𝑓@(𝑥)  changes when passing through each of these three 

points, we realize that 0C
#

 is a minimum, and −0C
#

 is a 

minimum (indeed, given the parabola 𝑦 = 6 − 𝑥#, which is 
symmetric with respect to the 𝑦-axis, and the point  (0,3), 
which is on the 𝑦-axis, we expected to obtain two minimum 
values, and we expected them to be symmetric with respect 
to the 𝑦 -axis).  Consequently, 𝑓(𝑥) = 𝑑  has a minimum 

when 𝑥 = ±0C
#

, since 𝑓@(𝑥)  changes from negative to 

positive at those 𝑥 values. 
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iii. Optimal route: A team of archaeologists is camped on an 
archaeological site 9𝑘𝑚 to the north of a highway running 
from west to east. There is a town 15𝑘𝑚 to the east of the 
nearest point on the highway to the camp. The archaeologists 
send a messenger by bicycle to the town. What route should 
the messenger follow in order to reach the town in the 
shortest time if he can ride at 8𝑘𝑚 ℎ⁄  across the 
archaeological site and at 10𝑘𝑚 ℎ⁄  along the highway? In 
Figure 8-10, we can see a model of this problem: The point 𝑃 
denotes the location of this team of archaeologists, the 
straight line 𝐿  denotes the highway, 𝐵  denotes the town, 
𝑃𝐴 = 9𝑘𝑚 , 𝐴𝐵 = 15𝑘𝑚 , 𝑃𝑀𝐵  is the route of the 
messenger, and the position of the point 𝑀 between 𝐴 and 𝐵 
is not known yet. The quantity that we must optimize is the 
time 𝑡 during which the messenger will move from 𝑃 to 𝐵. 
Let 𝐴𝑀 = 𝑥. According to the problem, the point 𝑀 may be 
anywhere between 𝐴  and 𝐵  including points 𝐴  and 𝐵 . 
Therefore, the real bounds within which 𝑥  varies are 0 ≤
𝑥 ≤ 15. We express time 𝑡 in terms of 𝑥 as follows: We have 
𝑃𝑀 = √𝑃𝐴# + 𝐴𝑀# = √81 + 𝑥#. The messenger, using his 
bicycle, covers this distance at a speed of 8𝑘𝑚 ℎ⁄ , that is, 

𝑡" =
t2"BV#

2
. Moreover, 𝑀𝐵 = 15 − 𝑥 , and the messenger, 

using his bicycle, covers this distance at a speed of 10𝑘𝑚 ℎ⁄ , 
so that 𝑡# =

"CEV
")

. Hence, the total time 𝑡 that the messenger 
spent in order to cover the entire distance is equal to 𝑡" + 𝑡#, 
that is, 

𝑡 = t2"BV#

2
+ "CEV

")
. 

We have to minimize the function 𝑡 = t2"BV#

2
+ "CEV

")
 in the 

closed interval [0,15] . The derivative ;Y
;V
= V

2t2"BV#
− "

")
 

exists for all 𝑥, and we have to find the points at which ;Y
;V
=

0. We have V

2t2"BV#
− "

")
= 0 ⇒ 𝑥 = 12, which belongs to 

the closed interval [0,15]. Let’s examine the values of the 
function 𝑡 at the endpoints of the closed interval [0,15] and 
at 𝑥 = 12 in order to find the least value of 𝑡. At 𝑥 = 0, 𝑡 =
105 40⁄ . At 𝑥 = 12 , 𝑡 = 87 40⁄ . At 𝑥 = 15 , 𝑡 =
5√306 40⁄ . Thus, the least value of 𝑡 is 𝑡 = 87 40⁄ , and it is 
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reached for 𝑥 = 12. This result implies that the messenger, 
using his bicycle, has to ride along a route 𝑃𝑀𝐵 such that the 
distance between the points 𝐴 and 𝑀 on the highway is equal 
to 12𝑘𝑚. This type of problems is very common in logistics 
and transportation.  

 
Figure 8-10: An optimization model. 
 

 
 

iv. In view of what we discussed in Chapter 4, we have: 
Total Cost: 𝐶(𝑥) = 𝑓𝑖𝑥𝑒𝑑	𝑐𝑜𝑠𝑡 + 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝑐𝑜𝑠𝑡 for 
producing 𝑥 items, where fixed cost consists of all types of 
cost that do not change with the level of output (e.g., the rent 
of the premises, the insurance, taxes, etc.), and variable cost 
is the sum of all costs that are dependent on the level of 
production (e.g., labor cost, the cost of raw materials, the 
cost of energy, the cost of packaging, etc.). 
Total Revenue: 𝑅(𝑥) = 𝑥𝑝(𝑥), where 𝑥 denotes units sold, 
and 𝑝  denotes price per unit (i.e., 𝑅(𝑥)  is the revenue 
obtained from selling 𝑥 items). 
Demand Function (linear approximation): 𝑄� = 𝑎 + 𝑏𝑝 , 
where 𝑎  stands for the quantity-intercept (i.e., the 𝑥 -
intercept) of the demand (i.e., 𝑎 is quantity demanded when 
price is zero, and it is known as the “autonomous demand”), 
𝑏 measures the change in quantity demanded resulting from a 
particular change in price (i.e., indicating the responsiveness 
of consumers to a particular increase in the price of a 
commodity, 𝑏 = bN:

bK
, which, given Figure 4-1, is the 

reciprocal of the slope of the demand curve), and 𝑝 denotes 
price (notice that the independent variable 𝑝 is graphically 
represented by the vertical axis, that is, by the 𝑦 -axis, 
whereas the dependent variable 𝑄� is graphically represented 
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by the horizontal axis, that is, by the 𝑥-axis, as shown in 
Figure 4-1).  
Supply Function (linear approximation): 𝑄a = 𝑘 + 𝑙𝑝, where 
𝑘 denotes the quantity-intercept (i.e., the 𝑥-intercept) of the 
supply (usually, it is negative, since, at a price of zero, no 
producers are generally willing or able to provide a 
commodity; but, in the case of some subsidies, the value of 𝑘 
may be positive), 𝑙  denotes the price coefficient of supply 
(i.e., indicating the responsiveness of producers to a 
particular increase in the price of a commodity, 𝑙 is given by 
the change in quantity supplied divided by the change in 
price, and, thus, 𝑙 = bN;

bK
, which, given Figure 4-1, is the 

reciprocal of the slope of the supply curve), and 𝑝 denotes 
price (notice that the independent variable 𝑝 is graphically 
represented by the vertical axis, that is, by the 𝑦 -axis, 
whereas the dependent variable 𝑄a is graphically represented 
by the horizontal axis, that is, by the 𝑥-axis, as shown in 
Figure 4-1). 
Profit: 𝑃 = 𝑅 − 𝐶, where 𝑅 denotes revenue, and 𝐶 denotes 
cost. 
Break-Even Point: the point at which 𝑅(𝑥) = 𝐶(𝑥), that is, 
the point at which the revenue function and the cost function 
cross.  
Average Cost: 𝐶̅ = P(V)

V
, that is, the cost per unit item. 

Average Price: 𝑝̅ = F(V)
V

, that is, the price per unit item. 

Marginal Revenue: 𝑅@(𝑥) = ;[(V)
;V

.  

Marginal Cost: 𝐶@(𝑥) = ;P(V)
;V

.  
Minimization of Average Cost: In order to find the level of 
output for which the average cost is minimum, we define the 
function of the average cost, say 𝐴𝐶(𝑥) , in the case under 
consideration, and then we calculate the cost-minimizing 
level of output 𝑥  by solving 𝐴𝐶@(𝑥) = ;(P(V)

;V
= 0 , and, 

finally, we get the value of 𝑥 for which 𝐴𝐶@@(𝑥) = ;#(P(V)
;V#

>
0. 
Maximization of Total Revenue: In order to find the level of 
output for which the total revenue is maximum, we define 
the function of the total revenue, say 𝑅(𝑥), in the case under 



 

 

276 

consideration, and then we calculate the revenue-maximizing 
level of output 𝑥 by solving 𝑅@(𝑥) = ;[(V)

;V
= 0, and, finally, 

we get the value of 𝑥 for which 𝑅@@(𝑥) = ;#[(V)
;V#

< 0. 
Marginal Profit: 𝑃@(𝑥) = 𝑅@(𝑥) − 𝐶@(𝑥) , that is, marginal 
profit is defined to be the difference between marginal 
revenue and marginal cost.  
Maximization of Profit: In order to find the level of output 
for which the profit is maximum, we define the function of 
the profit, say 𝑃(𝑥), in the case under consideration, and then 
we calculate the profit-maximizing level of output 𝑥  by 
solving 𝑃@(𝑥) = ;K(V)

;V
= 0, and, finally, we get the value of 𝑥 

for which 𝑃@@(𝑥) = ;#K(V)
;V#

< 0. 
 
Polynomial approximation of functions: the formulae of Taylor and 
MacLaurin: Polynomial functions are always continuous everywhere (i.e., 
at any real value), and they are also differentiable for all arguments. 
Moreover, polynomial functions being linear combinations of 
1, 𝑥, 𝑥#, 𝑥*, … , 𝑥%, they are easier to differentiate and integrate than other 
functions, and algorithms have been devised to differentiate and integrate 
polynomial functions, whereas often there are no such algorithms for other 
functions, and this often compels us to use laborious graphing techniques 
to solve problems. Hence, it is very important to be able to approximate 
any function by means of polynomials.  
Suppose that we have a function 𝑓(𝑥)  and we want to express this 
function, or approximate this function, as a polynomial, symbolically, 
𝑓(𝑥) ≈ 𝑝%(𝑥) , where 𝑛  symbolizes that the highest power of 𝑥  we are 
going to consider is 𝑥%, and 𝑓(𝑥) can be any function you can think of as 
long as it is differentiable. The key idea that underpins the polynomial 
approximation of functions is the following: Firstly, we define 𝑝%(𝑥) by 
expanding it around some general point 𝑎, namely: 
𝑝%(𝑥) = 𝑎) + 𝑎"(𝑥 − 𝑎) + 𝑎#(𝑥 − 𝑎)# +⋯+ 𝑎%(𝑥 − 𝑎)%, 
and we stop at the 𝑛th power because we have fixed our polynomial 𝑝%(𝑥) 
to be of maximum degree 𝑛. Then we have to decide how to define the 
coefficients 𝑎< (where 𝑘 = 0,1,2, … , 𝑛) of 𝑝%(𝑥). In particular, we define 
the coefficients of 𝑝%(𝑥) in such a way that the 𝑘th derivative of 𝑝%(𝑥) at 
the point 𝑎 is equal to the 𝑘th derivative of the function 𝑓(𝑥) at the point 
𝑎, symbolically: 
𝑝%
(<)(𝑎) = 𝑓(<)(𝑎). 

For instance,  
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𝑝%@ (𝑥) = 𝑎" + 2𝑎#(𝑥 − 𝑎) +⋯+ 𝑛𝑎%(𝑥 − 𝑎)%E", 
𝑝@@(𝑥) = 2𝑎# +⋯+ 𝑛(𝑛 − 1)(𝑥 − 𝑎)%E#, 
⋮ 
Notice that  
𝑝%
(<)(𝑥) = 𝑎<𝑘! + 𝑎<B"(𝑘 + 1)𝑘(𝑘 − 1)…2(𝑥 − 𝑎) +⋯                      (1) 

where, after the term 𝑎<𝑘!, every other term of  𝑝%
(<)(𝑥) includes a power 

of (𝑥 − 𝑎). But the rule that we use in order to determine the coefficients 
of 𝑝%(𝑥) is 𝑝%

(<)(𝑎) = 𝑓(<)(𝑎), and, if we set 𝑥 = 𝑎 in the polynomial (1), 
the first term, that is, 𝑎<𝑘!, remains, because it is a constant, and every 
other term vanishes, because it includes a power of (𝑥 − 𝑎). Hence, 

𝑝%
(<)(𝑎) = 𝑓(<)(𝑎) = 𝑎<𝑘! ⇒ 𝑎< =

𝑓(<)(𝑎)
𝑘!  

(this is the formula for determining the coefficients of the approximating 
polynomial, which, in fact, leads us to Taylor’s formula), and 
𝑝%(𝑥) = 𝑓(𝑎) + 𝑓@(𝑎)(𝑥 − 𝑎) + ](((1)

#!
(𝑥 − 𝑎)# +⋯+ ](')(1)

%!
(𝑥 − 𝑎)%. 

Furthermore, due to Cauchy’s Mean Value Theorem, we can argue that, 
because the functions 𝑓(𝑥) and 𝑝%(𝑥) agree on these 𝑛 derivatives at this 
point 𝑎, they are in fact almost the “same,” in the sense that 𝑝%(𝑥) tends to 
become exactly 𝑓(𝑥) as we continue this pattern forever; that is, as we 
increase the degree of the approximating polynomial, we get better 
approximations of the function 𝑓(𝑥). 
Generalization: If 𝑓:ℝ → ℝ  is a continuous function such that 𝑓  has 
continuous derivatives of all orders at 𝑥 = 𝑎, then 𝑓(𝑥) can be expanded 
in a power series as follows: 

𝑓(𝑥) ≈ 𝑓(𝑎) +
𝑥 − 𝑎
1! 𝑓@(𝑎) +

(𝑥 − 𝑎)#

2! 𝑓@@(𝑎) +⋯+
(𝑥 − 𝑎)%

𝑛! 𝑓(%)(𝑎)
+⋯ 

(we get a more and more accurate approximation of 𝑓(𝑥) the more terms 
we take, that is, the more derivatives of 𝑓(𝑥) we calculate at 𝑎). This 
equation is known as Taylor’s formula, and it approximates a function 
around a point.  
For 𝑎 = 0, in particular, we obtain: 

𝑓(𝑥) ≈ 𝑓(0) +
𝑥
1! 𝑓

@(0) +
𝑥#

2! 𝑓
@@(0) +⋯+

𝑥%

𝑛! 𝑓
(%)(0) +⋯ 

(this equation is a special case of Taylor’s formula, and it approximates a 
function around the origin). This equation is known as MacLaurin’s 
formula. 
Examples: For any 𝑥 ∈ ℝ, MacLaurin’s formula implies that 
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𝑒V ≈ 1 +
𝑥
1! +

𝑥#

2! +⋯+
𝑥%

𝑛! +⋯ ⇒ 𝑒V =ä
𝑥%

𝑛!
'

%>)
 

since 𝑓(𝑥) = 𝑒V ⇒ 𝑓(%)(𝑥) = 𝑒V, and then 𝑓(%)(0) = 1; 

𝑠𝑖𝑛𝑥 ≈
𝑥
1! −

𝑥*

3! +
𝑥C

5! −⋯ ⇒ 𝑠𝑖𝑛𝑥 =ä (−1)%
'

%>)

𝑥#%B"

(2𝑛 + 1)! 

since 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 ⇒ 𝑓(%)(𝑥) = 𝑠𝑖𝑛 Ã𝑥 + 𝑛 o
#
Ä , and then 𝑓(%)(0) =

𝑠𝑖𝑛 Ã𝑛 o
#
Ä = { 0	𝑤ℎ𝑒𝑛	𝑛 = 2𝑘

(−1)%	𝑤ℎ𝑒𝑛	𝑛 = 2𝑘 + 1; 

𝑐𝑜𝑠𝑥 = 1 −
𝑥#

2! +
𝑥A

4! −⋯ ⇒ 𝑐𝑜𝑠𝑥 =ä (−1)%
'

%>)

𝑥#%

(2𝑛)! 

since 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 ⇒ 𝑓(%)(𝑥) = 𝑐𝑜𝑠𝑥 Ã𝑥 + 𝑛 o
#
Ä , and then 𝑓(%)(0) =

𝑐𝑜𝑠 Ã𝑛 o
#
Ä = { 0	𝑤ℎ𝑒𝑛	𝑛 = 2𝑘 + 1

(−1)%	𝑤ℎ𝑒𝑛	𝑛 = 2𝑘. 

The binomial series: Let 𝑓(𝑥) = (1 + 𝑥)6 , where 𝑚  is an arbitrary 
rational number (positive or negative). Then 
𝑓(%)(𝑥) = 𝑚(𝑚 − 1)… (𝑚 − 𝑛 + 1)(1 + 𝑥)6E%; 
and MacLaurin’s formula implies that 
(1 + 𝑥)6 ≈ 1 + Ã𝑚1Ä𝑥 + Ã

𝑚
2Ä 𝑥

# +⋯, 
where the binomial coefficient is defined by  
Ã𝑚𝑘Ä =

6!
<!(6E<)!

, where 𝑚! = 1 ∙ 2 ∙ 3 ∙ … ∙ 𝑚, 𝑚 is a positive integer, and 
𝑚 ≥ 𝑘 ≥ 0  (as I have already mentioned, 𝑚 = 0 ⇒ 0! = 1 , since the 
binomial coefficient gives the number of combinations of 𝑚  elements 
taken 𝑘 at a time). 
Analytic functions: A function is said to be “analytic” in a neighborhood 
(open disc) centered at 𝑥) if and only if its Taylor series converges to the 
value of the function at each point of the neighborhood. For instance, the 
functions 𝑒V , 𝑠𝑖𝑛𝑥 , and 𝑐𝑜𝑠𝑥  are analytic for all 𝑥 ∈ ℝ , whereas the 
function (1 + 𝑥)6 is analytic in the open interval (−1,1). 
 
L’Hôpital’s rule and indeterminate forms: Consider the following limits: 
𝑙𝑖𝑚V→1𝑓(𝑥) = 0 and 𝑙𝑖𝑚V→1𝑔(𝑥) = 0. 
Then the limit 
𝑙𝑖𝑚V→1

](V)
:(V)

 assumes the form )
)
, 

which is called an “indeterminate form.” Other such forms are '
'

, ∞−∞, 
and 0 ∙ ∞. For evaluating such forms of limits, we apply L’Hôpital’s rules: 

i. Let 𝑓 and 𝑔 be two functions that are both differentiable at 
each point of the neighborhood 𝑁T(𝑎) of 𝑎, and let 𝑔@(𝑥) ≠
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0 for all 𝑥 ∈ 𝑁T(𝑎). If 𝑙𝑖𝑚V→1𝑓(𝑥) = 0 and 𝑙𝑖𝑚V→1𝑔(𝑥) =
0, then 
𝑙𝑖𝑚V→1

](V)
:(V)

= 𝑙𝑖𝑚V→1
]((V)
:((V)

,  
provided that the limit in the right exists. Notice that, if 𝑥 =
𝑎 is the point at which we are trying to take the limit, we can 
expand both the functions 𝑓(𝑥) and 𝑔(𝑥) into Taylor series 
about 𝑎 , so that 𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓@(𝑎)(𝑥 − 𝑎)  and 𝑔(𝑥) ≈
𝑔(𝑎) + 𝑔@(𝑎)(𝑥 − 𝑎) . But, since 𝑙𝑖𝑚V→1𝑓(𝑥) = 0 =
𝑙𝑖𝑚V→1𝑔(𝑥), then (as we get infinitely close to 𝑎) we have 
𝑓(𝑥) ≈ 𝑓@(𝑎)(𝑥 − 𝑎)  and 𝑔(𝑥) ≈ 𝑔@(𝑎)(𝑥 − 𝑎) . Hence, as 
𝑥 → 𝑎, ](V)

:(V)
≈ ]((1)

:((1)
. 

ii. If 𝑓 and 𝑔 are two functions such that 
𝑙𝑖𝑚V→1𝑓(𝑥) = ∞ and 𝑙𝑖𝑚V→1𝑔(𝑥) = ∞, then 
𝑙𝑖𝑚V→1

](V)
:(V)

= 𝑙𝑖𝑚V→1
]((V)
:((V)

, 
provided that the limit in the right exists. Notice that 
𝑙𝑖𝑚V→1

](V)
:(V)

 can be written as 𝑙𝑖𝑚V→1
" :(V)⁄
" ](V)⁄ , which reduces to 

the above 0 0⁄  form.  
The indeterminate forms ∞−∞  and 0 ∙ ∞  are reducible to the 
indeterminate form )

)
. If 𝑙𝑖𝑚V→1𝑓(𝑥) = 0 and 𝑙𝑖𝑚V→1𝑔(𝑥) = ∞, then 

𝑙𝑖𝑚V→1𝑓(𝑥) ∙ 𝑔(𝑥) = 𝑙𝑖𝑚V→1
](V)
"

-(5)
, 

which is of the form )
)
.  

If 𝑙𝑖𝑚V→1𝑓(𝑥) = ∞ and 𝑙𝑖𝑚V→1𝑔(𝑥) = ∞, then 

𝑙𝑖𝑚V→1[𝑓(𝑥) − 𝑔(𝑥)] = 𝑙𝑖𝑚V→1 M
"

-(5)E
"

>(5)
"

-(5)>(5)
N, 

which is of the form )
)
. 

Example: In case of 𝑙𝑖𝑚V→)
p=%V
V

, we can use L’Hôpital’s rule, since the 

limit reduces to the indeterminate form )
)
, and, therefore, 

𝑙𝑖𝑚V→)
p=%V
V
= 𝑙𝑖𝑚V→)

?
?5p=%V
?
?5V

= 𝑙𝑖𝑚V→)
5XpV
"
= "

"
= 1. 

 
The curvature of a curve: Intuitively, by the term “curvature,” we refer to 
the measure of how sharply a curve bends, that is, of how much a curve 
deviates from being a straight line. Formally, we can say that a curved line 
is a line that gradually changes direction from one point to the next, and 
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the rate of this change of direction, per unit length along the curve, is 
called the “curvature.” The ancient Greek mathematician Apollonius 
calculated the curvature of conic sections, the French scholastic 
intellectual and mathematician Nicolas d’Oresme understood and studied 
“curvature” in an abstract way, Descartes studied curvature as a local 
measure of a curve’s bending in the context of the Cartesian coordinate 
system and his “algebraic calculus,” Kepler and Leibniz studied curvature 
in terms of the “closest” circle at a point (the “osculating circle”), the 
seventeenth-century Dutch mathematician Christiaan Huygens found a 
way to calculate the curvature of any curve, and Newton formulated the 
concept of curvature in its modern form, which will be studied here. 
If 𝑦 = 𝑓(𝑥) is a plane curve, then the curvature at any point 𝑃(𝑥, 𝑦) is 
expressed in terms of the first and the second derivatives of the function 
𝑓(𝑥) by the formula 

𝐾 =
|𝑓@@(𝑥)|

[1 + (𝑓@(𝑥))#]
!
#

 

where 𝐾 characterizes the speed of rotation of the tangent to the curve at 
the given point.  
Proof: First of all, let us consider the following preliminary concepts and 
principles: 

1. The radius of a circle drawn to a point of tangency between the 
circle and the tangent line is perpendicular to the tangent line. 

2. If two separate lines are tangent to a circle at two different points, 
then the lines drawn perpendicular to the tangent lines at their 
points of tangency intersect each other at the circle’s center; and 
each perpendicular line’s segment from its point of tangency to 
the point of intersection is a radius. 

3. Historically, the curvature of a (differentiable) curve was defined 
by means of the “osculating circle,” that is, the circle that best 
approximates the curve under consideration (as shown in Figure 
8-11). The curvature of a circle is defined as the reciprocal of its 
radius (i.e., the curvature of a circle of radius 𝑅 is 1 𝑅⁄ ). For any 
two nearby points on a curve, at least one circle minimizes the 
absolute area between the curve and the circle between the two 
points. This circle’s radius can be viewed as approximating the 
curve’s radius of curvature 𝑅, and, then, the curve’s curvature is 
𝐾 = "

[
 as the two points approach each other. See, for instance, 

Figure 8-11. 
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Figure 8-11: Radius of curvature (source: Wikimedia Commons: Author: 
Emperorhoney; 
https://commons.wikimedia.org/wiki/File:Osculating.svg). 
 

 
 

4. A curve’s curvature between two points approaches its curvature 
at a point as the two points approach each other (Figure 8-11). 

5. The curvature of a circle that minimizes the absolute area 
between the curve and the circle between two nearby points on 
the curve approaches the curve’s curvature 𝐾 as the two points 
approach each other (Figure 8-11). 

6. The radius of the absolute area-minimizinng circle approaches the 
curve’s radius of curvature 𝑅 = "

�
 as the two points approach 

each other.  
7. The function that represents the slope of a function 	𝑓  is the 

derivative of	𝑓 (precisely, the slope of a tangent line at a point). 
Consider a curve given by the twice differentiable function 
𝑦 = 𝑓(𝑥).                                                                                                   (1) 
Let (𝑥), 𝑦))  and (𝑥", 𝑦")  be two points on the given curve. Using the 
point-slope form of a line, and denoting its slope by 𝑚), the tangent line to 
the curve at (𝑥), 𝑦)) is given by the following equation: 
(𝑦 − 𝑦)) = 𝑚)(𝑥 − 𝑥)).                                                                           (2) 
Because the slope of a line perpendicular to another line is the negative 
inverse of that line’s slope, the line perpendicular to the tangent line at 
(𝑥), 𝑦)) is given by the following equation: 
(𝑦 − 𝑦)) = − (VEV6)

66
.                                                                                  (3) 

Similarly, the corresponding tangent and perpendicular lines at (𝑥", 𝑦") 
are, respectively, given by the following equations: 
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(𝑦 − 𝑦") = 𝑚"(𝑥 − 𝑥")                                                                            (4) 
and 
(𝑦 − 𝑦") = − (VEV")

6"
.                                                                                  (5) 

The intersection of the two perpendicular lines approximates the curve’s 
center of curvature. As the distance between 𝑥) and 𝑥" tends to zero, the 
aforementioned intersection becomes the center of the circle of curvature 
that matches exactly the curve’s curvature at the point (𝑥), 𝑦)) . This 
intersection is the solution of the simultaneous equations (3) and (5). In 
fact, substituting equation (3) into equation (5), we obtain 
(𝑦 − 𝑦)) = (𝑦 − 𝑦") + (𝑦" − 𝑦)) = − (VEV6)

66
                                           (6) 

(𝑦 − 𝑦") = − (VEV6)
66

− (𝑦" − 𝑦))                                                              (7) 
(𝑥 − 𝑥") = (𝑥 − 𝑥)) − (𝑥" − 𝑥))                                                             (8) 
− (VEV6)

66
− (𝑦" − 𝑦)) = − (VEV6)

6"
+ (V"EV6)

6"
                                                (9) 

− (VEV6)
66

= − (VEV6)
6"

+ (V"EV6)
6"

+ (𝑦" − 𝑦)).                                             (10) 
Given that 𝑓(𝑥)  is twice differentiable (by hypothesis), it holds that 
(𝑦" − 𝑦)) = 𝑚(𝑥" − 𝑥)), where 𝑚 denotes the curve’s slope somewhere 
in the closed interval [𝑥), 𝑥"]. We have: 
(𝑥 − 𝑥)) Ã

"
6"
− "

66
Ä = (V"EV6)

6"
+𝑚(𝑥" − 𝑥))                                         (11) 

(𝑥 − 𝑥)) Ã
66E6"
666"

Ä = Ã "
6"
+𝑚Ä(𝑥" − 𝑥))                                              (12) 

 

(𝑥 − 𝑥)) =
� "
)"

B6�

�)62)"
)6)"

�
(𝑥" − 𝑥))                                                                 (13) 

 
(𝑥 − 𝑥)) =

66("B66")
(66E6")

(𝑥" − 𝑥)).                                                           (14) 
Substituting equation (14) into equation (3), we obtain: 
(𝑦 − 𝑦)) = − (VEV6)

66
= − ("B66")

(66E6")
(𝑥" − 𝑥)).                                         (15) 

Since 𝑦 = 𝑓(𝑥) is given to be twice differentiable, it has a slope at each 
point, and these slopes can be treated as another function (the slope 
function of the original function (curve)). Moreover, notice that, just as the 
tangent line to the original function (curve) at (𝑥), 𝑦)) , namely, (𝑦 −
𝑦)) = 𝑚)(𝑥 − 𝑥)), is a good approximation to the original curve near 
(𝑥), 𝑦)) , the tangent line to the slope function at (𝑥), 𝑦)) , namely, 
(𝑚 −𝑚)) = 𝑛)(𝑥 − 𝑥)), where 𝑛) denotes the slope (rate of change) of 
the slope function,  is a good approximation to the slope function near 
(𝑥), 𝑦)). 
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Given that 𝑓(𝑥) is twice differentiable, it holds that 
(𝑚" −𝑚)) = 𝑛(𝑥" − 𝑥))                                                                       (16) 
where the term (𝑚" −𝑚)) is the difference between the original curve’s 
slopes at the points (𝑥", 𝑦") and (𝑥), 𝑦)), respectively, and 𝑛 denotes the 
slope of the slope function somewhere in the closed interval [𝑥), 𝑥"] . 
Substituting equation (16) into equations (14) and (15), we obtain: 
(𝑥 − 𝑥)) = −66("B66")

%
                                                                         (17) 

and  
(𝑦 − 𝑦)) =

("B66")
%

.                                                                                (18) 
As 𝑥" approaches 𝑥), all the slopes approach their values at (𝑥), 𝑦)), and, 
therefore, (𝑥 − 𝑥)) and (𝑦 − 𝑦)) approach: 
(𝑥 − 𝑥)) = −66�"B66

#�
%6

                                                                           (19) 
and  
(𝑦 − 𝑦)) =

�"B66
#�

%6
.                                                                                  (20) 

Equations (19) and (20) give the 𝑥-coordinate and the 𝑦-coordinate of the 
center of the circle that corresponds to the radius of curvature at (𝑥), 𝑦)). 
The “radius of curvature,” 𝑅, is the distance of the point (𝑥, 𝑦) given by 
equations (19) and (20) from the point (𝑥), 𝑦)). Hence, 

𝑅# = (𝑥 − 𝑥))# + (𝑦 − 𝑦))# =
𝑚)
#(1 +𝑚)

#)#

𝑛)#
+
(1 +𝑚)

#)#

𝑛)#
=
(1 +𝑚)

#)*

𝑛)#
 

meaning that, finally, 

𝑅 = 8
(1 +𝑚)

#)
!
#

𝑛)
8 

where, using the terminology of differential calculus, the term 𝑚) can be 
written as ;W

;V
≡ 𝑓@(𝑥), and the term 𝑛) can be written as ;

#W
;V#

≡ 𝑓@@(𝑥), so 
that 

𝑅 =
�"B�]((V)�#�

!
#

|](((V)|
. 

Given that curvature is the reciprocal of the radius of curvature,  
𝐾 = "

[
= �](((V)�

["B(]((V))#]
!
#
, 

quod erat demonstrandum. 
Curvature is one of the key concepts of differential geometry. Differential 
geometry is a combination of infinitesimal calculus and analytic geometry 
applied to curves and surfaces. The pioneers of differential geometry are 
C. Huygens, A. C. Clairaut, L. Euler, A.-L. Cauchy, and G. Monge. In the 
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twentieth century, curvature played a very important role in the 
development of modern physics, since, according to the general theory of 
relativity, objects of great mass bend space-time. Geometrizing the theory 
of gravity, we could say, following Einstein, that a heavy body modifies 
the geometry around it in such a way that the geodesics in the 
corresponding geometry are the curved trajectories of the attracted 
particles.  
A very simple way in which one can present Einstein’s general theory of 
relativity is the following metaphor: imagine a big rubber sheet stretched 
nice and taut before your eyes. If you watch a little marble as it rolls across 
the surface of this rubber sheet, then you will realize that it follows a 
simple straight-line trajectory. But if you watch the movement of a heavy 
rock on this rubber sheet, then you will realize that now the rubber sheet is 
deformed, warped, curved. In contrast to the previous marble, this rock 
does not follow a straight-line trajectory, but it follows a curved trajectory 
along the curved surface of the rubber sheet. Einstein took this idea and 
applied it to the fabric of space. Originally, the fabric of space may look 
nice and flat, like the rubber sheet in the previous example. However, if 
the Sun appears, the fabric of space curves. Similarly, in the vicinity of the 
Earth, the fabric of space curves, and the Moon is kept in orbit around the 
Earth because it rolls along a valley in the curved environment that is 
created by the Earth’s mass. This is the manner in which, according to 
Einstein, gravity is communicated from place to place: through warps and 
curves in the fabric of the space, more specifically through warps and 
curves in space-time. For instance, the Earth is kept in orbit around the 
Sun because it rolls along a valley in the curved environment that is 
created by the Sun’s mas, and, similarly, as I mentioned before, the Moon 
is kept in orbit around the Earth because it rolls along a valley in the 
curved environment that is created by the Earth’s mass. For this reason, 
the general theory of relativity is necessarily founded on Riemannian 
geometry (in Riemannian geometry, we do not talk about “straight lines,” 
but about “straightest lines,” that is, “geodesics” (the shortest path between 
two points on a curved surface) or “great circles” (the shortest path 
between two points along a spherical surface in particular)). 
It is worth mentioning that the general theory of relativity makes the 
following predictions: rays of light passing close to a star should be bent 
towards it, and physical processes should take place more slowly in 
regions of low gravitational potential than in regions of high gravitational 
potential (thus, kinetic energy changes throughout an orbit, resulting in a 
higher speed when a planet is closer to the Sun). 
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According to the “Bing-Bang” cosmological model, gravity underpinned 
and, actually, determined the transition from the “Bing-Bang” 
cosmological “soup” to the galactic structure that we observe today: 
gravity started from the initial conditions of the Big Bang and made the 
universe much more complex because, even though the density of the 
universe was almost uniform, there were density quantum-mechanical 
fluctuations. Put slightly differently, there were small differences in the 
density of the universe from one region to another. Thus, a region of the 
universe with density slightly greater than the mean density of the universe 
acted upon itself by its own gravity, and, gradually, it made itself denser. 
Consequently, instead of expanding with the rest of the universe, it drew 
matter into the given region. Ultimately, this region collapsed upon itself 
and did not participate in the universal expansion. In this way, a physical 
object was made out of such a region. Gradually, the universe was filled 
with small density inhomogeneities resulting from inflation due to 
quantum-mechanical fluctuations, which ultimately merged into the 
structures of the universe that we observe today. 
 
The physical significance of differentiation (basic applications in 
mechanics): By the term “energy,” we mean the impetus that underpins all 
motion and all activity―more specifically, the capacity for doing work. In 
physics, we typically look at the work that a constant force, 𝐹, does when 
moving an object over a distance of	𝑠. In these cases, the work is  
𝑊 = 𝐹𝑠; 
the force is parallel to the displacement.  
Mechanics is the branch of physics that studies the relationships between 
the following three physical concepts:   

i. Force: an agent that changes or tends to change the state of 
motion (i.e., the state of rest or of uniform motion) of an 
object. The “velocity” of an object is the rate of change of its 
position with respect to a frame of reference, and it is a 
function of time (i.e., velocity is the first derivative of 
displacement with respect to time). Notice that the “relative 
velocity” of a moving body 𝐴 with respect to a moving body 
𝐵 is denoted by 𝑣⃗(,L and is defined as the vector sum of the 
velocity 𝑣⃗(  of 𝐴  and the negative of the velocity 𝑣⃗L  of 𝐵 ; 
symbolically: 𝑣⃗(,L = 𝑣( + (−	𝑣⃗L) , which is the vector 
equation of relative motion, whereas the corresponding 
algebraic equation is 𝑣(,L = 𝑣( − 𝑣L. 
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ii. Mass: the quantity of matter that is concentrated in an object. 
The product of the mass times the velocity of an object is the 
“momentum” of that object. 

iii. Motion: a change in the position of an object with respect to 
time. 

The part of mechanics that is concerned with the study of motion is called 
kinematics. Due to the rigorous study of classical mechanics by Isaac 
Newton, the SI (Système International) unit of force, newton (denoted by 
N), has been named in his honor. One newton is defined as the force 
needed in order to accelerate one kilogram (kg) of mass at the rate of one 
meter (m) per second (sec) squared in the direction of the applied force: 
1𝑁 = 1𝑘𝑔 6

pZ5#
. 

Regarding the measurement of time and physical distance, it should be 
mentioned that the German mathematician Hermann Minkowski depicted 
time as a length by proposing the following definition: 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑	𝑜𝑓	𝑙𝑖𝑔ℎ𝑡 × 𝑡𝑖𝑚𝑒 = 𝑐𝑡. 
Hence, if the speed of light in vacuum, commonly denoted by the letter 𝑐, 
is approximately 300,000,000𝑚𝑒𝑡𝑒𝑟𝑠 𝑠𝑒𝑐𝑜𝑛𝑑⁄ (according to Rosa and 
Dorsey), then we say that 1 300,000,000⁄  of a second is one meter. In 
other words, one meter is the distance travelled by light in vacuum during 
a time interval of 1 300,000,000⁄  of a second. 
First Law of Motion: An object will remain at rest or in a uniform state of 
motion unless that state is changed by an external force. 
Second Law of Motion: The vector sum of the forces on an object is equal 
to the mass of that object multiplied by the acceleration of that object 
(“acceleration” is the rate of change of the velocity 𝑣 of an object with 
respect to time, meaning that acceleration is the first derivative of velocity 
with respect to time or, equivalently, the second derivative of displacement 
𝑠 with respect to time); symbolically: 
𝐹 = 𝑚𝑎 ≡ 𝑚 ;w

;Y
≡ 𝑚 ;#p

;Y#
, 

where 𝐹 denotes force, 𝑚 denotes the mass of an object, and 𝑎 denotes the 
acceleration of the given object (thus, for any force you put on an object, 
an object of small mass will accelerate a lot, and an object of large mass 
will accelerate just a little). In case of circular motion (i.e., a movement of 
an object along the circumference 𝐶 = 2𝜋𝑟 of a circle of radius 𝑟), if the 
period for one rotation is 𝑇, then: 
the angular velocity (i.e., the angular rate of rotation) is 
𝜔 = #o

�
= ;�(Y)

;Y
, 

where 𝜑(𝑡)  denotes the angular displacement from the 𝑥 -axis and is 
measured in radians, and 𝑡 denotes time (measured in seconds); 
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the speed of the object travelling the circle is  
𝑣 = #oJ

_
= 𝜔𝑟; 

the angular acceleration of the particle is 
𝛼 = ;�

;Y
, 

and, in case of uniform circular motion, 𝛼 = 0; 
the acceleration due to change in the direction is 
𝛼5 =

w#

J
= 𝜔#𝑟; 

and the centripetal and centrifugal force can be computed using 
acceleration as follows (the centripetal force and the centrifugal force are 
actually the same force, depending upon the frame of reference): 
𝐹5 = 𝑚𝛼5 =

6w#

J
. 

For instance, a “satellite” is any object that is orbiting the Earth (or any 
other massive body). Once launched into orbit, a satellite is a projectile 
acted upon by a single force, specifically, by the force of gravity. In 
particular, a satellite is a projectile that is launched horizontally at such a 
high speed that, due to gravity, it falls towards the Earth, but it never falls 
into the Earth (thus, making a circular path around the Earth) because the 
curvature of the satellite’s path matches the curvature of the Earth 
(approximately, for every 8	𝑘𝑚 horizontally, the Earth curves downward 
5𝑚, and, therefore, 5𝑚 is the distance that a projectile falls in one second, 
so that, if we shoot a projectile that travels 8	𝑘𝑚 horizontally per second, 
it will fall towards the Earth but never touch the Earth; in other words, 
since a satellite moves at 8𝑘𝑚 𝑠𝑒𝑐⁄ , it “falls” at the same rate as the Earth 
“curves downward”).  
Third Law of Motion: For every action in nature, there is an equal and 
opposite reaction. The “internal forces” of a system of objects are those 
forces which are exerted between the members of the given system. The 
“external forces” of a system of objects are those forces exerted by bodies 
not belonging to the given system on the members of the given system. 
Internal forces are interaction forces (that is, pairs of action and reaction), 
and, therefore, their resultant is equal to zero. Hence, the total momentum 
of an isolated system of objects remains constant. For instance, the 
operation of rockets and jet planes is based on the conservation of 
momentum: as the fuel burns, it gives off hot gas that shoots out from an 
opening at the back of the chamber, so that the force of the gas moving 
backward pushes the rocket/the jet plane forward.  
Newton’s Law of Universal Gravitation: An object attracts another object 
with a force that is directly proportional to the product of the masses of the 



 

 

288 

objects and inversely proportional to the square of the distance between 
them, symbolically: 
𝐹: = 𝐺 6"6#

J#
, 

where 𝐹: is the magnitude of the gravitational force on either object, 𝑚" 
and 𝑚#  are their masses, 𝑟  is the distance between them, and 𝐺  is the 
gravitational constant, whose value is found to be (in SI units) 6.673 ×
10E""𝑁 ∙ 𝑚# ∙ 𝑘𝑔E# (thus, the “weight” of a body is the total gravitational 
force exerted on the body by all other bodies in the universe). 
Total Mechanical Energy of a System:	𝐸6 = 𝐾 +𝑈, 
where 𝐸6  denotes mechanical energy, 𝐾  denotes kinetic energy, and 𝑈 
denotes potential energy.  
By the term “potential energy,” we mean the energy possessed by a body 
by virtue of its position relative to others, stresses within itself, its electric 
charge, or other factors. For instance, gravitational potential energy (e.g., 
in the case of a ball whose mass is 𝑚 and is dropped from height	ℎ) can be 
computed using the following formula: 
𝑈 = 𝑚𝑔ℎ, 
where 𝑚  denotes the mass of the object, 𝑔  denotes the acceleration 
constant due to the Earth’s gravity (≈ 9.8	𝑚/𝑠𝑒𝑐# ), and ℎ  denotes the 
height (displacement) of the object as a function of time (gravitational 
acceleration 𝑔 differs from planet to planet; for instance, at the surface of 
the Earth, gravitational acceleration is approx. 9.8	𝑚/𝑠𝑒𝑐#, whereas, at the 
surface of Mars, gravitational acceleration is approx. 3.7	𝑚/𝑠𝑒𝑐#). 
By the term “kinetic energy,” we mean the energy possessed by a body by 
virtue of its motion. Let us consider a body of mass 𝑚 moving along the 
𝑥 -axis under the action of a constant resultant force of magnitude 𝐹 
directed along the axis. The body’s acceleration is constant, and, according 
to Newton’s Second Law of Motion, it is given by 𝐹 = 𝑚𝑎. The kinetic 
energy of this body can be computed using the following formula: 
𝐾 = "

#
𝑚𝑣#, 

where 𝑣 denotes the body’s velocity (which is, by definition, a function of 
time), and 𝑚 denotes the mass of the object. Thus, the work done by the 
resultant external force on a body is equal to the change in kinetic energy 
of the body. 
The eighteenth-century French mathematician and natural philosopher 
Émilie du Châtelet proposed and tested the law of “conservation of 
energy,” according to which the total energy of an “isolated system” (i.e., 
one that does not interact with other systems) remains constant.  
In order to clarify the meaning of the principle of the conservation of 
energy, let us consider the following example: setting fire to coal. The 
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chemical bonds of the coal molecules store great amounts of energy. If we 
set fire to coal, then fire causes a chain reaction between the coal and 
oxygen in the air. In this reaction, energy from the chemical bonds is 
converted into kinetic energy of air molecules. Hence, the air becomes 
warm, and, for this reason, it will rise. This rising air can be used in order 
to drive a turbine and, for instance, move a vehicle, or in order to create 
electricity (by feeding it into the grid). Alternatively, we can just burn coal 
without doing anything with the produced energy. This does not change 
the total energy in the system, because the total energy in the system is 
conserved. The chemical energy of the coal is converted into kinetic 
energy of air molecules, which are distributed in the atmosphere. Even 
though, in this case, the energy is useless, the total energy in the system 
remains the same. The difference between the aforementioned cases is 
entropy, or the measure of the molecular disorder, or randomness, of the 
system under consideration. Initially, the energy was packed into the coal, 
and the level of entropy was low. By setting fire to coal, the energy was 
distributed in the motion of air molecules, and the level of entropy became 
high. When a system has energy in a state of low entropy, its energy can 
be used in order to create macroscopic change (e.g., drive a turbine), and 
this useful energy is called “free energy.” Free energy is a type of energy 
that does “work.” But, if the energy in the system is in a state of high 
entropy, then the energy is useless, and it is called “heat.” Heat is a type of 
energy that does not do “work.” Even though total energy is conserved, 
free energy is not conserved. 
Escape velocity: By “escape velocity,” we mean the minimum velocity 
that a moving body, such as a rocket, must have to escape from the 
gravitational field of a celestial body, such as the Earth, and move outward 
into space. Suppose that a mass 𝑚 is launched from the surface of the 
Earth with a velocity equal to 𝑣, and it travels to a height ℎ. According to 
the law of conservation of energy, 

(𝐾 +𝑈)4X^ZpY	FX=%Y = (𝐾 +𝑈)m=:mZpY	FX=%Y 
where 𝐾  denotes kinetic energy, and 𝑈  denotes potential energy. The 
potential energy of an object of mass 𝑚 on the surface of the Earth is 
E��6
[

, where 𝑀 denotes the mass of the Earth, and 𝑅 denotes the radius of 
the Earth (this potential energy is due to the gravitational pull of the Earth, 
and it is negative because the work is done by the gravitational force of 
attraction). The above formula of the law of conservation of energy 
implies that, for some height ℎ, 

1
2𝑚𝑣=%=Y=14

# +
−𝐺𝑀𝑚
𝑅 =

1
2𝑚𝑣]=%14

# +
−𝐺𝑀𝑚
𝑅 + ℎ  
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where, we realize that, as ℎ → ∞, 𝑅 + ℎ → ∞, and, thus, potential energy 
tends to zero, and, since we do not need any excess speed at the end (as we 
are looking for the absolute minimum velocity), 𝑣 → 0 (as ℎ → ∞), and, 
thus, kinetic energy tends to zero, too. Under these assumptions, the right-
hand part of the last equation vanishes, and we obtain 

1
2𝑚𝑣=%=Y=14

# =
𝐺𝑀𝑚
𝑅  

(this 𝑣=%=Y=14 is what we call “escape velocity”). Hence, solving for 𝑣=%=Y=14, 
we get the escape velocity: 

𝑣Zp51FZ = $2𝐺𝑀
𝑅  

(where 𝑀 and 𝑅, respectively, denote the mass and the radius of the planet 
from which the projectile is launched (in this case, the Earth); and if one 
launches a projectile with the speed 𝑣Zp51FZ, or higher, then the projectile 
will fly away and will not return).  
 

Differentiation of Multivariable Functions 
 

So far, we have studied exclusively functions of a single (independent) 
variable 𝑥 , but we can also apply the concept of differentiation to 
functions of several variables 𝑥, 𝑦, … Suppose that 𝑓(𝑥, 𝑦) is a function of 
two variables 𝑥 and 𝑦, and that the limits 
 

𝑙𝑖𝑚bV→)
𝑓(𝑥 + 𝛥𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

𝛥𝑥  
and 

𝑙𝑖𝑚bW→)
𝑓(𝑥, 𝑦 + 𝛥𝑦) − 𝑓(𝑥, 𝑦)

𝛥𝑦  

exist for all values of 𝑥  and 𝑦  in question―that is, 𝑓(𝑥, 𝑦)  possesses a 
derivative ;]

;V
 with respect to 𝑥 and a derivative ;]

;W
 with respect to 𝑦. These 

derivatives are called the “partial derivatives” of 𝑓 , and they are 
respectively denoted by  
�]
�V
, �]
�W

 or 
𝑓V@(𝑥, 𝑦), 𝑓W@(𝑥, 𝑦). 
We use the following notation for second-order partial derivatives: 
�#]
�V#

≡ 𝑓VV@@  and  �
#]

�W#
≡ 𝑓WW@@ ; 

and, in case of second-order mixed derivatives, we write: 
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�
�W
Ã�]
�V
Ä ≡ �#]

�W�V
≡ 𝑓VW@@  and �

�V
Ã�]
�W
Ä ≡ �#]

�V�W
≡ 𝑓WV@@ . 

Similarly, we can differentiate functions of three or more variables.  
In general, when calculating partial derivatives, we treat all independent 
variables other than the variable with respect to which we differentiate as 
constants. For instance, if 𝑓(𝑥, 𝑦) = 𝑥# − 3𝑥𝑦 − 5, then 
�]
�V
= �

�V
(𝑥# − 3𝑥𝑦 − 5) = �

�V
(𝑥#) − �

�V
(3𝑥𝑦) − �

�V
(5) = 2𝑥 − 3𝑦, and 

�]
�W
= �

�W
(𝑥# − 3𝑥𝑦 − 5) = �

�W
(𝑥#) − �

�W
(3𝑥𝑦) − �

�W
(5) = −3𝑥. 

The geometric significance of  �]
�V
|(V6,W6)  and �]

�W
|(V6,W6)  is illustrated in 

Figure 8-12. Let us consider a function 𝑧 = 𝑓(𝑥, 𝑦), whose graph in ℝ* is 
a surface. We suppose that 𝑃(𝑥), 𝑦)) is an arbitrary point of the domain of 
𝑓 . Notice that, in ℝ* , the equation 𝑦 = 𝑦)  represents a plane 𝛱  that is 
perpendicular to the 𝑦-axis. This plane intersects the surface 𝑧 = 𝑓(𝑥, 𝑦) 
by a curve 𝐶  whose equation is 𝑧 = 𝑓(𝑥, 𝑦)). If 𝑄(𝑥), 𝑦), 𝑧)) is a point 
belonging to 𝐶, so that its orthogonal projection to the plane 𝑥𝑂𝑦 is the 
point 𝑃 , then the slope of the tangent to the curve 	𝐶  at 𝑄  is equal to 
�]
�V
|(V6,W6) = 𝑡𝑎𝑛𝜑 , where 𝜑  is the angle formed by the 𝑥 -axis and the 

tangent to the curve 𝐶 at 𝑄, as shown in Figure 8-12. Similarly, we can 
show that the slope of the tangent to the curve 𝐶  at 𝑄  is equal to 
�]
�W
|(V6,W6) = 𝑡𝑎𝑛𝜃 , where 𝜃  is the angle formed by the 𝑦 -axis and the 

tangent to the curve 𝐶 at 𝑄.  
Remark: If 𝑓 , 𝑓V@ , 𝑓W@ , 𝑓VW@@ , and 𝑓WV@@  are all continuous at (𝑥), 𝑦)) , then 
𝑓VW@@ (𝑥), 𝑦)) = 𝑓WV@@ (𝑥), 𝑦)).  
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Figure 8-12: The geometric significance of a partial derivative. 

 
 
Generalization: If 𝑓:ℝ% → ℝ is a function, 
ℝ% ∋ (𝑥", 𝑥#, … , 𝑥%) → 𝑓(𝑥", 𝑥#, … , 𝑥%) ∈ ℝ, 
then 

𝜕𝑓(𝑥", 𝑥#, … , 𝑥= , … , 𝑥%)
𝜕𝑥=

 

= 𝑙𝑖𝑚bV%→)
𝑓(𝑥", 𝑥#, … , 𝑥= + 𝛥𝑥= , … , 𝑥%) − 𝑓(𝑥", 𝑥#, … , 𝑥= , … , 𝑥%)

𝛥𝑥=
 

is the partial derivative of 𝑓(𝑥", 𝑥#, … , 𝑥%) with respect to 𝑥= , where 𝑖 =
1,2, … , 𝑛 (the “round d,” that is, the symbol 𝜕, was originally used in the 
1770s by the French mathematician and philosopher Marquis de 
Condorcet and the Swiss mathematician Leonhard Euler for partial 
differentials; and this symbol was used for the first time in the modern 
combination 𝜕𝑓 𝜕𝑥⁄  in the 1780s by the French mathematician Adrien-
Marie Legendre). 
We take for granted the obvious generalizations of the theorems of 
differentiation to two or more variables. 
Partial derivatives of composite functions (chain rule for multivariable 
functions): If a function 𝑓(𝑥, 𝑦) is defined on an open set 𝐴 of ℝ#, and if 
𝑥 = 𝑥(𝑟)  and 𝑦 = 𝑦(𝑟)  with 𝑟 ∈ [𝑎, 𝑏] , then the derivative of the 
composite function 𝑓 with respect to 𝑟 is given by 

𝜕𝑓
𝜕𝑟 =

𝜕𝑓
𝜕𝑥
𝜕𝑥
𝜕𝑟 +

𝜕𝑓
𝜕𝑦
𝜕𝑦
𝜕𝑟 
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provided that 𝑓  has continuous partial derivatives over 𝐴  and that 𝑥 =
𝑥(𝑟) and 𝑦 = 𝑦(𝑟) are differentiable over [𝑎, 𝑏]. Since 𝑓 is written as a 
function of the parameter 𝑟, we can also write ;]

;J
, instead of �]

�J
. 

The above formula can be generalized for functions 𝑓(𝑥", 𝑥#, … , 𝑥= , … , 𝑥%) 
of 𝑛 variables with 𝑥= = 𝑥=(𝑟), 𝑖 = 1,2, … , 𝑛, as follows: 

𝜕𝑓
𝜕𝑟 =

𝜕𝑓
𝜕𝑥"

𝜕𝑥"
𝜕𝑟 +

𝜕𝑓
𝜕𝑥#

𝜕𝑥#
𝜕𝑟 +⋯+

𝜕𝑓
𝜕𝑥%

𝜕𝑥%
𝜕𝑟  

under similar assumptions as previously. 
Harmonic functions: A function 𝑓(𝑥, 𝑦) defined on a subset 𝐴 of ℝ#  is 
said to be a “harmonic function” if and only if it satisfies the following 
equation: 
�#]
�V#

+ �#]
�W#

= 0.                                                                                           (1) 

Equation (1) is called the “Laplace equation,” and the operator �
#

�V#
+ �#

�W#
 is 

called the “Laplace operator.” For instance, on their respective domains in 
ℝ# , the functions 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 , 𝑓(𝑥, 𝑦) = 𝑥# − 𝑦# , and 𝑓(𝑥, 𝑦) =
𝑙𝑛(𝑥# + 𝑦#) are harmonic (the domain of 𝑓(𝑥, 𝑦) = 𝑙𝑛(𝑥# + 𝑦#) may be 
any open subset of ℝ# that does not include 0). An interesting property of 
a harmonic function is that its value at a point is always equal to the 
average of its values over a ball centered at that point (i.e., harmonic 
functions are always equal to the average of their nearby values). Thus, 
harmonic functions are used in simplifying complex processes, since a 
first harmonic response gives us an indication of the linear approximation. 
Homogeneous functions: A function 𝑓(𝑥, 𝑦) defined on a subset 𝐴 of ℝ# is 
said to be a “homogeneous function of degree 𝑘” if it holds that 

𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆<𝑓(𝑥, 𝑦) 
for all (𝑥, 𝑦) ∈ 𝐴 , where 𝜆 > 0 , and 𝑘  is a real number (i.e., a 
homogeneous function is scale-invariant, meaning that, if every variable is 
replaced with a scaled version of itself, this scale being the same for each 
variable, then the whole function is scaled by some power of that original 
scale). For instance, the function 𝑓(𝑥, 𝑦) = 𝑥# + 𝑦#  is a homogeneous 
function of degree 2, since 𝑓(𝜆𝑥, 𝜆𝑦) = (𝜆𝑥)# + (𝜆𝑦)# = 𝜆#(𝑥# + 𝑦#) =
𝜆#𝑓(𝑥, 𝑦). Moreover, notice that a function 𝑓(𝑥, 𝑦) that can be expressed 
in the form of 
𝑥<𝑔 ÃW

V
Ä or 𝑦<𝑔 ÃV

W
Ä 

is a homogeneous function of degree 𝑘. 
 
Euler’s theorem for homogeneous functions: If 𝑢(𝑥, 𝑦) is a homogeneous 
function of degree 𝑘, then  
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𝑥 �q
�V
+ 𝑦 �q

�W
= 𝑘𝑢(𝑥, 𝑦). 

The proof of this theorem follows directly from the definition of a 
homogeneous function: Since 𝑢(𝑥, 𝑦)  is a homogeneous function of 
degree 𝑘 , it can be expressed in the form of 𝑢(𝑥, 𝑦) = 𝑥<𝑓 ÃW

V
Ä . Then 

(applying the product rule and the chain rule) we obtain �q
�V
=

𝑘𝑥<E"𝑓 ÃW
V
Ä + 𝑥<𝑓@ ÃW

V
Ä ∙ 𝑦 ∙ Ã− "

V#
Ä ⇒ �q

�V
= 𝑘𝑥<E"𝑓 ÃW

V
Ä − 𝑥<E#𝑦𝑓@ ÃW

V
Ä . 

Similarly (treating 𝑥< as a constant), we obtain �q
�W
= 𝑥<𝑓@ ÃW

V
Ä ∙ "

V
⇒ �q

�W
=

𝑥<E"𝑓@ ÃW
V
Ä . Therefore, 𝑥 �q

�V
+ 𝑦 �q

�W
= 𝑥 Ú𝑘𝑥<E"𝑓 ÃW

V
Ä − 𝑥<E#𝑦𝑓@ ÃW

V
ÄÜ +

𝑦 Ú𝑥<E"𝑓@ ÃW
V
ÄÜ = 𝑘𝑥<𝑓 ÃW

V
Ä = 𝑘𝑢(𝑥, 𝑦), quod erat demonstrandum. 

Partial derivatives of implicit functions: Variables 𝑥, 𝑦, and 𝑧 are said to 
be “related implicitly” if they depend on each other by an equation of the 
form 𝐹(𝑥, 𝑦, 𝑧) = 0, where 𝐹 is some function. For instance, the points on 
a sphere centered at the origin with radius 2 are related implicitly by the 
equation 𝑥# + 𝑦# + 𝑧# − 2# = 0. In such situations, we can compute the 
partial derivatives of one of the variables with respect to the other 
variables by using the method of implicit differentiation, in the context of 
which we treat the variables as independent in order to find the partial 
derivatives of the function 𝐹, while simultaneously keeping in mind the 
fact that the variables depend on each other due to the equation 
𝐹(𝑥, 𝑦, 𝑧) = 0.   
Suppoze that variables 𝑥, 𝑦, and 𝑧 are related by the equation 𝐹(𝑥, 𝑦, 𝑧) =
0 and that we want to compute �`

�W
. In order to do this, we have to think that 

the equation 𝐹(𝑥, 𝑦, 𝑧) = 0 determines 𝑧 as a differentiable function of the 
independent (yet implicitly related to 𝑧) variables 𝑥 and 𝑦,  ��

�`
≠ 0. In fact, 

the method of implicit differentiation is underpinned by the chain rule, in 
the sense that the original independent variables are 𝑥, 𝑦, and 𝑧, but we 
can reconsider them from a different persepective according to which the 
independent variables are 𝑥 and 𝑦, and we treat 𝑧 as a function of 𝑥 and 𝑦. 
Let 𝑦 be implicitly related to 𝑥 by the equation 𝐹(𝑥, 𝑦) = 0, and suppose 
that the locus of 𝐹(𝑥, 𝑦) = 0 is a closed curve, as shown, for instance, in 
Figure 8-13. In this situation, we observe the following: On the one hand, 
𝑦 is not a “function” of 𝑥, since to a particular value of 𝑥 there correspond 
several values of 𝑦 (applying the vertical line test, mentioned in Chapter 2, 
we realize that, in Figure 8-13, a line perpendicular to the 𝑥-axis intersects 
the given locus at more than one point, whereas, by definition, a function 
is single-valued). On the other hand, even though the equation 𝐹(𝑥, 𝑦) = 0 
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does not define 𝑦 as a function of 𝑥, there are certain segments of this 
locus (e.g., the segment of the oval in Figure 8-13 that lies above the 
horizontal axis) that can be considered in isolation (i.e., separately from 
the totality of the given oval) in such a way that they can be considered to 
constitute a function of 𝑥 , namely, 𝑦 = 𝑓(𝑥) . In other words, we can 
separate out a segment of a closed curve 𝐶 that can successfully pass the 
vertical line test, thus defining a function 𝑦 = 𝑓(𝑥). In fact, this is the 
reason why we say that the equation 𝐹(𝑥, 𝑦) = 0 defines 𝑦 implicitly as a 
function of 𝑥, so that 𝑦 is an implicit function of 𝑥.  
 
Figure 8-13: A closed curve (source: Wikimedia Commons: Author: Herbee; 
https://commons.wikimedia.org/wiki/File:Oval1.PNG). 
 

 
 
In view of the foregoing, if we consider the locus of 𝐹(𝑥, 𝑦) = 0 in Figure 
8-13, we can meaningfully try to compute the derivative of the function 
𝑦 = 𝑓(𝑥)  with respect to 𝑥  at a particular point of the given locus 
(provided that we are working on a segment of the given locus that defines 
a function 𝑦 = 𝑓(𝑥)), and, in fact, this derivative is:  
 

𝑑𝑦
𝑑𝑥 = −

��(V,W)
�V

��(V,W)
�W

 

where ��(V,W)
�W

≠ 0. Thus, we have come up with the following theorem of 
implicit differentiation: If 𝐹(𝑥, 𝑦) = 0, if 𝑥 and 𝑦 are restricted to those 
values which satisfy the equation 𝐹(𝑥, 𝑦) = 0, and if ��(V,W)

�W
≠ 0, then 

;W
;V
= −

@A(5,9)
@5

@A(5,9)
@9

. 



 

 

296 

Proof: If we set 𝑊 = 𝐹(𝑥, 𝑦), then the total differential of the function 𝑊 
is  
𝑑𝑊 = ��

�V
𝑑𝑥 + ��

�W
𝑑𝑦.                                                                              (1) 

If 𝑥  and 𝑦  are restricted to those values which satisfy the equation 
𝐹(𝑥, 𝑦) = 0, then 𝑊 = 𝐹(𝑥, 𝑦) = 0, and 𝑑𝑊 = 0. Hence, if we set 𝑑𝑊 =
0 in equation (1) and solve for ;W

;V
, we obtain 

;W
;V
= −

@A(5,9)
@5

@A(5,9)
@9

, ��(V,W)
�W

≠ 0, quod erat demonstrandum. 

The aforementioned theorem of implicit differentiation can be formally 
stated as follows: Given that an equation of the form 𝐹(𝑥, 𝑦) = 0 defines 
an implicit function 𝑦 = 𝑓(𝑥) if and only if 𝐹[𝑥, 𝑓(𝑥)] = 0 for all 𝑥 ∈ ℝ, 
let 𝐹(𝑥, 𝑦) = 0 be defined on ℝ#, and (𝑥), 𝑦)) ∈ ℝ#. Suppose that 𝐹V@ and 
𝐹W@ are continuous, 𝐹(𝑥), 𝑦)) = 0, and 𝐹W@(𝑥), 𝑦)) ≠ 0. Then there exists a 
neighborhood of 𝑥), say 𝑈(𝑥)), wherein the equation 𝐹(𝑥, 𝑦) = 0 defines 
a function 𝑦 = 𝑓(𝑥) in a unique way, so that 𝐹V@ is continuous, 𝑦) = 𝑓(𝑥)), 
and  

𝑑𝑦
𝑑𝑥 = −

𝐹V@

𝐹W@
 

(this theorem delineates the method of implicit differentiation for 
multivariable functions).  
Example: Let (2,1)  be a point, and let 𝐹(𝑥, 𝑦) = 𝑥# − 2𝑥𝑦 = 0  be an 
equation. Then we can show that the given equation defines a function 
𝑦 = 𝑓(𝑥) on a neighborhood 𝑥) = 2 and find 𝐹V@  as follows: In order to 
show that an equation of the form 𝐹(𝑥, 𝑦) = 0  defines a function 𝑦 =
𝑓(𝑥) on a neighborhood of 𝑥), it is enough to show that: 

i. 𝐹V@ = 2𝑥 − 2𝑦 and 𝐹W@ = −2𝑥 are continuous, which they are. 
ii. 𝐹(𝑥), 𝑦)) = 0 ⇒ 𝐹(2,1) = 0, which is true. 
iii. 𝐹W@(𝑥), 𝑦)) ≠ 0 ⇒ 𝐹W@(2,1) ≠ 0, which is true. 

Therefore, 𝑥# − 2𝑥𝑦 = 0 defines a function 𝑦 = 𝑓(𝑥) on a neighborhood 
𝑈(𝑥)). Moreover, ;W

;V
= − �5(

�9(
= − WEV

V
.  

We can work in ℝ* in a similar way: A function of the form 𝐹(𝑥, 𝑦, 𝑧) 
such that 𝑧 = 𝑧(𝑥, 𝑦), that is, 𝐹[𝑥, 𝑦, 𝑧(𝑥, 𝑦)], is called “implicit,” while 
𝑧 = 𝑧(𝑥, 𝑦) is an “explicit” function. An equation of the form 𝐹(𝑥, 𝑦, 𝑧) =
0 defines an implicit function 𝑧 = 𝑧(𝑥, 𝑦)	if and only if 𝐹[𝑥, 𝑦, 𝑧(𝑥, 𝑦)] =
0  for all (𝑥, 𝑦) ∈ ℝ# . Let 𝐹(𝑥, 𝑦, 𝑧) = 0  be defined on ℝ* , and 
(𝑥), 𝑦), 𝑧)) ∈ ℝ* . We assume that 𝐹V@ , 𝐹W@ , and 𝐹@  are continuous, 
𝐹(𝑥), 𝑦), 𝑧)) = 0 , and 𝐹@(𝑥), 𝑦), 𝑧)) ≠ 0 . Then there exists a 
neighborhood of (𝑥), 𝑦)), say 𝑈(𝑥), 𝑦)), wherein the equation 𝐹(𝑥, 𝑦, 𝑧) =
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0 defines a function 𝑧 = 𝑧(𝑥, 𝑦) in a unique way, so that 𝐹V@  and 𝐹W@  are 
continuous, 𝑧) = 𝑧(𝑥), 𝑦)), and 

𝜕𝑧
𝜕𝑥 = −

𝐹V@

𝐹@ 

and  
𝜕𝑧
𝜕𝑦 = −

𝐹W@

𝐹@ 

(the proof is essentially the same as the above proof for the case 𝐹(𝑥, 𝑦) =
0). Of course, the rule of implicit differentiation does not hold for the 
points of the surface defined by 𝐹(𝑥, 𝑦, 𝑧) = 0 at which 𝐹V@ = 𝐹W@ = 𝐹@ =
0, and such points are called “singular points” (that is, the singular points 
are those points at which all the partial derivatives simultaneously vanish; 
and, thus, at a singular point, we cannot solve for any variable in terms of 
the others, and an algebraic variety looks strange near such a point, or it 
may not look at all like the graph of a function). The total differential of 
the implicit function 𝑧 = 𝑧(𝑥, 𝑦) defined by the equation 𝐹(𝑥, 𝑦, 𝑧) = 0 is 
given by  
��
�V
𝑑𝑥 + ��

�W
𝑑𝑦 + ��

�`
𝑑𝑧 = 0. 

The Jacobian determinant: The Jacobian determinant of 𝑛  functions, 
𝑓", 𝑓#, … , 𝑓%, in 𝑛 real variables, 𝑥", 𝑥#, … , 𝑥%, with respect to 𝑥", 𝑥#, … , 𝑥% 
is defined by 

𝐽 =
𝜕(𝑓", 𝑓#, … , 𝑓%)
𝜕(𝑥", 𝑥#, … , 𝑥%)

=

R

R

𝜕𝑓"
𝜕𝑥"

𝜕𝑓"
𝜕𝑥#

…
𝜕𝑓"
𝜕𝑥%

𝜕𝑓#
𝜕𝑥"

𝜕𝑓#
𝜕𝑥#

…
𝜕𝑓#
𝜕𝑥%

⋮
𝜕𝑓%
𝜕𝑥"

⋮
𝜕𝑓%
𝜕𝑥#

⋮
…

⋮
𝜕𝑓%
𝜕𝑥%

R

R

 

(and it is named after the nineteenth-century German mathematician Carl 
Gustav Jacob Jacobi). Notice that, if 𝑥" = 𝑥"(𝑟", 𝑟#, … , 𝑟%), … , 𝑥% =
𝑥%(𝑟", 𝑟#, … , 𝑟%), then 

𝜕(𝑓", 𝑓#, … , 𝑓%)
𝜕(𝑟", 𝑟#, … , 𝑟%)

=
𝜕(𝑓", 𝑓#, … , 𝑓%)
𝜕(𝑥", 𝑥#, … , 𝑥%)

∙
𝜕(𝑥", 𝑥#, … , 𝑥%)
𝜕(𝑟", 𝑟#, … , 𝑟%)

 

which is the Jacobian determinant of 𝑛  functions whose variables 
𝑥", 𝑥#, … , 𝑥% are functions of 𝑛 variables 𝑟", 𝑟#, … , 𝑟%. 
Jacobian determinants are useful in order to compute the partial 
derivatives of implicit functions that are defined by a system of equations. 

Case I: Let {
𝑓(𝑥, 𝑦, 𝑧) = 0
𝑔(𝑥, 𝑦, 𝑧) = 0Ï be a system such that: 
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the functions 𝑓  and 𝑔  have continuous first-order partial derivatives, 
𝑓(𝑥), 𝑦), 𝑧)) = 0 = 𝑔(𝑥), 𝑦), 𝑧)) , and the Jacobian determinant 
�(],:)
�(W,`)

|(V6,W6,`6) ≠ 0. Every system of this form has a unique solution 𝑦 =
𝑦(𝑥)  and 𝑧 = 𝑧(𝑥) , where 𝑦(𝑥)  and 𝑧(𝑥)  are two functions whose 
derivatives (with respect to 𝑥) are continuous on a neighborhood of 𝑥), so 
that 𝑦) = 𝑦(𝑥)) and 𝑧) = 𝑧(𝑥)). Then: 

𝑑𝑦
𝑑𝑥 = −

�(],:)
�(V,`)
�(],:)
�(W,`)

= −
S𝑓V
′ 𝑓 ′

𝑔V′ 𝑔`′
S

S
𝑓W′ 𝑓 ′

𝑔W′ 𝑔`′
S
 

and   

𝑑𝑧
𝑑𝑥 = −

�(],:)
�(W,V)
�(],:)
�(W,`)

= −
S
𝑓W′ 𝑓V′

𝑔W′ 𝑔V′
S

S
𝑓W′ 𝑓 ′

𝑔W′ 𝑔`′
S
 

(this result gives us the partial derivatives of implicit functions defined by 
a system of the form {𝑓(𝑥, 𝑦, 𝑧) = 0, 𝑔(𝑥, 𝑦, 𝑧) = 0}). 

Case II: Let {
𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 0
𝑔(𝑥, 𝑦, 𝑧, 𝑡) = 0Ï be a system such that: 

the functions 𝑓  and 𝑔  have continuous first-order partial derivatives, 
𝑓(𝑥), 𝑦), 𝑧), 𝑡)) = 0 = 𝑔(𝑥), 𝑦), 𝑧), 𝑡)) , and the Jacobian determinant 
�(],:)
�(`,Y)

|(V6,W6,`6,Y6) ≠ 0. Every system of this form has a unique solution 𝑧 =
𝑧(𝑥, 𝑦) and 𝑡 = 𝑡(𝑥, 𝑦), where 𝑧(𝑥, 𝑦) and 𝑡(𝑥, 𝑦) are two functions whose 
partial derivatives are continuous on a neighborhood of (𝑥), 𝑦)), so that 
𝑧) = 𝑧(𝑥), 𝑦)) and 𝑡) = 𝑡(𝑥), 𝑦)). Then the derivatives of these functions 
are given by the following formulae: 
 

𝜕𝑧
𝜕𝑥 = −

�(],:)
�(V,Y)
�(],:)
�(`,Y)

 

 

𝜕𝑧
𝜕𝑦 = −

�(],:)
�(W,Y)
�(],:)
�(`,Y)
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𝜕𝑡
𝜕𝑥 = −

�(],:)
�(`,V)
�(],:)
�(`,Y)

 

and 

𝜕𝑡
𝜕𝑦 = −

�(],:)
�(`,W)
�(],:)
�(`,Y)

 

(this result result gives us the partial derivatives of implicit functions 
defined by a system of the form {𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑔(𝑥, 𝑦, 𝑧, 𝑡) = 0}). 
Functional dependence and functional independence: Consider 𝑚 
functions in 𝑛 variables (each), namely, 
 𝑓"(𝑥", 𝑥#, … , 𝑥%), 𝑓#(𝑥", 𝑥#, … , 𝑥%), … , 𝑓6(𝑥", 𝑥#, … , 𝑥%).  
Suppose that the domain of each of these functions is a subset 𝐴 of ℝ% 
(i.e., they have the same domain). These functions are said to be 
“functionally dependent” in the set 𝐴 if, for every 𝑛-tuple (𝑥", 𝑥#, … , 𝑥%) ∈
𝐴 , they satisfy at least one equation of the form 𝐹(𝑓", 𝑓#, … , 𝑓6) = 0 ; 
otherwise, they are said to be “functionally independent.”  
For instance, the functions 𝑓"(𝑥, 𝑦, 𝑧) = 𝑦 − 𝑥𝑧, 𝑓#(𝑥, 𝑦, 𝑧) = 𝑦𝑧 − 𝑥, and 
𝑓*(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑦)(𝑧 + 1), which are defined on ℝ* , are functionally 
dependent in ℝ* , because 𝑓" + 𝑓# + 𝑓* = 𝑦 − 𝑥𝑧 + 𝑦𝑧 − 𝑥 +
(𝑥 − 𝑦)(𝑧 + 1) = 0. 
In particular, 𝑛 functions in 𝑛 variables (each), namely, 
 𝑓"(𝑥", 𝑥#, … , 𝑥%), 𝑓#(𝑥", 𝑥#, … , 𝑥%), … , 𝑓%(𝑥", 𝑥#, … , 𝑥%) 
are functionally dependent in ℝ% if and only if the Jacobian determinant 

𝐽 =
𝜕(𝑓", 𝑓#, … , 𝑓%)
𝜕(𝑥", 𝑥#, … , 𝑥%)

= 0 

(otherwise, i.e., when 𝐽 ≠ 0, they are functionally independent). 
 
Mean Value Theorem: If a function 𝑓: 𝐴 → ℝ , where 𝐴 ⊆ ℝ# , is 
differentiable at the points of the straight line segment 𝑎𝑏!!! , where 𝑎 =
(𝑎", 𝑎#)  and 𝑏 = (𝑏", 𝑏#), then there exists a number 𝜃  with 0 < 𝜃 < 1 
such that 

𝑓@�𝑎 + 𝜃(𝑏 − 𝑎)� =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎  
where 𝑓@ is the partial derivative of the function 𝑓(𝑥, 𝑦) with respect to 𝑥.  
Geometric interpretation of the mean value theorem for a function in two 
variables: In Figure 8-14, we realize that, if 𝐴�𝑎", 𝑎#, 𝑓(𝑎", 𝑎#)�  and 
𝐵�𝑏", 𝑏#, 𝑓(𝑏", 𝑏#)�  are two points of the surface 𝑧 = 𝑓(𝑥, 𝑦)  that 
correspond to the points 𝑎 and 𝑏, then there exists a point 𝑃 on the curve  
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T
𝑥 = 𝑎" + 𝑡(𝑏" − 𝑎")
𝑦 = 𝑎# + 𝑡(𝑏# − 𝑎#)
𝑧 = 𝑓�𝑎 + 𝑡(𝑏 − 𝑎)�

ø, where 𝑡 ∈ [0,1], 

of the surface 𝑧 = 𝑓(𝑥, 𝑦), such that the tangent at 𝑃  is parallel to the 
chord 𝐴𝐵. 
 
Figure 8-14: The geometric significance of the mean value theorem for a function 
in two variables. 
 

 
 
Remark: An equivalent formula for the mean value theorem for a function 
𝑓(𝑥, 𝑦) and the points (𝑥), 𝑦)) and (𝑥) + ℎ, 𝑦) + 𝜆) is the following: 
𝑓(𝑥) + ℎ, 𝑦) + 𝜆) − 𝑓(𝑥), 𝑦))

= ℎ
𝜕𝑓(𝑥) + 𝜃ℎ, 𝑦) + 𝜃𝜆)

𝜕𝑥 + 𝜆
𝜕𝑓(𝑥) + 𝜃ℎ, 𝑦) + 𝜃𝜆)

𝜕𝑦  

where 0 < 𝜃 < 1. 
Recall that a set 𝐴 is called convex if, for every 𝑎, 𝑏 ∈ 𝐴, 𝑘𝑎 + (1 − 𝑘)𝑏 ∈
𝐴. It is easily seen that, if a function 𝑓(𝑥, 𝑦) is differentiable on a convex 
subset 𝐴 of ℝ#, and if, for every (𝑥, 𝑦) ∈ ℝ#, it holds that �](V,W)

�V
= 0 =

�](V,W)
�W

, then 𝑓(𝑥, 𝑦) is a constant function.  
 
Extreme values: If 𝑧 = 𝑓(𝑥, 𝑦) is a continuous function defined on a set 𝑅, 
then the extreme values of 𝑓 may occur only at: 

i. the boundary points of 𝑅 in case the set 𝑅 is compact (i.e., 
closed and bounded); 
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ii. the interior points of 𝑅 where 𝑓V@ = 𝑓W@ = 0 (“critical points”); 
iii. the points where 𝑓V@ or 𝑓W@ fail to exist (“critical points”).  

Hence, if there are no boundary points (e.g., when 𝑧 = 𝑓(𝑥, 𝑦) is defined 
on an open disc or on a quadrant minus the axes, or on the entire plane, 
etc.), the function may have no extrema on 𝑅, but, if it does, they must 
occur at its critical points in 𝑅. 
Maximum-Minimum Tests: If  𝑓 has continuos first-order and second-order 
partial derivatives on some open disc containing the point (𝑎, 𝑏), and if 
𝑓V@(𝑎, 𝑏) = 𝑓W@(𝑎, 𝑏) = 0, then: 

• if 𝑓VV@@ < 0 and 𝑓VV@@𝑓WW@@ − �𝑓VW@@ �
# > 0 at the point (𝑎, 𝑏), then the 

point (𝑎, 𝑏) is a “local maximum”; 
• if 𝑓VV@@ > 0 and 𝑓VV@@𝑓WW@@ − �𝑓VW@@ �

# > 0 at the point (𝑎, 𝑏), then the 
point (𝑎, 𝑏) is a “local minimum”; 

• if 𝑓VV@@𝑓WW@@ − �𝑓VW@@ �
# < 0 at the point (𝑎, 𝑏), then the point (𝑎, 𝑏) is 

a “saddle point” (a “saddle point,” also known as a “minimax 
point,” is a point on the surface of the graph of a function where 
the slopes, i.e., the derivatives, in orthogonal directions are all 
zero (and, thus, it is a “critical point”), but it is not a local 
extremum of the function: a saddle point is a stable point where 
the function has a local maximum in one direction, but a local 
minimum in another direction, as shown, for instance, in Figure 
8-15); 

• if 𝑓VV@@𝑓WW@@ − �𝑓VW@@ �
# = 0  at the point (𝑎, 𝑏) , then the test is 

inconclusive. 
Note: The expression 𝑓VV@@𝑓WW@@ − �𝑓VW@@ �

#
 is called the (Hessian) 

“discriminant” of 𝑓 , and it is sometimes easier to remember in the 
determinant form 

𝑓VV@@𝑓WW@@ − �𝑓VW@@ �
# = S

𝑓VV@@ 𝑓VW@@

𝑓WV@@ 𝑓WW@@
S 

(this method was developed in the nineteenth century by the German 
mathematician Ludwig Otto Hesse). 
Because 𝑓VW@@  is continuous, the order of mixed partial derivatives 𝑓VW@@  and 
𝑓WV@@  does not matter (notice that, if the function is continuous, then it is 
continuous in every variable, and, therefore, if we measure the mixed rates 
of change of 𝑥 and 𝑦, the result should be the same as measuring firstly 𝑦 
and then 𝑥, since everything is happening “smoothly” with respect to both 
variables; however, if the function is not continuously second 
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differentiable, then, at the points where the derivative is discontinuous, the 
partial derivatives may not commute). 
 
Figure 8-15: Saddle point with the coordinates 𝑧 = 𝑥! − 𝑦! (source: Wikimedia 
Commons: Author: Nicoguaro; 
https://commons.wikimedia.org/wiki/File:Saddle_point.svg). 

 
 
If the local extrema refer to the entire domain of the function under 
consideration, then they are “global extrema,” and, as we know, a 
continuous function takes on an absolute maximum value and an absolute 
minimum value on any closed and bounded set on which it is defined.  
Example: In order to find the extreme values of the function 𝑓(𝑥, 𝑦) = 𝑥𝑦, 
we work as follows: Since the function is differentiable everywhere and its 
domain has no boundary points, the function can assume extreme values 
only where  
𝑓V@ = 𝑦 = 0 and 𝑓W@ = 𝑥 = 0. 
Hence, the origin is the only point where 𝑓 might have an extreme value. 
In order to examine what happens there, we calculate 
𝑓VV@@ = 0, 𝑓WW@@ = 0, and 𝑓VW@@ = 1. 
Then the discriminant of 𝑓 is 
𝑓VV@@𝑓WW@@ − �𝑓VW@@ �

# = −1, 
and, since it is negative, we realize that 𝑓(𝑥, 𝑦) = 𝑥𝑦 has a saddle point at 
(0,0), meaning that this function assumes no extreme values at all. Notice 
that, if we restrict the domain of 𝑓(𝑥, 𝑦) = 𝑥𝑦  to the closed disc 𝑥# +
𝑦# ≤ 1, then the maximum value of 𝑓 is + "

#
, and the minimum value of 𝑓 
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is − "
#
 (as shown by changing to polar coordinates: 𝑥𝑦 = 𝑟#𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 =

"
#
𝑟#𝑠𝑖𝑛2𝜃). 

In order to calculate the local extrema of a function 𝑓(𝑥, 𝑦, 𝑧)  that is 
defined on an open subset 𝐴  of ℝ*  and has continuous first-order and 
second-order partial derivatives, we work as follows: Firstly, we solve the 
system of equations 
e𝑓V@ = 0, 𝑓W@ = 0, 𝑓@ = 0f, 
since the solutions to this system represent the possible locations of the 
local extrema of the given function. Then we compute the following 
expressions: 
𝑓VV@@ , 

𝐷# = S
𝑓VV@@ 𝑓VW@@

𝑓WV@@ 𝑓WW@@
S, and 

𝐷" = 8
𝑓VV@@ 𝑓VW@@ 𝑓V`@@

𝑓WV@@ 𝑓WW@@ 𝑓W`@@

𝑓 V@@ 𝑓 W@@ 𝑓 `@@
8. 

We find the value of each of these three expressions at the critical points 
of 𝑓(𝑥, 𝑦, 𝑧), that is, at the solutions to the system e𝑓V@ = 0, 𝑓W@ = 0, 𝑓@ =
0f. If (𝑥), 𝑦), 𝑧)) is a critical point of 𝑓, then: 

• if 𝑓VV@@ (𝑥), 𝑦), 𝑧)) > 0, 𝐷#(𝑥), 𝑦), 𝑧)) > 0 , and 𝐷"(𝑥), 𝑦), 𝑧)) > 0, 
then (𝑥), 𝑦), 𝑧)) is a “local minimum”; 

• if 𝑓VV@@ (𝑥), 𝑦), 𝑧)) < 0, 𝐷#(𝑥), 𝑦), 𝑧)) > 0 , and 𝐷"(𝑥), 𝑦), 𝑧)) < 0, 
then (𝑥), 𝑦), 𝑧)) is a “local maximum.” 

 
Integral Calculus in ℝ 

 
In infinitesimal calculus, we start with two general questions about 
functions. Firstly, how steep is a function at a point? Secondly, what is the 
area underneath a graph over some region? The first question is answered 
using a tool called the “derivative.” In other words, the derivative 
measures the rate of change of a function at a point. The second question 
is answered using a tool called the “integral.” 
 

Indefinite Integrals in ℝ 
 

Let 𝑓: 𝐼 → ℝ be a function, where 𝐼 is an interval; in fact, 𝐼 may have one 
of the following forms: 
[𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏], (𝑎, 𝑏), [𝑎, +∞), (𝑎, +∞), (−∞, 𝑏], (−∞, 𝑏), (−∞,+∞) 
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where 𝑎, 𝑏 ∈ ℝ . When the interval 𝐼  is closed, for instance, [𝑎, 𝑏] , the 
expression 𝐹@(𝑥) = 𝑓(𝑥)	∀𝑥 ∈ 𝐼  implies that the following functions 
(derivatives) exist: 𝐹@(𝑥)	∀𝑥 ∈ (𝑎, 𝑏) , 𝐹B@ (𝑎) , and 𝐹E@(𝑏) . Then the 
primitive function 𝐹  is called the “antiderivative” of 𝑓  in 𝐼 , and it is 
denoted by  
𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥, where 𝑥 ∈ 𝐼, 
according to Leibniz’s notation. Hence, ∫𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 if and only 
if [𝐹(𝑥) + 𝑐]@ = 𝑓(𝑥), where 𝑐  is an arbitrary constant. Notice that the 
definition of the primitive function 𝐹 of a function 𝑓 includes an arbitrary 
constant 𝑐 , and, therefore, the expression ∫𝑓(𝑥)𝑑𝑥  is not uniquely 
determined. If 𝐹 is a primitive function of a function 𝑓 in an interval 𝐼, 
then the function 𝐹 + 𝑐, ∀𝑐 ∈ ℝ, is called the “indefinite integral” of 𝑓 in 
𝐼. The aforementioned definition implies that the “indefinite integral” of a 
given function with respect to 𝑥 is a new function plus a constant (known 
as the “constant of integration”) if and only if the derivative of the new 
function and of the constant equals the given function, and it is based on a 
principle of differential calculus, where the assumption that 𝐼 is an interval 
is substantial. Thus, differentiation can be used in order to verify the result 
of an indefinite integral: given that integration is the reverse process of 
differentiation, if the indefinite integral of a function 𝑓(𝑥) is 𝐹(𝑥), then 
differentiating 𝐹(𝑥) gives 𝑓(𝑥) back. 
 
Integrals of elementary functions: 

i. ∫𝑎𝑑𝑥 = 𝑎𝑥 + 𝑐, where 𝑎 is an arbitrary constant.  
ii. ∫𝑥%𝑑𝑥 = V'0"

%B"
+ 𝑐 over the following intervals: (i) 𝑛 ≠ −1, 𝑥 >

0 ; (ii) 𝑛 ≠ −1, 𝑥 < 0 ; and (iii) 𝑛 ≥ 0, 𝑥 ∈ ℝ . For instance, 

∫√𝑥𝑑𝑥 = ∫𝑥" #+ 𝑑𝑥 = V
!
#C

!
#
+ 𝑐 = #

*
𝑥* #+ + 𝑐, and ∫𝑥𝑑𝑥 = V#

#
+ 𝑐. 

iii.  ∫ ;V
V
= 𝑙𝑛|𝑥| + 𝑐. 

iv. ∫𝑎V𝑑𝑥 = 15

4%1
+ 𝑐. 

v. ∫ 𝑠𝑖𝑛𝑥𝑑𝑥 = −𝑐𝑜𝑠𝑥 + 𝑐. 
vi. ∫ 𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑠𝑖𝑛𝑥 + 𝑐. 

vii. ∫ ;V
5Xp#V

= 𝑡𝑎𝑛𝑥 + 𝑐. 

viii. ∫ ;V
p=%#V

= −𝑐𝑜𝑡𝑥 + 𝑐. 

ix. ∫ ;V
t"EV#

= 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑐 = o
#
− 𝑎𝑟𝑐𝑐𝑜𝑠𝑥 + 𝑐. 

x. ∫ ;V
"BV#

= 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 + 𝑐. 
xi. ∫ 𝑠𝑖𝑛ℎ𝑥𝑑𝑥 = 𝑐𝑜𝑠ℎ𝑥 + 𝑐. 
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xii. ∫ 𝑐𝑜𝑠ℎ𝑥𝑑𝑥 = 𝑠𝑖𝑛ℎ𝑥 + 𝑐. 
 
Let 𝑓: 𝐼 → ℝ and 𝑔: 𝐼 → ℝ be two functions. If their indefinite integrals 
exist over	𝐼, then there exists the indefinite integral of 𝑎𝑓 + 𝑏𝑔, where  𝑎 
and 𝑏 are constants, and  
∫[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)]𝑑𝑥 = 𝑎∫𝑓(𝑥)𝑑𝑥 + 𝑏∫𝑔(𝑥)𝑑𝑥. 
Proof: Given the definition of the indefinite integral, if 𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥 
and 𝐺(𝑥) = ∫𝑔(𝑥)𝑑𝑥, then 𝐹@(𝑥) = 𝑓(𝑥) and 𝐺@(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐼, 
and, therefore,  
;
;V
[𝑎𝐹(𝑥) + 𝑏𝐺(𝑥)] = 𝑎𝐹@(𝑥) + 𝑏𝐺@(𝑥) = 𝑎𝑓(𝑥) + 𝑏𝑔(𝑥) , quod erat 

demonstrandum. 
Corollary: ∫∑ 𝑐=𝑓=%

=>" (𝑥)𝑑𝑥 = ∑ 𝑐=%
=>" ∫𝑓=(𝑥)𝑑𝑥. 

 
Examples: 

i. ∫ V
#VB"

𝑑𝑥 = "
#∫

#V
#VB"

𝑑𝑥 = "
#∫

#VB"E"
#VB"

𝑑𝑥 = "
#∫

#VB"
#VB"

𝑑𝑥 −
"
#∫

;V
#VB"

= "
#∫𝑑𝑥 −

"
A∫

;(#VB")
#VB"

= "
#
𝑥 − "

A
𝑙𝑛|2𝑥 + 1| + 𝑐 , 

where 𝑥 > − "
#
 or 𝑥 < − "

#
. 

ii. ∫ ;V
p=%#V∙5Xp#V

= ∫ p=%#VB5Xp#V
p=%#V∙5Xp#V

𝑑𝑥 = ∫ ;V
5Xp#V

+ ∫ ;V
p=%#V

= 𝑡𝑎𝑛𝑥 −
𝑐𝑜𝑡𝑥 + 𝑐, where 𝑘𝜋 < 𝑥 < 𝑘𝜋 + o

#
 or 𝑘𝜋 + o

#
< 𝑥 < 𝑘𝜋 + 𝜋. 

iii. ∫ ;V
p=%V∙5XpV

= ∫
?5

D,E#5
Y1%V

= ∫ ;Y1%V
Y1%V

= 𝑙𝑛|𝑡𝑎𝑛𝑥| + 𝑐 , where 𝑥 ∈

ℝ − �𝑘 o
#
|𝑘 ∈ ℤ¬. 

iv. ∫ ;V
p=%V

= ∫ ;V
#p=%5#5Xp

5
#
= ∫

;5#
p=%5#5Xp

5
#
= 𝑙𝑛 Û𝑡𝑎𝑛 V

#
Û + 𝑐 , where 

𝑘𝜋 < 𝑥 < 𝑘𝜋 + 𝜋. 
v. ∫ 𝑐𝑜𝑠#𝑥𝑑𝑥 = ∫ "

#
(1 + 𝑐𝑜𝑠2𝑥) 𝑑𝑥 = "

#∫(1 + 𝑐𝑜𝑠2𝑥)𝑑𝑥 =
"
#
Ã𝑥 + p=%#V

#
Ä + 𝑐 = "

#
𝑥 + "

A
𝑠𝑖𝑛2𝑥 + 𝑐, and, because 𝑠𝑖𝑛2𝑥 =

2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 , we can write ∫𝑐𝑜𝑠#𝑥𝑑𝑥 = "
#
𝑥 + "

#
𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 +

𝑐. 
 
Integration by substitution: The method of integration by substitution (or 
change of variable) is based on the following theorem: Let 𝐴 and 𝐵 be two 
real intervals, and let 𝑓: 𝐴 → ℝ be a continuous function. If 𝑔:𝐵 → ℝ is a 
differentiable function such that 𝑔@(𝑡) ≠ 0 for all 𝑡 ∈ 𝐵 and the range of 𝑔 
is a subset of 𝐴, then 
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U𝑓(𝑥) 𝑑𝑥 = U𝑓�𝑔(𝑡)�𝑔@(𝑡)𝑑𝑡 

(where, ultimately, after the computation of the last integral, we shall 
return to the original variable via the substitution 𝑡 = 𝑔E"(𝑥)). The proof 
of this theorem follows directly from the definition of the indefinite 
integral by applying the chain rule for the differentiation of composite 
functions: Let 𝐹(𝑥) = ∫𝑓(𝑥) 𝑑𝑥, so that 𝐹@(𝑥) = 𝑓(𝑥)	∀𝑥 ∈ 𝐴. By setting 
𝐺(𝑡) = 𝐹�𝑔(𝑡)�  and applying the chain rule for the differentiation of 
composite functions, we obtain 𝐺@(𝑡) = 𝐹@�𝑔(𝑡)�𝑔@(𝑡) = 𝑓�𝑔(𝑡)�𝑔@(𝑡) , 
quod erat demonstrandum. 
For instance, given the integral ∫√1 − 𝑥# 𝑑𝑥 , −1 < 𝑥 < 1, we set 𝑥 =
𝑠𝑖𝑛𝑡, − o

#
< 𝑡 < o

#
, so that the range of 𝑥 = 𝑠𝑖𝑛𝑡 is the interval −1 < 𝑥 <

1, and 𝑥@ = 𝑐𝑜𝑠𝑡 > 0	∀𝑡 ∈ 	 Ã− o
#
, o
#
Ä. Hence,  

∫√1 − 𝑥# 𝑑𝑥 = ∫√1 − 𝑠𝑖𝑛#𝑡 ∙ (𝑠𝑖𝑛𝑡)@𝑑𝑡 = ∫ 𝑐𝑜𝑠𝑡 ∙ 𝑐𝑜𝑠𝑡𝑑𝑡 =
∫ 𝑐𝑜𝑠#𝑡𝑑𝑡 = "

#
𝑠𝑖𝑛𝑡 ∙ 𝑐𝑜𝑠𝑡 + "

#
𝑡 = "

#
𝑥√1 − 𝑥# + "

#
𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑐 , −1 < 𝑥 <

1. 
Notice that, sometimes, we may need to make the linear substitution 𝑡 =
𝑎𝑥 + 𝑏, where 𝑎, 𝑏 ∈ ℝ and 𝑎 ≠ 0, so that ∫𝑓(𝑎𝑥 + 𝑏)𝑑𝑥 = "

1 ∫𝑓(𝑡)𝑑𝑡. 
For instance, for 𝑥 ∈ ℝ , and setting 𝑡 = 𝑎𝑥 + 𝑏 , ∫ 𝑠𝑖𝑛(𝑎𝑥 + 𝑏)𝑑𝑥 =
∫ "
1
𝑠𝑖𝑛𝑡𝑑𝑡 = − "

1
𝑐𝑜𝑠𝑡 + 𝑐 = − "

1
𝑐𝑜𝑠(𝑎𝑥 + 𝑏) + 𝑐. 

Furthermore, notice that, if the integrand is the quotient of two functions 
such that the numerator is the derivative of the denominator, then the 
indefinite integral is equal to the logarithm of the denominator. In other 
words, given the indefinite integral ∫ ]((V)

](V)
𝑑𝑥 , where𝑓(𝑥) ≠ 0 , we set 

𝑓(𝑥) = 𝑡  to obtain ∫ ]((V)
](V)

𝑑𝑥 = ∫ ;Y
Y
= 𝑙𝑛|𝑡| + 𝑐 = 𝑙𝑛|𝑓(𝑥)| + 𝑐  in the 

intervals where 𝑓(𝑥) ≠ 0 . For instance: (i) ∫ 𝑡𝑎𝑛𝑥𝑑𝑥 = ∫ p=%V
5XpV

𝑑𝑥 =

∫
(E5XpV)(

5XpV
𝑑𝑥 = −𝑙𝑛|𝑐𝑜𝑠𝑥| + 𝑐 = 𝑙𝑛|(𝑐𝑜𝑠𝑥)E"| + 𝑐 = 𝑙𝑛|𝑠𝑒𝑐𝑥| + 𝑐 ; (ii) 

similarly, ∫𝑐𝑜𝑡𝑥𝑑𝑥 = ∫ 5XpV
p=%V

𝑑𝑥 = ∫
(p=%V)(

p=%V
𝑑𝑥 = 𝑙𝑛|𝑠𝑖𝑛𝑥| + 𝑐 ; and (iii) 

∫ ;V
V4%|V|

= ∫
(4%|V|)(

4%|V|
𝑑𝑥 = 𝑙𝑛Ö𝑙𝑛|𝑥|Ö + 𝑐. 

In general, the choice of a suitable substitution depends on the integral that 
we have to compute. However, we can highlight the following cases: 
Case 1: In integrals containing a term of the form (𝑎𝑥 + 𝑏)% , set 𝑎𝑥 +
𝑏 = 𝑡. 
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Case 2: If the integral includes the expression √𝑎# − 𝑥#, then we set 𝑥 =
|𝑎|𝑠𝑖𝑛𝜃 or 𝑥 = |𝑎|𝑐𝑜𝑠𝜃, so that: (i) if 𝑥 = |𝑎|𝑠𝑖𝑛𝜃, then 𝑑𝑥 = |𝑎|𝑐𝑜𝑠𝜃𝑑𝜃 
and √𝑎# − 𝑥# = |𝑎|𝑐𝑜𝑠𝜃; (ii) if 𝑥 = |𝑎|𝑐𝑜𝑠𝜃, then 𝑑𝑥 = −|𝑎|𝑠𝑖𝑛𝜃𝑑𝜃 and 
√𝑎# − 𝑥# = |𝑎|𝑠𝑖𝑛𝜃. 
Case 3: If the integral includes the expression √𝑎# + 𝑥#, then we set 𝑥 =
|𝑎|𝑡𝑎𝑛𝜃  (or 𝑥 = |𝑎|𝑐𝑜𝑡𝜃 ). If 𝑥 = |𝑎|𝑡𝑎𝑛𝜃 , then 𝑑𝑥 = |1|

5Xp#r
𝑑𝜃  and 

√𝑎# + 𝑥# = |1|
5Xpr

. 
Case 4: If the integral includes the expression √𝑥# − 𝑎#, then we set 𝑥 =
|𝑎| "

5Xpr
, so that 𝑑𝑥 = |𝑎| p=%r

5Xp#r
𝑑𝜃 and √𝑥# − 𝑎# = |𝑎| p=%r

5Xpr
= |𝑎|𝑡𝑎𝑛𝜃. 

Case 5: If the integral includes the expression √𝑎𝑥 + 𝑏 , then we set 
√𝑎𝑥 + 𝑏 = 𝑡. For instance, in order to compute the integral ∫ p=%√V

√V
𝑑𝑥, we 

work as follows: Setting √𝑥 = 𝑡 ⇒ 𝑥 = 𝑡#, and 𝑑𝑥 = 2𝑡𝑑𝑡. Hence,  
∫ p=%√V

√V
𝑑𝑥 = ∫ p=%Y

Y
2𝑡𝑑𝑡 = 2∫𝑠𝑖𝑛𝑡𝑑𝑡 = −2𝑐𝑜𝑠𝑡 + 𝑐 = −2𝑐𝑜𝑠√𝑥 + 𝑐. 

Case 6: If the integral includes the expression √2𝑎𝑥 − 𝑥#, 𝑎 > 0, then we 
set 𝑥 = 𝑎(1 − 𝑐𝑜𝑠𝜃), so that 𝑑𝑥 = 𝑎𝑠𝑖𝑛𝜃𝑑𝜃 and √2𝑎𝑥 − 𝑥# = 𝑎𝑠𝑖𝑛𝜃. 
Case 7: Integrals of the form ∫ ;V

t1V#B0VB5
 can always be reduced to one or 

other of the three standard forms: ∫ ;V
t1#EV#

, ∫ ;V
t1#BV#

, ∫ ;V
tV#E1#

 (and we 
work as above). 
Case 8: In case of integrals of the form ∫ ;V

1B05XpV
 or ∫ ;V

1B0p=%V
, set 𝑡𝑎𝑛 V

#
=

𝑡. 
Case 9: In case of integrals of the form ∫ ;V

(FVBH)t1V#B0VB5
, set 𝑝𝑥 + 𝑞 = "

Y
. 

 
Integration by parts: The method of integration by parts is based on the 
following theorem: If two functions 𝑓 and 𝑔 are differentiable on a real 
interval 𝐼, and if the indefinite integral of the function 𝑓@𝑔 exists in 𝐼, then 
the idefinite integral of the function 𝑓𝑔@ also exists in 𝐼, and it holds that 

U𝑓(𝑥) 𝑔@(𝑥)𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) −U𝑓@ (𝑥)𝑔(𝑥)𝑑𝑥, 𝑥 ∈ 𝐼 

(this theorem can be immediately verified by the definition of the 
indefinite integral, since ;

;V
[𝑓(𝑥)𝑔(𝑥) − ∫𝑓@ (𝑥)𝑔(𝑥)𝑑𝑥] =

;
;V
[𝑓(𝑥)𝑔(𝑥)] − ;

;V ∫ 𝑓
@ (𝑥)𝑔(𝑥)𝑑𝑥 = 𝑓@(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔@(𝑥) −

𝑓@(𝑥)𝑔(𝑥) = 𝑓(𝑥)𝑔@(𝑥)). 
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Remark: For convenience, the formula of integration by parts is often 
stated as follows: 

U𝑢𝑑𝑣 = 𝑢𝑣 −U𝑣𝑑𝑢 

(in order to use this formula, the integrand must be expressed as the 
product of a function and the differential of another function; and, in 
particular, we often follow the LIATE rule, which tells us to choose 𝑢 to 
be the function that appears first in the following list: Logarithmic 
functions, Inverse trigonometric functions, Algebraic functions, 
Trigonometric functions, and Exponential functions).  
For instance, given the integral ∫𝑥𝑒V𝑑𝑥, we set 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒V𝑑𝑥. 
Then 𝑑𝑢 = 𝑑𝑥  and 𝑣 = ∫𝑒V𝑑𝑥 = 𝑒V . Hence, ∫𝑥𝑒V𝑑𝑥 = ∫𝑥𝑑𝑒V =
𝑥𝑒V − ∫𝑒V𝑑𝑥 =𝑥𝑒V − 𝑒V + 𝑐. 
Similarly, we can compute the integral ∫𝑥𝑐𝑜𝑠𝑥𝑑𝑥 using the method of 
integration by parts as follows: 
∫𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = ∫𝑥𝑑(𝑠𝑖𝑛𝑥) = 𝑥𝑠𝑖𝑛𝑥 − ∫𝑠𝑖𝑛𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 − (−𝑐𝑜𝑠𝑥) +
𝑐 = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐. 
 
Integration by reduction formulae: A reduction formula is applied to a 
given integral in order to express it in terms of a much simpler integral, 
using the rule for integration by parts, namely, ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 . 
When we have to compute integrals of higher order, we usually have to 
look for a reduction formula, such as the following (by successive 
applications of the corresponding reduction formula, the integral of any 
power of the integrand can be obtained): 
Case 1: ∫ 𝑥% 𝑒V𝑑𝑥. We shall apply the rule for integration by parts, setting 
𝑢 = 𝑥%  and then 𝑑𝑢 = 𝑛𝑥%E"𝑑𝑥 . Similarly, we can set 𝑑𝑣 = 𝑒V𝑑𝑥 , so 
that ∫𝑑𝑣 = ∫𝑒V𝑑𝑥, and, differentiating both sides, we get 𝑣 = 𝑒V. Hence,  

U 𝑥% 𝑒V𝑑𝑥 = 𝑥%𝑒V − 𝑛U 𝑥%E" 𝑒V𝑑𝑥 

(and, thus, we have obtained a reduction formula). Notice that 
∫𝑥% 𝑒6V𝑑𝑥 = "

6
𝑥%𝑒6V − %

6∫ 𝑥
%E" 𝑒6V𝑑𝑥. 

Case 2: ∫ 𝑙𝑛% 𝑥𝑑𝑥. We shall apply the rule for integration by parts, setting 
𝑢 = 𝑙𝑛%𝑥 and then 𝑑𝑢 = 𝑛𝑙𝑛%E"𝑥 ∙ "

V
𝑑𝑥 = %

V
𝑙𝑛%E"𝑥𝑑𝑥. Similarly, we can 

set 𝑑𝑣 = 𝑑𝑥, so that 𝑣 = 𝑥. Hence, 

U 𝑙𝑛% 𝑥𝑑𝑥 = 𝑙𝑛%𝑥 ∙ 𝑥 −U 𝑥
𝑛
𝑥 𝑙𝑛

%E"𝑥𝑑𝑥 ⇒U 𝑙𝑛% 𝑥𝑑𝑥

= 𝑥𝑙𝑛%𝑥 − 𝑛U 𝑙𝑛%E"𝑥𝑑𝑥 

(and, thus, we have obtained a reduction formula).  
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Case 3: ∫𝑥6 𝑙𝑛%𝑥𝑑𝑥. We shall apply the rule for integration by parts, 
setting 𝑢 = 𝑙𝑛%𝑥  and then 𝑑𝑢 = %4%'2"V

V
𝑑𝑥 . Similarly, we can set 𝑑𝑣 =

𝑥6, so that 𝑣 = V)0"

6B"
. Hence, 

U𝑥6 𝑙𝑛%𝑥𝑑𝑥 =
𝑥6B"𝑙𝑛%𝑥
𝑚 + 1 −

𝑛
𝑚 + 1U𝑥

6 𝑙𝑛%E"𝑥𝑑𝑥 

(and, thus, we have obtained a reduction formula).  
Case 4: ∫𝑠𝑖𝑛%𝑥 𝑑𝑥. In this case, in order to apply the rule for integration 
by parts, we shall separate the integrand into two parts by writing 𝑠𝑖𝑛%𝑥 =
𝑠𝑖𝑛%E"𝑥 ∙ 𝑠𝑖𝑛𝑥 , so that ∫ 𝑠𝑖𝑛%𝑥 𝑑𝑥 = ∫ 𝑠𝑖𝑛%E"𝑥 ∙ 𝑠𝑖𝑛𝑥𝑑𝑥 . Now, we are 
ready to apply the rule for integration by parts, setting 𝑢 = 𝑠𝑖𝑛%E"𝑥, 𝑑𝑣 =
𝑠𝑖𝑛𝑥𝑑𝑥 , and then 𝑑𝑢 = (𝑛 − 1)𝑠𝑖𝑛%E#𝑥 ∙ 𝑐𝑜𝑠𝑥𝑑𝑥 , and 𝑣 = −𝑐𝑜𝑠𝑥 . 
Hence, we obtain 

U 𝑠𝑖𝑛%𝑥 𝑑𝑥 = U 𝑠𝑖𝑛%E"𝑥 ∙ 𝑠𝑖𝑛𝑥𝑑𝑥

= −𝑠𝑖𝑛%E"𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)U 𝑐𝑜𝑠# 𝑥𝑠𝑖𝑛%E#𝑥𝑑𝑥

= −𝑠𝑖𝑛%E"𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)U(1 − 𝑠𝑖𝑛#𝑥) 𝑠𝑖𝑛%E#𝑥𝑑𝑥

= −𝑠𝑖𝑛%E"𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)U 𝑠𝑖𝑛%E# 𝑥𝑑𝑥

− (𝑛 − 1)U 𝑠𝑖𝑛% 𝑥𝑑𝑥 ⇔ 𝑛U 𝑠𝑖𝑛%𝑥 𝑑𝑥

= −𝑠𝑖𝑛%E"𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)U 𝑠𝑖𝑛%E# 𝑥𝑑𝑥 ⇔ U 𝑠𝑖𝑛%𝑥

= −
1
𝑛 𝑠𝑖𝑛

%E"𝑥𝑐𝑜𝑠𝑥 +
𝑛 − 1
𝑛 U 𝑠𝑖𝑛%E# 𝑥𝑑𝑥 

(this is the reduction formula for this type of integrals; so that, writing 
𝐼% = ∫𝑠𝑖𝑛%𝑥 𝑑𝑥 and 𝐼%E# = ∫𝑠𝑖𝑛%E# 𝑥𝑑𝑥, the reduction formula can be 
written as follows: 𝑛𝐼% = −𝑠𝑖𝑛%E"𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)𝐼%E# ⇔ 𝐼% =
− "
%
𝑠𝑖𝑛%E"𝑥𝑐𝑜𝑠𝑥 + %E"

%
𝐼%E#). 

Case 5: ∫ 𝑐𝑜𝑠% 𝑥𝑑𝑥 . By rewriting the given integral as ∫ 𝑐𝑜𝑠%E"𝑥 ∙
𝑐𝑜𝑠𝑥𝑑𝑥 , we can apply the rule for integration by parts by setting 𝑢 =
𝑐𝑜𝑠%E"𝑥 , 𝑑𝑣 = 𝑐𝑜𝑠𝑥𝑑𝑥 , and then 𝑑𝑢 = (𝑛 − 1)𝑐𝑜𝑠%E#𝑥 ∙ (−𝑠𝑖𝑛𝑥)𝑑𝑥 , 
and 𝑣 = 𝑠𝑖𝑛𝑥. Hence, we ultimately obtain 

U 𝑐𝑜𝑠% 𝑥𝑑𝑥 =
1
𝑛 𝑐𝑜𝑠

%E"𝑥𝑠𝑖𝑛𝑥 +
𝑛 − 1
𝑛 U 𝑐𝑜𝑠%E# 𝑥𝑑𝑥 

(this is the reduction formula for this type of integrals). 
Case 6: ∫ 𝑠𝑖𝑛6 𝑥𝑐𝑜𝑠%𝑥𝑑𝑥, where 𝑚 and 𝑛 are natural numbers. Let us call 
this integral 𝐼6,% , where 𝑚 represents the power of the sine term in the 
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integrand, and 𝑛 represents the power of the cosine term in the integrand. 
Then the following reduction formulae hold: 

𝐼6,% =
𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E"𝑥

𝑚 + 𝑛 +
𝑛 − 1
𝑚 + 𝑛 𝐼6,%E# 

for 𝑛 ≥ 2; and 

𝐼6,% = −
𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%B"𝑥

𝑚 + 𝑛 +
𝑚 − 1
𝑚 + 𝑛 𝐼6E#,% 

for 𝑚 ≥ 2.  
Let us prove the first reduction formula (applying the rule for integration 
by parts):  

𝐼6,% = U 𝑠𝑖𝑛6𝑥𝑐𝑜𝑠%E" 𝑥𝑑(𝑠𝑖𝑛𝑥)

= 𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E"𝑥

−U 𝑠𝑖𝑛𝑥[𝑚𝑠𝑖𝑛6E"𝑥𝑐𝑜𝑠%𝑥

− (𝑛 − 1)𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E#𝑥] 𝑑𝑥

= 𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E"𝑥 −𝑚U 𝑠𝑖𝑛6 𝑥𝑐𝑜𝑠%𝑥𝑑𝑥

+ (𝑛 − 1)U 𝑠𝑖𝑛6B#𝑥𝑐𝑜𝑠%E# 𝑥𝑑𝑥

= 𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E"𝑥 −𝑚𝐼6,%
+ (𝑛 − 1)U 𝑠𝑖𝑛6𝑥(1 − 𝑐𝑜𝑠#𝑥) 𝑐𝑜𝑠%E#𝑥𝑑𝑥

= 𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E"𝑥 −𝑚𝐼6,% + (𝑛 − 1)𝐼6,%E#
− (𝑛 − 1)𝐼6,% ⇔ 𝐼6,%

=
𝑠𝑖𝑛6B"𝑥𝑐𝑜𝑠%E"𝑥

𝑚 + 𝑛 +
𝑛 − 1
𝑚 + 𝑛 𝐼6,%E#	

(this is the required reduction formula). In case 𝑚 = 0 , this reduction 
formula implies that  

U 𝑐𝑜𝑠% 𝑥𝑑𝑥 =
𝑠𝑖𝑛𝑥𝑐𝑜𝑠%E"𝑥

𝑛 +
𝑛 − 1
𝑛 U 𝑐𝑜𝑠%E# 𝑥𝑑𝑥 

(which we obtained in Case 5). 
If we set 𝐼6,% = ∫ 𝑠𝑖𝑛6 𝑥𝑐𝑜𝑠%𝑥𝑑𝑥 = ∫𝑐𝑜𝑠% 𝑥𝑠𝑖𝑛6E"𝑥𝑠𝑖𝑛𝑥𝑑𝑥, and if we 
work in a way analogous to the way we proved the first reduction formula, 
then we obtain the second reduction formula, namely: 𝐼6,% =
− p=%)0"V5Xp'0"V

6B%
+ 6E"

6B%
𝐼6E#,% . In case 𝑛 = 0 , this reduction formula 

implies that 

U 𝑠𝑖𝑛6 𝑥𝑑𝑥 = −
𝑐𝑜𝑠𝑥𝑠𝑖𝑛6E"𝑥

𝑚 +
𝑚 − 1
𝑚 U 𝑠𝑖𝑛6E# 𝑥𝑑𝑥 

(which we obtained in Case 4). 
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Case 7: ∫ 𝑡𝑎𝑛%𝑥 𝑑𝑥 . We work as follows (based on the formula of 
integration by parts):  
𝐼% = ∫𝑡𝑎𝑛%𝑥 𝑑𝑥 = ∫ 𝑡𝑎𝑛%E#𝑥𝑡𝑎𝑛# 𝑥𝑑𝑥 = ∫ 𝑡𝑎𝑛%E#𝑥 (𝑠𝑒𝑐#𝑥 − 1)𝑑𝑥 =
∫(𝑡𝑎𝑛%E#𝑥𝑠𝑒𝑐#𝑥 − 𝑡𝑎𝑛%E#𝑥)𝑑𝑥 = ∫ 𝑡𝑎𝑛%E#𝑥𝑠𝑒𝑐#𝑥𝑑𝑥 − ∫ 𝑡𝑎𝑛%E#𝑥𝑑𝑥. 
In case of the integral ∫ 𝑡𝑎𝑛%E#𝑥𝑠𝑒𝑐#𝑥𝑑𝑥 , let us apply the rule for 
integration by parts with 𝑢 = 𝑡𝑎𝑛%E#𝑥  and 𝑑𝑣 = 𝑠𝑒𝑐#𝑥 , so that 𝑑𝑢 =
(𝑛 − 2)𝑠𝑒𝑐#𝑥𝑡𝑎𝑛%E*𝑥 and 𝑣 = 𝑡𝑎𝑛𝑥. Then, by the rule for integration by 
parts, ∫ 𝑡𝑎𝑛%E#𝑥𝑠𝑒𝑐#𝑥𝑑𝑥 = 𝑡𝑎𝑛%E"𝑥 − (𝑛 − 2) ∫𝑠𝑒𝑐#𝑥𝑡𝑎𝑛%E#𝑥𝑑𝑥 =
𝑡𝑎𝑛%E"𝑥 − (𝑛 − 2)∫(1 + 𝑡𝑎𝑛#𝑥) 𝑡𝑎𝑛%E#𝑥𝑑𝑥 = 𝑡𝑎𝑛%E"𝑥 −
(𝑛 − 2)∫(𝑡𝑎𝑛%E#𝑥 + 𝑡𝑎𝑛%𝑥) 	𝑑𝑥. 
Therefore, returning to 𝐼% = ∫𝑡𝑎𝑛%𝑥 𝑑𝑥, we have found that 

U 𝑡𝑎𝑛%𝑥 𝑑𝑥 = 𝑡𝑎𝑛%E"𝑥

− (𝑛 − 2)U 𝑡𝑎𝑛%E#𝑥𝑑𝑥

− (𝑛 − 2)U 𝑡𝑎𝑛%𝑥𝑑𝑥 −U 𝑡𝑎𝑛%E#𝑥𝑑𝑥 ⇔U 𝑡𝑎𝑛%𝑥 𝑑𝑥

+ (𝑛 − 2)U 𝑡𝑎𝑛%𝑥 𝑑𝑥 = (𝑛 − 1)U 𝑡𝑎𝑛%𝑥 𝑑𝑥

= 𝑡𝑎𝑛%E"𝑥

− (𝑛 − 1)U 𝑡𝑎𝑛%E#𝑥𝑑𝑥 ⇔ U 𝑡𝑎𝑛%𝑥 𝑑𝑥 =
𝑡𝑎𝑛%E"𝑥
𝑛 − 1

−U 𝑡𝑎𝑛%E#𝑥𝑑𝑥 

(this is the required reduction formula; so that, writing 𝐼% = ∫ 𝑡𝑎𝑛%𝑥 𝑑𝑥 
and 𝐼%E# = ∫ 𝑡𝑎𝑛%E#𝑥𝑑𝑥, the reduction formula can be written as follows: 
𝐼% =

Y1%'2"V
%E"

− 𝐼%E#). 

Case 8: ∫ ;V
(1#BV#)'

, where 𝑛 is a natural number. If 𝑛 = 1, then we have 

∫ ;V
1#BV#

, and we can compute it by making the substitution 𝑥 = 𝑎𝑡𝑎𝑛𝜃	and 

𝑑𝑥 = 𝑎𝑠𝑒𝑐#𝜃𝑑𝜃 , so that ∫ ;V
1#BV#

= ∫ "
1#B(1Y1%r)#

𝑎𝑠𝑒𝑐#𝜃𝑑𝜃 =

∫ "
1#("BY1%#r)

𝑎𝑠𝑒𝑐#𝜃𝑑𝜃 = ∫ "
1#pZ5#r

𝑎𝑠𝑒𝑐#𝜃𝑑𝜃 = "
1∫𝑑𝜃 =

"
�
𝜃 + 𝑐 , and, 

because 𝑥 = 𝑎𝑡𝑎𝑛𝜃 ⇔ 𝜃 = 𝑡𝑎𝑛E" V
1

; and, therefore, ∫ ;V
1#BV#

=
"
1
𝑎𝑟𝑐𝑡𝑎𝑛 V

1
+ 𝑐. 

If 𝑛 ≥ 2, then we find a reduction formula as follows: Let us call this 
integral 𝐼%, where 𝑛 represents the power of the denominator. Then 
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𝐼% = U
𝑑𝑥

(𝑎# + 𝑥#)% =
1
𝑎#U

𝑎# + 𝑥# − 𝑥#

(𝑎# + 𝑥#)% 𝑑𝑥

=
1
𝑎#U

𝑑𝑥
(𝑎# + 𝑥#)%E" −

1
𝑎#U

𝑥#

(𝑎# + 𝑥#)% 𝑑𝑥

=
1
𝑎# 𝐼%E" −

1
𝑎#U 𝑥

𝑥
(𝑎# + 𝑥#)% 𝑑𝑥

=
1
𝑎# 𝐼%E" −

1
2 ∙

1
𝑎#U 𝑥

𝑑(𝑎# + 𝑥#)
(𝑎# + 𝑥#)%

=
1
𝑎# 𝐼%E" −

1
2𝑎#U 𝑥𝑑

(𝑎# + 𝑥#)"E%

1 − 𝑛

=
1
𝑎# 𝐼%E" −

1
2𝑎# ∙

𝑥
(1 − 𝑛)(𝑎# + 𝑥#)%E" +

1
2𝑎#

∙
1

1 − 𝑛U
𝑑𝑥

(𝑎# + 𝑥#)%E"

=
1
𝑎# 𝐼%E" −

1
2𝑎# ∙

𝑥
(1 − 𝑛)(𝑎# + 𝑥#)%E" +

1
2𝑎#

∙
1

1 − 𝑛 𝐼%E" ⇔ 𝐼%

=
1

2(𝑛 − 1)𝑎# ∙
𝑥

(𝑎# + 𝑥#)%E" +
2𝑛 − 3
2(𝑛 − 1) ∙

1
𝑎# 𝐼%E" 

(this is the required reduction formula for 𝑛 ≥ 2). 
 
Integration of rational functions: In general, expressions of the form ](V)

:(V)
 

where 𝑓(𝑥) and 𝑔(𝑥) are rational integral algebraic functions of 𝑥 can be 
resolved into partial fractions, provided that the degree of 𝑓(𝑥) is less than 
the degree of 𝑔(𝑥), and 𝑔(𝑥) itself can be expressed in terms of linear and 
quadratic factors. Hence, the aforementioned expression ](V)

:(V)
 can be 

integrated if each of the corresponding separate partial fractions can be 
integrated. In fact, the following types of partial fractions will arise: 
(

1VB0
, (
(1VB0)'

, (VBL
1V#B0VB5

, and (VBL
(1V#B0VB5)'

. 
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Table 8:1: Partial fractions decomposition.   
 
Form of the rational function Form of the partial fraction 

𝒑𝒙#𝒒
(𝒙&𝒂)(𝒙&𝒃)

, 𝒂 ≠ 𝒃 𝐴
𝑥 − 𝑎

+
𝐵

𝑥 − 𝑏
 

𝒑𝒙 + 𝒒
(𝒙 − 𝒂)𝟐

 
𝐴

𝑥 − 𝑎
+

𝐵
(𝑥 − 𝑎)+

 

𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓
(𝒙 − 𝒂)(𝒙 − 𝒃)(𝒙 − 𝒄)

 
𝐴

𝑥 − 𝑎
+

𝐵
𝑥 − 𝑏

+
𝐶

𝑥 − 𝑐
 

𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓
(𝒙 − 𝒂)𝟐(𝒙 − 𝒃)

 
𝐴

𝑥 − 𝑎
+

𝐵
(𝑥 − 𝑎)+

+
𝐶

𝑥 − 𝑏
 

𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓
(𝒙 − 𝒂)(𝒙𝟐 + 𝒃𝒙 + 𝒄)

 
𝐴

𝑥 − 𝑎+
𝐵𝑥+ 𝐶

𝑥2 + 𝑏𝑥+ 𝑐 

 
Example 1: ∫ "

V#EA
𝑑𝑥. Factoring the denominator, we obtain two distinct 

linear factors: ∫ "
V#EA

𝑑𝑥 = ∫ "
(VB#)(VE#)

𝑑𝑥 = ∫ (
VB#

𝑑𝑥 + ∫ L
VE#

𝑑𝑥, and we 

have to determine the constants 𝐴 and 𝐵. Thus, "
(VB#)(VE#)

= (
VB#

+ L
VE#

⇒

(𝑥 + 2)(𝑥 − 2) "
(VB#)(VE#)

= (𝑥 + 2)(𝑥 − 2) Ã (
VB#

+ L
VE#

Ä ⇒ 1 =
𝐴(𝑥 − 2) + 𝐵(𝑥 + 2). Given the linear factors, 𝑥 − 2 and 𝑥 + 2, we shall 
find the values of 𝐴  and 𝐵  as follows: Plugging in the value 𝑥 = 2 
(derived from 𝑥 − 2 = 0 ⇔ 𝑥 = 2 ), 1 = 𝐴(𝑥 − 2) + 𝐵(𝑥 + 2) ⇒ 1 =
0 + 𝐵(4) ⇒ 𝐵 = "

A
. Plugging in the value 𝑥 = −2 (derived from 𝑥 + 2 =

0 ⇔ 𝑥 = −2 ), 1 = 𝐴(𝑥 − 2) + 𝐵(𝑥 + 2) ⇒ 1 = 𝐴(−2 − 2) + 0 ⇒ 𝐴 =

− "
A
. Now, the given indefinite integral becomes ∫ "

V#EA
𝑑𝑥 = ∫

E"F
VB#

𝑑𝑥 +

∫
"
F

VE#
𝑑𝑥 = − "

A ∫
;V
VB#

+ "
A∫

;V
VE#

= − "
A
𝑙𝑛|𝑥 + 2| + "

A
𝑙𝑛|𝑥 − 2| + 𝑐 =

"
A
(𝑙𝑛|𝑥 − 2| − 𝑙𝑛|𝑥 + 2|) + 𝑐 = "

A
𝑙𝑛 ÛVE#

VB#
Û + 𝑐. 

Example 2: ∫ VEA
V#B#VE"C

𝑑𝑥 . We need to factor the denominator, and, 
therefore, in this trinomial, the leading coefficient being 1, we need to find 
two numbers whose product is equal to the constant term, that is, −15, and 
whose sum is equal to the linear coefficient, that is, 2. These two numbers 
are 5  and −3 , so that 𝑥# + 2𝑥 − 15 = (𝑥 + 5)(𝑥 − 3) . Thus, 
∫ VEA
V#B#VE"C

𝑑𝑥 = ∫ (
VBC

𝑑𝑥 + ∫ L
VE*

𝑑𝑥 , and we can determine 𝐴  and 𝐵  as 

follows: VEA
(VBC)(VE*)

= (
VBC

+ L
VE*

⇒ (𝑥 + 5)(𝑥 − 3) VEA
(VBC)(VE*)

=
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(𝑥 + 5)(𝑥 − 3) Ã (
VBC

+ L
VE*

Ä ⇒ 𝑥 − 4 = 𝐴(𝑥 − 3) + 𝐵(𝑥 + 5) . As in the 
previous example, we shall plug in values of 𝑥 to calculate 𝐴 and 𝐵; and, 
specifically, given the linear terms 𝑥 − 3 and 𝑥 + 5, let us firstly plug in 
𝑥 = 3  (derived from 𝑥 − 3 = 0 ⇔ 𝑥 = 3 ), so that 𝑥 − 4 = 𝐴(𝑥 − 3) +
𝐵(𝑥 + 5) ⇒ 3 − 4 = 0 + 𝐵(3 + 5) ⇒ 𝐵 = − "

2
. Plugging in 𝑥 = −5 

(derived from 𝑥 + 5 = 0 ⇔ 𝑥 = −5 ), 𝑥 − 4 = 𝐴(𝑥 − 3) + 𝐵(𝑥 + 5) ⇒
−5 − 4 = 𝐴(−5 − 3) + 0 ⇒ 𝐴 = D

2
. Now, the given indefinite integral 

becomes ∫ VEA
V#B#VE"C

𝑑𝑥 = ∫
G
H

VBC
𝑑𝑥 + ∫

E"H
VE*

𝑑𝑥 = D
2∫

;V
VBC

− "
2∫

;V
VE*

=
D
2
𝑙𝑛|𝑥 + 5| − "

2
𝑙𝑛|𝑥 − 3| + 𝑐. 

Example 3: ∫ V
(VE")(VE#)#

𝑑𝑥 = ∫ (
VE"

𝑑𝑥 + ∫ L
VE#

𝑑𝑥 + ∫ P
(VE#)#

𝑑𝑥, so that  
V

(VE")(VE#)#
= (

VE"
+ L

VE#
+ P

(VE#)#
⇒ (𝑥 − 1)(𝑥 − 2)# V

(VE")(VE#)#
=

(𝑥 − 1)(𝑥 − 2)# Ú (
VE"

+ L
VE#

+ P
(VE#)#

Ü ⇒ 𝑥 = 𝐴(𝑥 − 2)# + 𝐵(𝑥 − 1)(𝑥 −
2) + 𝐶(𝑥 − 1). In order to determine 𝐴, 𝐵, and 𝐶, we must plug in some 
values of 𝑥. Let’s focus on 𝑥 − 2 = 0 ⇔ 𝑥 = 2, and 𝑥 − 1 = 0 ⇔ 𝑥 = 1. 
Plugging in 𝑥 = 2 , we get: 𝑥 = 𝐴(𝑥 − 2)# + 𝐵(𝑥 − 1)(𝑥 − 2) +
𝐶(𝑥 − 1) ⇒ 2 = 0 + 0 + 𝐶 ⇒ 𝐶 = 2 . Plugging in 𝑥 = 1 , we get: 𝑥 =
𝐴(𝑥 − 2)# + 𝐵(𝑥 − 1)(𝑥 − 2) + 𝐶(𝑥 − 1) ⇒ 1 = 𝐴(1 − 2)# + 0 + 0 ⇒
𝐴 = 1 . In order to determine 𝐵 , let’s plug in 𝑥 = 3 , so that 𝑥 =
𝐴(𝑥 − 2)# + 𝐵(𝑥 − 1)(𝑥 − 2) + 𝐶(𝑥 − 1) ⇒ 3 = 𝐴(1) + 𝐵(2)(1) +
𝐶(2) = 1 + 2𝐵 + 4 ⇒ 3 = 5 + 2𝐵 ⇒ 𝐵 = −1. Now, the given indefinite 
integral becomes ∫ V

(VE")(VE#)#
𝑑𝑥 = ∫ ;V

VE"
− ∫ ;V

VE#
+ ∫ #

(VE#)#
𝑑𝑥 , where 

∫ ;V
VE"

= 𝑙𝑛|𝑥 − 1| + 𝑐", ∫ ;V
VE#

= 𝑙𝑛|𝑥 − 2| + 𝑐#, and, in order to compute 

∫ #
(VE#)#

𝑑𝑥 = 2∫ ;V
(VE#)#

, we set 𝑢 = 𝑥 − 2 and 𝑑𝑢 = 𝑑𝑥, so that we obtain 

2∫ ;V
(VE#)#

= 2∫ ;q
q#
= 2∫𝑢E# 𝑑𝑢 = 2 q

2"

E"
+ 𝑐* = − #

q
+ 𝑐* = − #

VE#
+ 𝑐* . 

Hence, ∫ V
(VE")(VE#)#

𝑑𝑥 = ∫ ;V
VE"

− ∫ ;V
VE#

+ ∫ #
(VE#)#

𝑑𝑥 = 𝑙𝑛|𝑥 − 1| −

𝑙𝑛|𝑥 − 2| − #
VE#

+ 𝑐. 

Example 4: ∫ V#BD
(V#E")(V#BA)

𝑑𝑥. We cannot factor 𝑥# + 4, but we can factor 

𝑥# − 1  as (𝑥 + 1)(𝑥 − 1) , so that V#BD
(V#E")(V#BA)

= V#BD
(VB")(VE")(V#BA)

, and, 
thus, in the denominator of the integrand, we have two linear factors and 
one quadratic factor. We work as follows: V#BD

(VB")(VE")(V#BA)
= (

VB"
+ L

VE"
+
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PVB�
V#BA

⇒ ∫ V#BD
(VB")(VE")(V#BA)

𝑑𝑥 = ∫ (
VB"

𝑑𝑥 + ∫ L
VE"

𝑑𝑥 + ∫ PVB�
V#BA

𝑑𝑥 . Then, 

working as before, V#BD
(VB")(VE")(V#BA)

= (
VB"

+ L
VE"

+ PVB�
V#BA

⇒ (𝑥 + 1)(𝑥 −

1)(𝑥# + 4) V#BD
(VB")(VE")(V#BA)

= (𝑥 + 1)(𝑥 − 1)(𝑥# + 4) Ã (
VB"

+ L
VE"

+
PVB�
V#BA

Ä ⇒ 𝑥# + 9 = 𝐴(𝑥 − 1)(𝑥# + 4) + 𝐵(𝑥 + 1)(𝑥# + 4) +
(𝐶𝑥 + 𝐷)(𝑥 + 1)(𝑥 − 1). In order to determine 𝐴, 𝐵, 𝐶, and 𝐷, we must 
plug in some values of 𝑥. Let’s focus on 𝑥 − 1 = 0 ⇔ 𝑥 = 1, and 𝑥 + 1 =
0 ⇔ 𝑥 = −1. Plugging in 𝑥 = 1, we get: 𝑥# + 9 = 𝐴(𝑥 − 1)(𝑥# + 4) +
𝐵(𝑥 + 1)(𝑥# + 4) + (𝐶𝑥 + 𝐷)(𝑥 + 1)(𝑥 − 1) ⇒ 1 + 9 = 0 + 𝐵(2)(5) +
0 ⇒ 𝐵 = 1. Plugging in 𝑥 = −1, we get: 𝑥# + 9 = 𝐴(𝑥 − 1)(𝑥# + 4) +
𝐵(𝑥 + 1)(𝑥# + 4) + (𝐶𝑥 + 𝐷)(𝑥 + 1)(𝑥 − 1) ⇒ 10 = 𝐴(−2)(5) + 0 +
0 ⇒ 𝐴 = −1. In order to determine 𝐶 and 𝐷, let’s plug in 𝑥 = 0 (since, for 
𝑥 = 0, 𝐶 disappears in 𝐶𝑥 + 𝐷, and we can solve for 𝐷). Indeed, for 𝑥 =
0, and given that we have found that 𝐴 = −1 and 𝐵 = 1, we have:	𝑥# +
9 = 𝐴(𝑥 − 1)(𝑥# + 4) + 𝐵(𝑥 + 1)(𝑥# + 4) + (𝐶𝑥 + 𝐷)(𝑥 + 1)(𝑥 −
1) ⇒ 0# + 9 = −1(−1)(4) + (1)(1)(4) + (𝐶 ∙ 0 + 𝐷)(1)(−1) ⇒ 𝐷 =
−1. Finally, we need to determine 𝐶, and, for this reason, let’s plug in 𝑥 =
2, so that, for 𝑥 = 2, and given that we have found that 𝐴 = −1, 𝐵 = 1, 
and 𝐷 = −1 , we have: 𝑥# + 9 = 𝐴(𝑥 − 1)(𝑥# + 4) + 𝐵(𝑥 + 1)(𝑥# +
4) + (𝐶𝑥 + 𝐷)(𝑥 + 1)(𝑥 − 1) ⇒ 𝐶 = 0 . Now, the given indefinite 
integral becomes ∫ V#BD

(V#E")(V#BA)
𝑑𝑥 = ∫ E"

VB"
𝑑𝑥 + ∫ "

VE"
𝑑𝑥 + ∫ E"

V#BA
𝑑𝑥 , 

where ∫ E"
VB"

𝑑𝑥 = −𝑙𝑛|𝑥 + 1| + 𝑐" , ∫ "
VE"

𝑑𝑥 = 𝑙𝑛|𝑥 − 1| + 𝑐# , and, in 

order to compute ∫ E"
V#BA

𝑑𝑥 , we shall use the formula ∫ ;V
1#BV#

=
"
1
𝑎𝑟𝑐𝑡𝑎𝑛 V

1
+ 𝑐  (which was proved earlier), so that ∫ E"

V#BA
𝑑𝑥 =

− "
#
𝑎𝑟𝑐𝑡𝑎𝑛 V

#
+ 𝑐* . Hence, ∫ V#BD

(V#E")(V#BA)
𝑑𝑥 = −𝑙𝑛|𝑥 + 1| + 𝑙𝑛|𝑥 − 1| −

"
#
𝑎𝑟𝑐𝑡𝑎𝑛 V

#
+ 𝑐 = 𝑙𝑛 ÛVE"

VB"
Û − "

#
𝑎𝑟𝑐𝑡𝑎𝑛 V

#
+ 𝑐. 

 
Remarks:  

i. In case of ∫ (VBL
V#BFVBH

𝑑𝑥 with 𝑝# − 4𝑞 < 0, we set 𝑥 + F
#
= 𝑡. 

ii. In case of ∫𝑅(𝑒1V) 𝑑𝑥, where 𝑅 is a rational function, we set 
𝑒1V = 𝑡. 

 
Integration of irrational functions: Some types of integrals of irrational 
algebraic functions are reducible to integrals of rational functions via 
suitable substitutions.  
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Case 1: ∫𝑅 1𝑥, 01VB0
5VB;

'
2𝑑𝑥, where 𝑅 is a rational function, 𝑛 is a positive 

integer ≠ 1 , 𝑎𝑑 ≠ 𝑏𝑐 , and 1VB0
5VB;

> 0  if 𝑛  is even. In this case, we set 
1VB0
5VB;

= 𝑡% , so that 𝑥 = 0E;Y'

5Y'E1
, and 𝑑𝑥 = %(1;E05)Y'2"

(1E5Y')#
𝑑𝑡 . Hence, the 

original integral becomes ∫𝑅 1𝑥, 01VB0
5VB;

'
2𝑑𝑥 = 𝑛(𝑎𝑑 −

𝑏𝑐)∫𝑅 Ã0E;Y
'

5Y'E1
, 𝑡Ä Y'2"

(1E5Y')#
𝑑𝑡. 

For instance, given the integral  

U $𝑥 + 1
𝑥 − 1

!
𝑑𝑥 

(which is of the above form), we set VB"
VE"

= 𝑡*, so that 𝑥 = "BY!

Y!E"
, and 𝑑𝑥 =

− GY#

(Y!E")#
𝑑𝑡, and then the original integral becomes 

∫ 0VB"
VE"

! 𝑑𝑥 = ∫ EGY!

(Y!E")#
𝑑𝑡 = 2∫ 𝑡𝑑 "

Y!E"
= #Y

Y!E"
− 2∫ ;Y

Y!E"
= #Y

Y!E"
−

#
*∫

;Y
YE"

+ #
*∫

YB#
Y#BYB"

𝑑𝑡 = #Y
Y!E"

+ "
*
𝑙𝑛 Y!E"

(YE")#
+ #

√*
𝑎𝑟𝑐𝑡𝑎𝑛 #YB"

√*
+ 𝑐,  

and, finally, we make the substitution 𝑡 = 0VB"
VE"

!
 to get the result as a 

function of 𝑥. 

Case 2: ∫𝑅 1𝑥, 01VB0
5VB;

) , 01VB0
5VB;

' , …2𝑑𝑥 , where 𝑅  is a rational function, 

𝑚,𝑛,…  are natural numbers, and 𝑎𝑑 ≠ 𝑏𝑐. In this case, we set 1VB0
5VB;

= 𝑡F, 
where 𝑝 is the least common multiple of 𝑚,𝑛,…   
For instance, given the integral  

U
𝑥

√𝑥 + 1 − √𝑥 + 1! 𝑑𝑥 

(which is of the above form), we set 𝑥 + 1 = 𝑡G , so that we obtain 
∫ V

√VB"E √VB"! 𝑑𝑥 = ∫ �Y4E"�GY.

Y!EY#
𝑑𝑡 = 6∫(𝑡2 + 𝑡R + 𝑡G + 𝑡C + 𝑡A + 𝑡*) 𝑑𝑡 , 

which can be computed very easily, and, finally, we make the substitution 
𝑡 = √𝑥 + 14  to get the result as a function of 𝑥. 
Case 3: ∫𝑅�𝑥, √𝑎𝑥# + 𝑏𝑥 + 𝑐�𝑑𝑥, where 𝑅 is a rational function, 𝑎, 𝑏, 
and 𝑐 are real numbers, and 𝑎 ≠ 0. In this case, we apply the so-called 
“Euler’s substitutions,” namely:  
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i. If 𝑎 > 0 , then we set √𝑎𝑥# + 𝑏𝑥 + 𝑐 = 𝑡 − √𝑎𝑥  or 
√𝑎𝑥# + 𝑏𝑥 + 𝑐 = 𝑡 + √𝑎𝑥. Notice that, if √𝑎𝑥# + 𝑏𝑥 + 𝑐 =
𝑡 − √𝑎𝑥, then, by raising both sides to the square, we see 
that 𝑥 = Y#E5

#√1YB0
, and 𝑑𝑥 = 2 √1Y

#B0YB5√1

�#√1YB0�
# 𝑑𝑡. 

ii. If 𝑎 < 0  and 𝑏# − 4𝑎𝑐 > 0 , then we set √𝑎𝑥# + 𝑏𝑥 + 𝑐 =
𝑡|𝑥 − 𝑟"|, where	𝑟" is a root of 𝑎𝑥# + 𝑏𝑥 + 𝑐 = 0. 

iii. If 𝑎 < 0 and 𝑐 > 0, then we set √𝑎𝑥# + 𝑏𝑥 + 𝑐 = 𝑡𝑥 + √𝑐 
or √𝑎𝑥# + 𝑏𝑥 + 𝑐 = 𝑡𝑥 − √𝑐 . Moreover, by setting 𝑥 = "

Y
, 

the situation reduces to case (i).  
 
Binomial integrals: ∫𝑥6 (𝑎 + 𝑏𝑥%)F𝑑𝑥 , where 𝑚, 𝑛, and 𝑝 are rational 
numbers, and 𝑎 and 𝑏 are non-zero real numbers. Integrals of this type can 
be computed only if at least one of the numbers 𝑝, 6B"

%
, 6B"

%
+ 𝑝 is an 

integer (Chebyshev conditions). If 𝑝  is an integer, then we set 𝑡< = 𝑥 , 
where 𝑘 is the least common multiple of the denominators of the numbers 
𝑚 and 𝑛. If 6B"

%
 is an integer, then we set 𝑎 + 𝑏𝑥% = 𝑡M, where 𝜆 is the 

denominator of 𝑝. If 6B"
%
+ 𝑝 is an integer, then we set 𝑎𝑥E% + 𝑏 = 𝑡M , 

where 𝜆 is the denominator of 𝑝. 
For instance, the integral  

U
𝑑𝑥

√𝑥#! �1 + √𝑥! �
* 

can be written as ∫𝑥E# *⁄ �1 + 𝑥" *⁄ �E*𝑑𝑥 , where 𝑚 = − #
*
, 𝑛 = "

*
, and 

𝑝 = −3. Because 𝑝 is an integer, the above methodological rules imply 
that we should set 𝑡* = 𝑥, and then we obtain: ∫𝑥E# *⁄ �1 + 𝑥" *⁄ �E*𝑑𝑥 =
∫ 𝑡E# (1 + 𝑡)E*3𝑡#𝑑𝑡 = 3∫ ;Y

("BY)!
= − *

#("BY)#
+ 𝑐 = − *

#
"

�"B √V! �
# + 𝑐. 

 
Definite Integrals in ℝ 

 
The “definite integral” is written as  

U 𝑓(𝑥)𝑑𝑥
0

1
 

and represents the area bounded by the curve 𝑦 = 𝑓(𝑥), the 𝑥-axis, and the 
ordinates 𝑥 = 𝑎 and 𝑥 = 𝑏 if 𝑓(𝑥) ≥ 0. If 𝑓(𝑥) is sometimes positive and 
sometimes negative, then the definite integral represents the algebraic sum 
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of the areas above and below the 𝑥-axis. In particular, the areas that are 
above the 𝑥-axis are considered to be positive, whereas the areas that are 
below the 𝑥-axis are considered to be negative. 
The development of analytic geometry gave rise to a new method for the 
calculation of the area of a curvilinear figure. The old method for the 
calculation of the area of a curvilinear figure consisted of a series of 
approximating polygons. The new method for the calculation of the area of 
a curvilinear figure consisted of a sequence of sums of approximating 
rectangles, as illustrated in Figure 8-16. The area of each of these 
rectangles can be represented by the product 𝑓(𝑥=)𝛥𝑥= (corresponding to 
the product ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ), and the sum of these rectangles is given by 
𝑆% = ∑ 𝑓(𝑥=)𝛥𝑥=%

=>" . Then the area of the figure can be defined as the limit 
of the infinite sequence of sums 𝑆%  as the number of subdivisions 𝑛 
increases indefinitely and, thus, as the intervals 𝛥𝑥=  approach zero. 
Moreover, in this context, the use of infinitesimal rectangles is intimately 
related to the explanation and treatment of an arbitrary curve as the limit 
of or a sum of infinitesimal bits (infinitesimal straight line segments), so 
that an arbitrary curve is locally (i.e., at the infinitesimal level) straight (in 
fact, this is the underlying idea of Riemann’s theory of integration). In this 
way, the analytic representation of the curve set the stage for the 
development of the “definite integral” on the basis of the ordinary 
operations of arithmetic and on the basis of the concept of the limit of an 
infinite sequence of terms (𝑆%). 
As shown in Figure 8-16, the definite integral ∫ 𝑓(𝑥)𝑑𝑥0

1  can be defined as 
follows: 
We subdivide the closed interval [𝑎, 𝑏] into 𝑛 subintervals 
[𝑎, 𝑥"], [𝑥", 𝑥#], … , [𝑥=E", 𝑥=], [𝑥= , 𝑥=B"], … , [𝑥%E", 𝑏]  
by means of the points 𝑥", 𝑥#, … , 𝑥= , … , 𝑥%E" , which have been chosen 
arbitrarily (and, obviously, 𝑥) < 𝑥" < ⋯ < 𝑥%E" < 𝑥%). Hence, the set of 
points 
𝑃 = {𝑎 = 𝑥), 𝑥", 𝑥#, … , 𝑥= , … , 𝑥%E", 𝑥% = 𝑏}  
is a “partition” of [𝑎, 𝑏]. Let 𝛥𝑥= be the length of the 𝑖th subinterval, that 
is,	𝛥𝑥= = 𝑥= − 𝑥=E". Then the “norm” of the partition 𝑃 is denoted by ‖𝑃‖, 
and it is equal to 𝑚𝑎𝑥{𝛥𝑥=|𝑖 = 1,2, … , 𝑛} . Now, in each of the 𝑛 
subintervals mentioned in the aforementioned partition, we choose points 
𝜉", 𝜉#, … , 𝜉% in an arbitrary way, and we form the sum 

𝑆(𝑃, 𝑓, 𝜉=) = 
𝑓(𝜉")𝛥𝑥" + 𝑓(𝜉#)𝛥𝑥# +⋯+ 𝑓(𝜉=)𝛥𝑥= +⋯+ 𝑓(𝜉%)𝛥𝑥%

=ä𝑓(𝜉=)𝛥𝑥=

%

=>"
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where 𝛥𝑥= = 𝑥= − 𝑥=E". In other words, an arbitrary domain value, 𝜉=, is 
chosen in each subinterval, and the corresponding function value, 𝑓(𝜉=), is 
determined, so that we can define the product of each function value times 
the corresponding subinterval’s length (𝛥𝑥=) and then add these 𝑛 products 
to determine their sum. This sum is called a “Riemann sum,” and it may be 
positive, negative, or zero, depending on the behavior of the function on 
the given closed interval. Notice that the subintervals of the partition can 
be taken to be of equal length 𝛥𝑥 = 0E1

%
 (in this case, ‖𝑃‖ = 𝛥𝑥).  

In general, as the number of subdivisions 𝑛 increases, ‖𝑃‖ vanishes―that 
is, ‖𝑃‖ → 0 as 𝑛 → ∞ (and, obviously, if the subintervals of the partition 
have been taken to be of equal length 𝛥𝑥 = 0E1

%
, then 𝛥𝑥 → 0 as 𝑛 → ∞). 

Hence, if 𝑙𝑖𝑚‖K‖→)𝑆(𝑃, 𝑓, 𝜉=) exists and is independent of the mode of 
subdivision of [𝑎, 𝑏], then this limit is said to be the integral of 𝑓 on [𝑎, 𝑏]; 
symbolically:   

𝑙𝑖𝑚‖K‖→)𝑆(𝑃, 𝑓, 𝜉=) = U 𝑓(𝑥)𝑑𝑥
0

1
 

where 𝑓(𝑥)𝑑𝑥  is called the “integrand,” [𝑎, 𝑏]  is called the “range of 
integration,” and 𝑎 and 𝑏 are respectively called the lower and the upper 
“limit of integration.” Leibniz symbolized the definite integral of a 
function 𝑓(𝑥) on [𝑎, 𝑏] as ∫ 𝑓(𝑥)𝑑𝑥0

1 , because the sign ∫ is an elongated S 
standing for the word “sum,” since Leibniz defined ∫ 𝑓(𝑥)𝑑𝑥0

1  as the 
summation of infinitely many rectangles of height 𝑓(𝑥) and infinitesimally 
small width 𝑑𝑥 (see Figure 8-16). 
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Figure 8-16: The integral as the limit of a sum (Wikimedia Commons: Author: 
Helder, Marcos Antônio Nunes de Moura; 
https://commons.wikimedia.org/wiki/File:Integral_de_Riemann.svg). 
 

 
 
 
The above definition of the definite integral can be, equivalently, restated 
as follows (the epsilon-delta definition of the definite integral): A function 
𝑓 is called “integrable” on the interval [𝑎, 𝑏] if and only if there exists a 
number 𝐴 such that: for every 𝜀 > 0, there exists a 𝛿 > 0 such that every 
Riemann sum of 𝑓 that corresponds to a partition 𝑃 = {𝑎 =
𝑥), 𝑥", 𝑥#, … , 𝑥= , … , 𝑥%E", 𝑥% = 𝑏}  of [𝑎, 𝑏]  with ‖𝑃‖ < 𝛿  satisfies the 
inequality 

|𝑆(𝑃, 𝑓, 𝜉) − 𝛢| < 𝜀 
for any choice of sample points 𝜉 of 𝑃. Then the number 𝐴 is called the 
definite (or the Riemann) integral of 𝑓 on [𝑎, 𝑏], and it is written as  

U 𝑓(𝑥)𝑑𝑥
0

1
 

(that is, 𝛢 ≡ ∫ 𝑓(𝑥)𝑑𝑥0
1 ).  

Remark: Intuitively, the epsilon-delta definition of the definite (or 
Riemann) integral means that, as the partition becomes finer and finer, the 
Riemann sums converge to a limit, which is the definite (or Riemann) 
integral of 𝑓 on [𝑎, 𝑏] (given a partition 𝑃 of the interval [𝑎, 𝑏], another 
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partition 𝑄 of [𝑎, 𝑏] is said to be “finer” than 𝑃, or a “refinement” of 𝑃, if 
𝑄 contains all the points of 𝑃 and possibly others). 
Hence, if 𝑓: [𝑎, 𝑏] → ℝ  is integrable on [𝑎, 𝑏]  according to the 
aforementioned definition, then 𝑓 is bounded on [𝑎, 𝑏]. This theorem can 
be easily proved by reasoning as follows: As outlined above, the definite 
integral is calculated by partitioning [𝑎, 𝑏] into smaller intervals, and then, 
in each such subinterval, we choose a value of 𝑓, we multiply it by the 
length of the subinterval, and, finally, we sum all of these products. If, for 
the sake of contradiction, we assume that 𝑓 is unbounded, then, in one of 
these subintervals (of the partition), 𝑓  will still be unbounded, and, 
therefore, in this subinterval, we can choose a value for 𝑓 so large that the 
resultant sum will also become analogously large, meaning that, among all 
the approximations of the integral, there will be sums of arbitrarily large 
size, thus rendering the function 𝑓 unintegrable, which contradicts the 
assumption that 𝑓 is integrable. Therefore, “integrable” on [𝑎, 𝑏] implies 
“bounded” on [𝑎, 𝑏]. 
For a given continuous function 𝑓(𝑥), of a real variable 𝑥, defined on the 
interval [𝑎, 𝑏], the definite integral  is 

U 𝑓(𝑥)𝑑𝑥
0

1
= 𝐹(𝑥)|10 = 𝐹(𝑏) − 𝐹(𝑎) 

where 𝐹(𝑥)  is the antiderivative (i.e., the indefinite integral) 𝐹(𝑥) =
∫𝑓(𝑥)𝑑𝑥 , so that we calculate a definite integral as follows: (i) we 
calculate the antiderivative 𝐹(𝑥), (ii) we calculate the values 𝐹(𝑏) and 
𝐹(𝑎), and (iii) we calculate 𝐹(𝑏) − 𝐹(𝑎). For instance, we calculate the 
value of ∫ 𝑥#𝑑𝑥*

#  as follows: 

U 𝑥#𝑑𝑥
*

#
=
𝑥*

3 |#
* = 

Ã𝑣𝑎𝑙𝑢𝑒	𝑜𝑓 V!

*
𝑤ℎ𝑒𝑛	𝑥 = 3Ä − Ã𝑣𝑎𝑙𝑢𝑒	𝑜𝑓 V!

*
𝑤ℎ𝑒𝑛	𝑥 = 2Ä = *!

*
− #!

*
= "D

*
. 

 
Properties of the definite integral: The study of the definite integral was 
placed in a rigorous mathematical setting in the nineteenth century by 
Bernhard Riemann, Thomas Joannes Stieltjes, and Jean-Gaston Darboux, 
and their work underpins the following theorems (the properties of the 
definite integral).  
 
Property 1: ∫ 𝑓(𝑥)𝑑𝑥 = −∫ 𝑓(𝑥)𝑑𝑥1

0
0
1 . 

Proof: By the definition of the definite integral, 
∫ 𝑓(𝑥)𝑑𝑥0
1 = 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%

=>" 𝛥𝑥 where 𝛥𝑥 = 0E1
%

, 
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and similarly 
∫ 𝑓(𝑥)𝑑𝑥1
0 = 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%

=>" 𝛥𝑥 where 𝛥𝑥 = 1E0
%

. 
Hence,  
∫ 𝑓(𝑥)𝑑𝑥0
1 = 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)

0E1
%

%
=>" = 𝑙𝑖𝑚%→∞ ∑ 𝑓(𝜉=) Ú

E(1E0)
%

Ü%
=>" =

𝑙𝑖𝑚%→∞ Ã−∑ 𝑓(𝜉=)
1E0
%

%
=>" Ä = −𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)

1E0
%

%
=>" = −∫ 𝑓(𝑥)𝑑𝑥1

0 .■ 
 
Property 2: ∫ 𝑓(𝑥)𝑑𝑥 = 01

1 . 
Proof: By the definition of the definite integral, 
∫ 𝑓(𝑥)𝑑𝑥 =1
1 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%

=>" 𝛥𝑥 where 𝛥𝑥 = 1E1
%
= 0, 

and, therefore, ∫ 𝑓(𝑥)𝑑𝑥 =1
1 𝑙𝑖𝑚%→∞ ∑ 𝑓(𝜉=)%

=>" (0) = 0.■ 
 
Property 3: ∫ 𝑐𝑓(𝑥)𝑑𝑥 = 𝑐 ∫ 𝑓(𝑥)0

1
0
1 𝑑𝑥. 

Proof: By the definition of the definite integral (and the properties of 
summations and limits), we have: 
∫ 𝑐𝑓(𝑥)𝑑𝑥 =0
1 𝑙𝑖𝑚%→∞ ∑ 𝑐𝑓(𝜉=)%

=>" 𝛥𝑥 = 𝑙𝑖𝑚%→∞𝑐 ∑ 𝑓(𝜉=)%
=>" 𝛥𝑥 =

𝑐𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%
=>" 𝛥𝑥 = 𝑐 ∫ 𝑓(𝑥)𝑑𝑥0

1 , where 𝛥𝑥 = 0E1
%

.■ 
 
Property 4: ∫ [𝑓(𝑥) ± 𝑔(𝑥)]0

1 𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥0
1

0
1 . 

Proof: Firstly, we shall prove the formula for “+” (using the definition). 
Indeed, by the definition of the definite integral, using 𝛥𝑥 = 0E1

%
, we have: 

∫ [𝑓(𝑥) + 𝑔(𝑥)]0
1 𝑑𝑥 = 𝑙𝑖𝑚%→∞∑ [𝑓(𝜉=) + 𝑔(𝜉=)]%

=>" 𝛥𝑥 =
𝑙𝑖𝑚%→∞[∑ 𝑓(𝜉=)%

=>" 𝛥𝑥 + ∑ 𝑔(𝜉=)%
=>" 𝛥𝑥		] = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥0

1
0
1 . 

The formula can be proved for “−” by repeating the above work with a 
minus sign.■ 
 
Property 5: ∫ 𝑐𝑑𝑥 = 𝑐(𝑏 − 𝑎)0

1 , where 𝑐 is a real number (constant). 
Proof: If we define 𝑓(𝑥) = 𝑐 (a constant function), then, by the definition 
of the definite integral, using 𝛥𝑥 = 0E1

%
, we have: 

∫ 𝑐𝑑𝑥 =0
1 ∫ 𝑓(𝑥)𝑑𝑥0

1 = 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%
=>" 𝛥𝑥 = 𝑙𝑖𝑚%→∞(∑ 𝑐%

=>" ) 0E1
%
=

𝑙𝑖𝑚%→∞(𝑐𝑛)
0E1
%
= 𝑙𝑖𝑚%→∞𝑐(𝑏 − 𝑎) = 𝑐(𝑏 − 𝑎).■ 

 
Property 6: If 𝑓(𝑥) ≥ 0 for 𝑥 ∈ [𝑎, 𝑏], then ∫ 𝑓(𝑥)𝑑𝑥 ≥ 00

1 . 
Proof: By the definition of the definite integral, using 𝛥𝑥 = 0E1

%
, we have: 
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∫ 𝑓(𝑥)𝑑𝑥0
1 = 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%

=>" 𝛥𝑥, 
and, because 𝑓(𝑥) ≥ 0 and 𝛥𝑥 ≥ 0, it holds that ∑ 𝑓(𝜉=)%

=>" 𝛥𝑥 ≥ 0. Thus, 
by the properties of limits, 𝑙𝑖𝑚%→∞∑ 𝑓(𝜉=)%

=>" 𝛥𝑥 ≥ 𝑙𝑖𝑚%→∞0 ⇔
∫ 𝑓(𝑥)𝑑𝑥 ≥ 00
1 .■ 

 
Property 7: If 𝑓(𝑥) ≥ 𝑔(𝑥) for 𝑥 ∈ [𝑎, 𝑏], then ∫ 𝑓(𝑥)𝑑𝑥 ≥ ∫ 𝑔(𝑥)𝑑𝑥0

1
0
1 . 

Proof: Because 𝑓(𝑥) ≥ 𝑔(𝑥) , it holds that 𝑓(𝑥) − 𝑔(𝑥) ≥ 0  for 𝑥 ∈
[𝑎, 𝑏], and, therefore, by Property 6, ∫ [𝑓(𝑥) − 𝑔(𝑥)]0

1 𝑑𝑥 ≥ 0. Moreover, 
by Property 4, ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥0

1
0
1

0
1 . Therefore, 

∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥0
1

0
1 ≥ 0 ⇒ ∫ 𝑓(𝑥)𝑑𝑥 ≥ ∫ 𝑔(𝑥)𝑑𝑥0

1
0
1 .■ 

 
Property 8 (Extreme Value Theorem for Definite Integrals): If 𝑚 ≤
𝑓(𝑥) ≤ 𝑀 for 𝑥 ∈ [𝑎, 𝑏], then 𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥0

1 ≤ 𝑀(𝑏 − 𝑎). 
Proof: Given that 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 , we can use Property 7 on each 
inequality to obtain ∫ 𝑚𝑑𝑥 ≤ ∫ 𝑓(𝑥)𝑑𝑥 ≤ ∫ 𝑀𝑑𝑥0

1
0
1

0
1 . Then, by Property 5, 

we obtain 𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥0
1 ≤ 𝑀(𝑏 − 𝑎).■ 

 
Property 9: Û∫ 𝑓(𝑥)𝑑𝑥0

1 Û ≤ ∫ |𝑓(𝑥)|0
1 𝑑𝑥. 

Proof: By the definition of the absolute value,  
−|𝑓(𝑥)| ≤ 𝑓(𝑥) ≤ |𝑓(𝑥)|. 
Therefore, using Property 7, we obtain 
∫ −|𝑓(𝑥)|𝑑𝑥 ≤ ∫ 𝑓(𝑥)𝑑𝑥 ≤ ∫ |𝑓(𝑥)|𝑑𝑥 ⇒ −0

1
0
1

0
1 ∫ |𝑓(𝑥)|𝑑𝑥 ≤0

1

∫ 𝑓(𝑥)𝑑𝑥 ≤ ∫ |𝑓(𝑥)|𝑑𝑥0
1

0
1 . 

Hence, given that, in general, |𝑢| ≤ 𝑣 ⇔ −𝑣 ≤ 𝑢 ≤ 𝑣 , we obtain the 
required result: Û∫ 𝑓(𝑥)𝑑𝑥0

1 Û ≤ ∫ |𝑓(𝑥)|0
1 𝑑𝑥.■ 

Remark: The Cauchy–Schwarz–Bunyakovsky inequality for definite 
integrals: If 𝑓 and 𝑔 are continuous real-valued functions on [𝑎, 𝑏], then 

U |𝑓(𝑥)||𝑔(𝑥)|𝑑𝑥
0

1
≤ MU 𝑓#(𝑥)𝑑𝑥

0

1
N

"
#

MU 𝑔#(𝑥)𝑑𝑥
0

1
N

"
#

 

(this is a very useful result for proving oher inequalities in real analysis). 
The proof of this inequality can be obtained as follows: For a variable 𝜆, 
let’s define the function 𝑝(𝜆) = ∫ [𝜆𝑓(𝑥) + 𝑔(𝑥)]#0

1 𝑑𝑥 . Hence, 
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∫ [𝜆𝑓(𝑥) + 𝑔(𝑥)]#0
1 𝑑𝑥 = ∫ [𝜆#𝑓#(𝑥) + 2𝜆𝑓(𝑥)𝑔(𝑥) + 𝑔#(𝑥)]0

1 𝑑𝑥 =
𝜆# ∫ 𝑓#(𝑥)𝑑𝑥 + 2𝜆 ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 + ∫ 𝑔#(𝑥)𝑑𝑥 =0

1
0
1

0
1 𝐼. 

Notice that 𝐼 is a quadratic polynomial (in	𝜆), and 𝐼 ≥ 0 if the discriminant 
is less than or equal to zero. Recall that: if the discriminant is positive, 
then we have two distinct real roots; if the discriminant is equal to zero, 
then we have a double root; and, if the discriminant is negative, then we do 
not have any real roots. The discriminant of 𝐼  is 𝐷 =

Ú2∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥0
1 Ü

#
− 4 Ú∫ 𝑓#(𝑥)𝑑𝑥0

1 Ü Ú∫ 𝑔#(𝑥)𝑑𝑥0
1 Ü ≤ 0 ⇒

Ú∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥0
1 Ü

#
≤ Ú∫ 𝑓#(𝑥)𝑑𝑥0

1 Ü Ú∫ 𝑔#(𝑥)𝑑𝑥0
1 Ü ⇒ Û∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥0

1 Û ≤

Ú∫ 𝑓#(𝑥)𝑑𝑥0
1 Ü

"
# Ú∫ 𝑔#(𝑥)𝑑𝑥0

1 Ü
"
# . Then, by Property 9, we receive the 

required result: ∫ |𝑓(𝑥)||𝑔(𝑥)|0
1 𝑑𝑥 ≤ Ú∫ 𝑓#(𝑥)𝑑𝑥0

1 Ü
"
# Ú∫ 𝑔#(𝑥)𝑑𝑥0

1 Ü
"
#.■ 

 
Property 10: If a function 𝑓: [𝑎, 𝑏] → ℝ is integrable on [𝑎, 𝑏], and if 𝑎 ≤
𝑎" ≤ 𝑏" ≤ 𝑏, then 𝑓 is integrable on [𝑎", 𝑏"]. 
Proof: This property follows directly from the epsilon-delta definition of 
the definite integral (and it can be demonstrated by contradiction, since the 
lack of integrability over a subinterval results in the lack of integrability 
over the whole interval).■ 
 
Property 11 (additivity of domain for definite integrals): If 𝑓: [𝑎, 𝑏] → ℝ is 
a continuous function, and if 𝑎, 𝑏, and 𝑐 are real numbers such that 𝑎 <
𝑐 < 𝑏, then 𝑓(𝑥) is integrable on [𝑎, 𝑏] if and only if 𝑓(𝑥) is integrable on 
both [𝑎, 𝑐] and [𝑐, 𝑏], and then it holds that 
 ∫ 𝑓(𝑥)0
1 𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥5

1 + ∫ 𝑓(𝑥)0
5 𝑑𝑥. 

Proof: Geometrically, this property means that, if we consider the signed 
area bounded by the graph of 𝑦 = 𝑓(𝑥) and the 𝑥-axis from 𝑥 = 𝑎 to 𝑥 =
𝑏, then this signed area is equal to the sum of the signed area from 𝑥 = 𝑎 
to 𝑥 = 𝑐  plus the signed area from 𝑥 = 𝑐  to 𝑥 = 𝑏 . Algebraically, this 
property means that, if 𝐹(𝑥)  is an antiderivative of 𝑓(𝑥), then 𝐹(𝑏) −
𝐹(𝑎) = [𝐹(𝑐) − 𝐹(𝑎)] + [𝐹(𝑏) − 𝐹(𝑐)]. 
Let 𝑃 = {𝑎 = 𝑥), 𝑥", 𝑥#, … , 𝑥= , … , 𝑥%E", 𝑥% = 𝑏}  be a partition of [𝑎, 𝑏] 
such that 𝑐 coincides with some point belonging to 𝑃, say 𝑥J = 𝑐. Then 𝑃 
can be divided into the following two partitions: 
𝑃" = {𝑎 = 𝑥), 𝑥", . . , 𝑥J} with norm ‖𝑃"‖ and 
𝑃# = {𝑥J , 𝑥JB", . . , 𝑥% = 𝑏} with norm ‖𝑃#‖. 
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For any choice of sample points 𝜉  of 𝑃 , we shall have the following 
Riemann sum: 
𝑆(𝑃, 𝑓, 𝜉) = ∑ 𝑓(𝜉=)(𝑥= − 𝑥=E") = ∑ 𝑓(𝜉=)(𝑥= − 𝑥=E") +J

=>"
%
=>"

∑ 𝑓(𝜉=)(𝑥= − 𝑥=E")%
=>JB" .                                                                           (1) 

If we assume that 𝑓 is integrable on [𝑎, 𝑏], then, by Property 10, it is also 
integrable on [𝑎, 𝑐] and [𝑐, 𝑏]. If ‖𝑃‖ < 𝛿, then, obviously, ‖𝑃"‖ < 𝛿 and 
‖𝑃#‖ < 𝛿, and, therefore, by the epsilon-delta definition of the definite 
integral, we have: 
Û𝑆(𝑃, 𝑓, 𝜉) − ∫ 𝑓(𝑥)𝑑𝑥0

1 Û < T
*
, 

Ö𝑆(𝑃", 𝑓, 𝜉) − ∫ 𝑓(𝑥)𝑑𝑥5
1 Ö < T

*
, and 

Û𝑆(𝑃#, 𝑓, 𝜉) − ∫ 𝑓(𝑥)𝑑𝑥0
5 Û < T

*
. 

Due to relation (1), the above three inequalities imply that 
Û	∫ 𝑓(𝑥)0

1 𝑑𝑥 − ∫ 𝑓(𝑥)𝑑𝑥5
1 − ∫ 𝑓(𝑥)0

5 𝑑𝑥Û < 𝜀, 
and, because 𝜀 is arbitrary, we obtain the required result: 
∫ 𝑓(𝑥)0
1 𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥5

1 + ∫ 𝑓(𝑥)0
5 𝑑𝑥. 

The converse, starting from the assumption that 𝑓 is integrable on [𝑎, 𝑐] 
and [𝑐, 𝑏], can be easily established from relation (1).■ 
 
First Fundamental Theorem of Calculus: If a function 𝑓(𝑥) is continuous 
on [𝑎, 𝑏], then the function 

𝑔(𝑥) = U 𝑓(𝑡)𝑑𝑡
V

1
 

is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), and it holds that  
𝑔@(𝑥) = 𝑓(𝑥) 

(the first formulations of this theorem are due to Isaac Barrow, Isaac 
Newton, Gottfried Leibniz, and James Gregory, independently of each 
other; and this theorem establishes the relationship between differentiation 
and integration). 
Proof: Suppose that 𝑥 and 𝑥 + ℎ are elements of the open interval (𝑎, 𝑏). 
Then  
𝑔(𝑥 + ℎ	) − 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 −VBm

1 ∫ 𝑓(𝑡)V
1 𝑑𝑡.                                       (1) 

Using Property 11, we can rewrite relation (1) as follows: 

𝑔(𝑥 + ℎ	) − 𝑔(𝑥) = 1U 𝑓(𝑡)
V

1
𝑑𝑡 +U 𝑓(𝑡)𝑑𝑡

VBm

V
2−U 𝑓(𝑡)

V

1
𝑑𝑡

= U 𝑓(𝑡)𝑑𝑡
VBm

V
 

and, assuming that ℎ ≠ 0, we obtain: 
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:(VBm	)E:(V)
m

= "
m ∫ 𝑓(𝑡)𝑑𝑡VBm

V .                                                                    (2) 
If we assume that ℎ > 0, and given that 𝑥 and 𝑥 + ℎ are elements of the 
open interval (𝑎, 𝑏), then 𝑓(𝑥) is continuous on [𝑥, 𝑥 + ℎ]. Therefore, by 
Weierstrass’s Extreme Value Theorem, there exist numbers 𝑐  and 𝑑  in 
[𝑥, 𝑥 + ℎ] such that 𝑓(𝑐) = 𝑚 is the minimum of 𝑓(𝑥) in [𝑥, 𝑥 + ℎ], and 
𝑓(𝑑) = 𝑀 is the maximum of 𝑓(𝑥) in [𝑥, 𝑥 + ℎ]. Then, by Property 8, it 
holds that 

𝑚ℎ ≤ U 𝑓(𝑡)𝑑𝑡
VBm

V
≤ 𝑀ℎ ⇒ 𝑓(𝑐)ℎ ≤ U 𝑓(𝑡)𝑑𝑡

VBm

V
≤ 𝑓(𝑑)ℎ ⇒ 𝑓(𝑐)

≤
1
ℎU 𝑓(𝑡)𝑑𝑡

VBm

V
≤ 𝑓(𝑑) 

and, by relation (2), we obtain: 
𝑓(𝑐) ≤ :(VBm	)E:(V)

m
≤ 𝑓(𝑑).                                                                      (3) 

If we assume that ℎ < 0, then we can follow the same reasoning, except 
we shall be working on [𝑥 + ℎ, 𝑥] in order to obtain the same inequality as 
above. Consequently, we have proved that inequality (3) is true provided 
that ℎ ≠ 0.  
Now, consider the case in which ℎ → 0. In this case, 𝑐 → 𝑥 and 𝑑 → 𝑥, 
since 𝑐 and 𝑑 are between 𝑥 and 𝑥 + ℎ. Therefore, 
𝑙𝑖𝑚m→)𝑓(𝑐) = 𝑙𝑖𝑚5→V𝑓(𝑐) = 𝑓(𝑥) and  
𝑙𝑖𝑚m→)𝑓(𝑑) = 𝑙𝑖𝑚;→V𝑓(𝑑) = 𝑓(𝑥). 
Then, by the Squeeze Theorem,  
𝑙𝑖𝑚m→)

:(VBm	)E:(V)
m

= 𝑓(𝑥).                                                                      (4) 
The left-hand side of relation (4) is the definition of the derivative of 𝑔(𝑥), 
and, therefore,  
𝑔@(𝑥) = 𝑓(𝑥).                                                                                            (5) 
In other words, we have proved that 𝑔(𝑥)  is differentiable on (𝑎, 𝑏) . 
Moreover, in the section on differential calculus, we proved that, if a 
function 𝑓  is differentiable at 𝑥  (having a finite derivative), then 𝑓  is 
continuous at 𝑥 . For this reason, relation (5) implies that 𝑔(𝑥) is also 
continuous on (𝑎, 𝑏). Finally, if we set 𝑥 = 𝑎 or 𝑥 = 𝑏, we can follow a 
type of reasoning similar to the one we followed in order to obtain relation 
(4) using one-sided limits in order to obtain the same result, and, thus, the 
fact that “differentiability” implies “continuity” will lead us to the 
conclusion that 𝑔(𝑥) is continuous at 𝑥 = 𝑎 or 𝑥 = 𝑏, so that it will be 
ultimately established that 𝑔(𝑥) is continuous on [𝑎, 𝑏].■ 
 
Second Fundamental Theorem of Calculus: If a function 𝑓(𝑥)  is 
continuous on [𝑎, 𝑏], and if 𝐹(𝑥) is any antiderivative of 𝑓(𝑥), then  
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U 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)
0

1
|10 = 𝐹(𝑏) − 𝐹(𝑎) 

(the first formulations of this theorem are due to Isaac Barrow, Isaac 
Newton, Gottfried Leibniz, and James Gregory, independently of each 
other; and this theorem complements the First Fundamental Theorem of 
Calculus). 
Proof: Let 𝑔(𝑥) = ∫ 𝑓(𝑥)𝑑𝑡V

1 . Then, by the First Fundamental Theorem of 
Calculus, 𝑔@(𝑥) = 𝑓(𝑥), meaning that 𝑔(𝑥) is an antiderivative of 𝑓(𝑥) on 
[𝑎, 𝑏]. Additionally, suppose that 𝐹(𝑥) is any antiderivative of 𝑓(𝑥) on 
[𝑎, 𝑏] that we want to choose. Thus, 𝑔@(𝑥) = 𝐹@(𝑥). Then, by Corollary 2 
of Lagrange’s Mean Value Theorem, we know that 𝑔(𝑥) and 𝐹(𝑥) can 
differ by no more than an additive constant on (𝑎, 𝑏). In other words, for 
𝑥 ∈ (𝑎, 𝑏) , it holds that 𝐹(𝑥) = 𝑔(𝑥) + 𝑐 . Because 𝑔(𝑥)  and 𝐹(𝑥)  are 
continuous on [𝑎, 𝑏], if we compute the corresponding limits as 𝑥 → 𝑎B 
and as 𝑥 → 𝑏E, we realize that the last conclusion is also true at 𝑥 = 𝑎 and 
𝑥 = 𝑏 . Therefore, for all 𝑥 ∈ [𝑎, 𝑏] , 𝐹(𝑥) = 𝑔(𝑥) + 𝑐 . This conclusion 
and the definition of 𝑔(𝑥) imply that 

𝐹(𝑏) − 𝐹(𝑎) = [𝑔(𝑏) + 𝑐] − [𝑔(𝑎) + 𝑐] = 𝑔(𝑏) − 𝑔(𝑎)

= U 𝑓(𝑡)𝑑𝑡 +U 𝑓(𝑡)𝑑𝑡
1

1

0

1

= U 𝑓(𝑡)𝑑𝑡 + 0 = U 𝑓(𝑥)
0

1

0

1
𝑑𝑥 

(in the last step, the change of 𝑡’s into 𝑥’s is legitimate, because the name 
of the variable used in the integral does not matter) .■ 
 
The Average Value of a Function on a Compact Interval: The average 
value of a function 𝑓(𝑥) over the compact interval [𝑎, 𝑏] is given by 

𝑓̅ =
1

𝑏 − 𝑎U 𝑓(𝑥)𝑑𝑥
0

1
 

(in its modern form, this theorem is due to A.-L. Cauchy).  
Proof: First of all, recall that the average value of 𝑛 numbers is the sum of 
all these numbers divided by 𝑛. Now, let’s divide the interval [𝑎, 𝑏] into 𝑛 
subintervals each of length  
𝛥𝑥 = 0E1

%
. 

From each of these subintervals, we choose the points 𝜉", 𝜉#, … , 𝜉%, and the 
manner in which we choose these points does not matter as long as they 
come from the appropriate interval. The average of the function values 
𝑓(𝜉"), 𝑓(𝜉#), … , 𝑓(𝜉%) is 
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](�")B](�#)B⋯B](�')
%

.                                                                                    (1) 

The above definition of 𝛥𝑥 implies that 𝑛 = 0E1
	bV

. Hence, the fraction (1) 
becomes 

𝑓(𝜉") + 𝑓(𝜉#) +⋯+ 𝑓(𝜉%)
0E1
	bV

=
1

𝑏 − 𝑎
[𝑓(𝜉")𝛥𝑥 + 𝑓(𝜉#)𝛥𝑥 +⋯+ 𝑓(𝜉%)𝛥𝑥]

=
1

𝑏 − 𝑎ä 𝑓(𝜉=)𝛥𝑥
%

=>"
 

where, by increasing 𝑛, we can compute the average of more and more 
function values in the interval [𝑎, 𝑏], and, in fact, the larger we choose 𝑛 
the better approximation of the average value of the function we shall 
obtain. If we take the limit as 𝑛 tends to infinity, we shall actually obtain 
the average function value 𝑓;̅ symbolically: 
𝑓̅ = 𝑙𝑖𝑚%→'

"
0E1

∑ 𝑓(𝜉=)𝛥𝑥%
=>" = "

0E1
𝑙𝑖𝑚%→'∑ 𝑓(𝜉=)𝛥𝑥%

=>" , 
where 𝑙𝑖𝑚%→' ∑ 𝑓(𝜉=)𝛥𝑥%

=>"  is the standard definition of the definite 
integral ∫ 𝑓(𝑥)𝑑𝑥0

1 . Therefore, 𝑓̅ = "
0E1 ∫ 𝑓(𝑥)𝑑𝑥0

1 .■ 
Example: The average value of the function 𝑓(𝑥) = 8 − 2𝑥  over the 
interval [0,4]  is "

AE)∫ (8 − 2𝑥)𝑑𝑥 =A
) 4 . The point 𝑥)  at which 𝑓(𝑥))  is 

equal to the average value of 𝑓 over [0,4] can be found as follows: 8 −
2𝑥) = 4 ⇒ 𝑥) = 2. 
 
The Mean Value Theorem for Integrals: If a function 𝑓(𝑥) is continuous 
on [𝑎, 𝑏], then there exists a number 𝑐 in [𝑎, 𝑏] such that 

U 𝑓(𝑥)
0

1
𝑑𝑥 = 𝑓(𝑐)(𝑏 − 𝑎) 

(in its modern form, this theorem is due to A.-L. Cauchy). This means that 
𝑓(𝑐) = 𝑓̅, that is, 𝑓(𝑐) is equal to the average value of 𝑓(𝑥) over the 
interval [𝑎, 𝑏].  
Proof: Let 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡V

1 . Because 𝑓(𝑥) is given to be continuous on 
[𝑎, 𝑏], the First Fundamental Theorem of Calculus implies that 𝐹(𝑥) is 
continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), as well as that 𝐹@(𝑥) =
𝑓(𝑥). From Lagrange’s Mean Value Theorem, we know that there exists a 
number 𝑐  such that 𝑎 < 𝑐 < 𝑏  and 𝐹(𝑏) − 𝐹(𝑎) = 𝐹@(𝑐)(𝑏 − 𝑎) . 
Additionally, we know that 𝐹@(𝑐) = 𝑓(𝑐) , 𝐹(𝑏) = ∫ 𝑓(𝑡)𝑑𝑡0

1 =
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∫ 𝑓(𝑥)𝑑𝑥0
1 , and 𝐹(𝑎) = ∫ 𝑓(𝑡)𝑑𝑡1

1 = 0 . Hence, we obtain ∫ 𝑓(𝑥)𝑑𝑥 =0
1

𝑓(𝑐)(𝑏 − 𝑎), as required.■ 
 
Applications of the definite integral: In this section, we shall study a few 
applications of the definite integral. 
 

1. The area of a region in ℝ# 
Suppose that 𝑓  is a non-negative continuous function defined on the 
interval [𝑎, 𝑏]. Let 𝑅 be the set of all points (𝑥, 𝑦) such that  
0 ≤ 𝑦 ≤ 𝑓(𝑥) and 𝑎 ≤ 𝑥 ≤ 𝑏, 
meaning that 𝑅 is a plane region bounded by the straight lines 𝑥 = 𝑎 and 
𝑥 = 𝑏, the 𝑥-axis (𝑦 = 0), and the curve of the function 𝑦 = 𝑓(𝑥). As 
stated previously, the area of  𝑅 (being approximated by Riemann sums) is 
ultimately equal to  
𝐴 = ∫ 𝑓(𝑥)𝑑𝑥0

1 .                                                                                         (1) 
For instance, let us consider the area of a rectangle whose sides are parallel 
to the axes of a Cartesian (rectangular) co-ordinate system. If the height of 
the rectangle is ℎ > 0, and its width is 𝑏 − 𝑎, then we set 𝑓(𝑥) = ℎ over 
the interval 𝑎 ≤ 𝑥 ≤ 𝑏 , and, therefore, the area of this rectangle is 
∫ 𝑓(𝑥)𝑑𝑥0
1 = ∫ ℎ𝑑𝑥 = (𝑏 − 𝑎)0

1 ℎ. The area of a square, in particular, can 
be calculated as follows: if 𝑎 is the length of the side of the square, where 
𝑎 is the distance from the origin of the coordinate system to 𝑥 = 𝑎, then 
the area of the square is given by 𝐴 = ∫ 𝑎𝑑𝑥 = 𝑎𝑥|)1

1
) = 𝑎#. Similarly, if 

we are given a right-angled triangle with height ℎ and base 𝑏, where the 
base of this triangle is equal to the distance from the origin of the 
coordinate system to 𝑥 = 𝑏, then, in order to calculate its area, we think as 
follows: in this case, our function is a straight line (the hypotenuse), and 
the general equation of a straight line is 𝑓(𝑥) = 𝑚𝑥 + 𝑐 , where 𝑐  is a 
constant, but, in this case, 𝑐 = 0 because 𝑦 passes through the origin of the 
coordinate system, and the slope 𝑚 = m

0
 (since 𝑚 = "J=pZ"

"Jq%"
, as we explained 

in Chapter 6), so that the area of this triangle is ∫ 𝑓(𝑥)0
) 𝑑𝑥 = ∫ m

0
0
) 𝑥𝑑𝑥 =

0m
#

 (by analogy, we can compute the area of any triangle; and, using 
analytic geometry and infinitesimal calculus, we can prove that the area of 
any triangle is given by 01pZ×mZ=:mY

#
).  

The definition of the area of a region in ℝ# that is expressed by formula 
(1) is applicable for any function 𝑓(𝑥) that is non-negative and integrable 
over the interval under consideration (the function need not be continuous, 
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although it is usually the case in applications that the function is 
continuous). The restriction that 𝑓(𝑥)  is non-negative is not essential. 
Indeed, if 𝑓(𝑥) ≤ 0  and 𝑎 ≤ 𝑥 ≤ 𝑏 , then, because the regions 𝑅" =
{𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓(𝑥) ≤ 𝑦 ≤ 0}  and 𝑅# = {𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ −𝑦 ≤ −𝑓(𝑥)} 
have the same area, it is sufficient to work with the function −𝑓(𝑥), which 
is positive. In the general case where 𝑓(𝑥) does not have a constant sign 
over [𝑎, 𝑏], we divide [𝑎, 𝑏] into subintervals in which 𝑓(𝑥) has a constant 
sign, and we calculate the corresponding areas, so that, in this case, we 
have the following formula for the calculation of the area of a region in 
ℝ#: 
𝐴 = ∫ |𝑓(𝑥)|0

1 𝑑𝑥.                                                                                       (2) 
For instance, in order to calculate the area of the region bounded by the 
curve of 𝑓(𝑥) = 𝑥# − 4𝑥 + 3, the 𝑥-axis, and the straight lines 𝑥 = −2 
and 𝑥 = 4 , we work as follows: because 𝑓(𝑥) ≥ 0  when 𝑥 ∈ [−2,1] ∪
[3,4] , and 𝑓(𝑥) ≤ 0  when 𝑥 ∈ [1,3] , we have 𝐴 = ∫ |𝑥# − 4𝑥 +A

E#

3|𝑑𝑥 =∫ (𝑥# − 4𝑥 + 3)𝑑𝑥 − ∫ (𝑥# − 4𝑥 + 3)*
"

"
E# 𝑑𝑥 + ∫ (𝑥# − 4𝑥 +A

*
3)𝑑𝑥 =18. 
The area between two arbitrary curves can be calculated as follows: In the 
first case, we want to determine the area 𝐴 between the equations 𝑦 =
𝑓(𝑥)  and 𝑦 = 𝑔(𝑥)  over the interval [𝑎, 𝑏]  under the assumption that 
𝑓(𝑥) ≥ 𝑔(𝑥), meaning that the graph of 𝑓(𝑥) is above the graph of 𝑔(𝑥). 
Then 

𝐴 = U [(𝑢𝑝𝑝𝑒𝑟	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) − (𝑙𝑜𝑤𝑒𝑟	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)]𝑑𝑥
0

1
 

= U [𝑓(𝑥) − 𝑔(𝑥)]
0

1
𝑑𝑥 

where 𝑎 ≤ 𝑥 ≤ 𝑏. 
In the second case, we want to determine the area 𝐴 between the equations 
𝑥 = 𝑓(𝑦) and 𝑥 = 𝑔(𝑦) over the interval [𝑐, 𝑑] under the assumption that 
𝑓(𝑦) ≥ 𝑔(𝑦), namely, 𝑥 = 𝑓(𝑦) is on the right-hand side of 𝑥 = 𝑔(𝑦). 
Then 

𝐴 = U [(𝑟𝑖𝑔ℎ𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) − (𝑙𝑒𝑓𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)]𝑑𝑦
;

5
 

= U [𝑓(𝑦) − 𝑔(𝑦)]
;

5
𝑑𝑦 

where 𝑐 ≤ 𝑦 ≤ 𝑑. 
For instance, in order to calculate the area of the region bounded by the 
parabola 𝑓(𝑥) = 𝑥# − 3𝑥  and the straight line 𝑔(𝑥) = 𝑥 , as shown in 
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Figure 8-17, we work as follows: Firstly, we consider the system of 
equations  

{𝑓
(𝑥) = 𝑥# − 3𝑥
𝑔(𝑥) = 𝑥 Ï, 

which gives the abscissas of the common points of the two curves. Thus, 
here, we have: 𝑥# − 3𝑥 = 𝑥 ⇔ (𝑥" = 0, 𝑥# = 4) , and 𝑔(𝑥) ≥ 𝑓(𝑥) ⇒
𝑥 ≥ 𝑥# − 3𝑥 ⇔ 𝑥 ∈ [0,4]. Therefore, the required area is 
𝐴 = ∫ [𝑥 − (𝑥# − 3𝑥)]𝑑𝑥 =A

) ∫ (4𝑥 − 𝑥#)𝑑𝑥 = *#
*

A
) . 

 
Figure 8-17: The area between two curves. 
 

 
 
Now, as another example, let us use integral calculus in order to calculate 
the area of a triangle 𝐴𝐵𝐶 whose vertices are 𝐴(2,5), 𝐵(4,7), and 𝐶(6,2). 
Recall that, if (𝑥", 𝑦") and (𝑥#, 𝑦#) are any two points, then the equation of 
a straight line 𝑦  passing through these two points is given by WEW"

W#EW"
=

VEV"
V#EV"

. Thus, firstly, we must find the equations of the three sides of the 

triangle using the formula WEW"
W#EW"

= VEV"
V#EV"

.  
The equation of the line 𝐴𝐵 is 
WEC
REC

= VE#
AE#

⇒ 𝑦 = 𝑥 + 3. 
The equation of the line 𝐵𝐶 is 
WER
#ER

= VEA
GEA

⇒ 𝑦 = − C
#
𝑥 + 17. 

The equation of the line 𝐴𝐶 is 
WEC
#EC

= VE#
GE#

⇒ 𝑦 = − *
A
𝑥 + "*

#
. 

Thus, 
𝐴𝑟𝑒𝑎	𝑜𝑓	𝐴𝐵𝐶 

= (𝑎𝑟𝑒𝑎	𝑢𝑛𝑑𝑒𝑟	𝐴𝐵) + (𝑎𝑟𝑒𝑎	𝑢𝑛𝑑𝑒𝑟	𝐵𝐶) − (𝑎𝑟𝑒𝑎	𝑢𝑛𝑑𝑒𝑟	𝐴𝐶) 
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= U (𝑥 + 3)𝑑𝑥 +U å−
5
2𝑥 + 17æ

G

A

A

#
𝑑𝑥 −U å−

3
4𝑥 +

13
2 æ

G

#
𝑑𝑥 

= 7𝑠𝑞𝑢𝑎𝑟𝑒	𝑢𝑛𝑖𝑡𝑠. 
 
If the function of a region is given in a parametric form, then we work as 
follows in order to calculate the area of that region using integral 
calculus: Let us consider the equations 𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡) where 𝑡 ∈
[𝑡", 𝑡#]. If 𝑔@(𝑡) ≠ 0 for all 𝑡 ∈ (𝑡", 𝑡#), then the equations 𝑥 = 𝑔(𝑡) and 
𝑦 = 𝑓(𝑡) define 𝑦 as a function of 𝑥, and, if this is the case, then we apply 
the following rule: If 𝑦  is a continuous function of 𝑥  over the interval 
[𝑎, 𝑏] where 𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡), then the area of the region defined by 
𝑦 and the 𝑥-axis (along 𝑏 − 𝑎) is 

𝐴 = U 𝑦𝑑𝑥 = U 𝑓(𝑡)𝑔@(𝑡)𝑑𝑡
Y#

Y"

0

1
 

under the conditions that 𝑔(𝑡") = 𝑎, 𝑔(𝑡#) = 𝑏, and the functions 𝑔@ and 𝑓 
are continuous on [𝑡", 𝑡#]. 
 
When a region is defined in polar coordinates, its area can be calculated 
by using integral calculus as follows: If a function 𝑓 is continuous and 
non-negative over the interval [𝑎, 𝑏] with 0 ≤ 𝑏 − 𝑎 ≤ 2𝜋, then the area 
of the region bounded by 𝑟 = 𝑓(𝜑), 𝜑 = 𝑎, and 𝜑 = 𝑏 is given by the 
formula 

𝐴 =
1
2U

[𝑓(𝜑)]#𝑑𝜑
0

1
 

(regarding polar coordinates, see Chapter 6). In other words, if a curve’s 
radius function can be expressed as a function  𝑟(𝜑) of its angle with the 
positive side of the 𝑥-axis, then the area of the curve between two half-
lines 𝜑 = 𝛼 and 𝜑 = 𝛽 is 𝐴 = "

#∫ 𝑟#�
� (𝜑)𝑑𝜑, because it is the summation 

of infinitely many infinitesimally small triangular pie wedges (sectors) 
such that: the arc length of the base of each triangular pie wedge is 𝑟𝑑𝜑, 
the height of each triangular pie wedge is 𝑟(𝜑) = 𝑟, the apex angle of each 
pie wedge is 𝑑𝜑, and (using the formula of the area of a triangle: "

#
𝑏𝑎𝑠𝑒 ×

ℎ𝑒𝑖𝑔ℎ𝑡 ) the area of each triangular pie wedge is (approximately)  
𝐴(𝑑𝜑) = 𝑟# ;�

#
. In fact, the area of each triangular pie wedge is 

"
#
𝑟#𝑠𝑖𝑛𝑑𝜑, but, since 𝑑𝜑 is infinitesimally small, 𝑠𝑖𝑛𝑑𝜑 ≈ 𝑑𝜑, and, thus, 

the area of each such small triangle is approximately 𝑟# ;�
#

. Hence, in 
polar coordinates, the area of a circle of radius 𝑟  ( 𝑟(𝜑) = 𝑟 ) is 
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∫ "
#

#o
) 𝑟#𝑑𝜑 = "

#
𝑟# ∫ 𝑑𝜑#o

) = 𝑟#𝜋  (in essence, this is ancient Greek 
mathematicians’ method of exhaustion formulated in modern 
mathematical language).   
Moreover, if the functions 𝑓 and 𝑔 are continuous over the interval [𝑎, 𝑏], 
and if 0 ≤ 𝑔(𝜑) ≤ 𝑓(𝜑) for all 𝜑 ∈ [𝑎, 𝑏] , then the area of the region 
bounded by 𝑟 = 𝑓(𝜑) , 𝑟 = 𝑔(𝜑) , 𝜑 = 𝑎 , and 𝜑 = 𝑏  is given by the 
formula 

𝐴 =
1
2U

{[𝑓(𝜑)]# − [𝑔(𝜑)]#}
0

1
𝑑𝜑 

(regarding polar coordinates, see Chapter 6). 
 
Finally, it is worth mentioning that integrals can be thought of as inner 
products on infinite-dimensional spaces. In fact, if 𝐶[𝑎, 𝑏]  denotes the 
vector space of continuous functions on the interval [𝑎, 𝑏], then we obtain 
an inner product on 𝐶[𝑎, 𝑏] by defining, for all 𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏],  

〈𝑓, 𝑔〉 = U 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
0

1
 

(notice that 〈𝑓, 𝑓〉 = ∫ 𝑓(𝑥)𝑓(𝑥)𝑑𝑥0
1 = ∫ [𝑓(𝑥)]#0

1 𝑑𝑥 , which gives the 
(signed) area between the graph of 𝑦 = [𝑓(𝑥)]# and the 𝑥-axis from 𝑥 = 𝑎 
to 𝑥 = 𝑏). An integral is a linear operator that takes one thing (specifically, 
a function) and returns a number; and an inner product is a bilinear 
operator that takes two things and returns a number, so that here we see 
that it is the integral of the product of two inputs.  
 

2. The Arc Length of a Curve 
Let us consider a curve 𝛾 defined by the parametric equations  
𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡) where 𝑡 ∈ [𝑎, 𝑏], 
as shown, for instance, in Figure 8-18, and let 𝑃 = {𝑡), 𝑡", … , 𝑡%}  be a 
partition of [𝑎, 𝑏] . Intuitively, if we regard parameter 𝑡  as the time 
variable, then the curve may be thought of as the path of a moving point 
whose position vector at time 𝑡 is 𝛾(𝑡) = �𝑔(𝑡), 𝑓(𝑡)�. 
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Figure 8-18: The arc length of a curve. 
 

 
 
Let 𝑃< = [𝑔(𝑡<), 𝑓(𝑡<)]  be the corresponding points of 𝛾 , as shown in 
Figure 8-18. Then these points define a polygonal line. The sum  

𝐿K =äÙ[𝑔(𝑡=) − 𝑔(𝑡=E")]# + [𝑓(𝑡=) − 𝑓(𝑡=E")]#
%

=>"

 

is the length of the polygonal line that is defined by the points 𝑃< 
(corresponding to a partition 𝑃); and the finer the partition 𝑃, the more the 
corresponding polygonal line tends to be identified with the curve 𝛾. Now, 
let us consider the set 𝐿 of all the numbers 𝐿K , which correspond to all 
possible partitions 𝑃 of [𝑎, 𝑏], symbolically:  
𝐿 = {𝐿K|𝑃	𝑖𝑠	𝑎	𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛	𝑜𝑓	[𝑎, 𝑏]}.  
If this set 𝐿 is bounded, then the curve is said to be “rectifiable,” and the 
supremum 𝑆 = 𝐿(𝛾) of this set is said to be the length of the curve 𝛾. 
Moreover, we write 𝑆 = 𝐿10 (𝛾) in order to denote the arc length of the 
curve that is defined on the interval	[𝑎, 𝑏].  
Notice that, if 𝛾 is a rectifiable curve on [𝑎, 𝑏], and if 𝑎 < 𝑐 < 𝑏, then 
𝐿10 (𝛾) = 𝐿15 (𝛾) + 𝐿50(𝛾). 
Given a curve 𝛾 defined by the parametric equations  
𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡) where 𝑡 ∈ [𝑎, 𝑏], 
if the derivatives 𝑔@  and 𝑓@  are continuous on [𝑎, 𝑏], then the curve 𝛾 is 
rectifiable on [𝑎, 𝑏], and its length is given by 

𝑆 = 𝐿(𝛾) = U Ù[𝑔@(𝑡)]# + [𝑓@(𝑡)]#
0

1
𝑑𝑡 

where 𝑡 ∈ [𝑎, 𝑏].  
If a curve 𝛾 is defined by 𝑦 = 𝑓(𝑥), where 𝑥 ∈ [𝑎, 𝑏], and if the derivative 
𝑓@(𝑥) exists and is continuous on [𝑎, 𝑏], then, setting 𝑥 = 𝑡 and 𝑦 = 𝑓(𝑡) 
in the aforementioned formula, we obtain the following formula: 
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𝑆 = U Ù1 + [𝑓@(𝑥)]#
0

1
𝑑𝑥 

where 𝑥 ∈ [𝑎, 𝑏].  
If a curve 𝛾 is defined in polar coordinates 𝑟 = 𝑟(𝜑), 𝜑 ∈ [𝜑", 𝜑#], then  

𝑆 = U Ù𝑟#(𝜑) + [𝑟@(𝜑)]#
�#

�"
𝑑𝜑 

where 𝜑 ∈ [𝜑", 𝜑#]. 
 

3. The volume of a solid of revolution 
As shown in Figure 8-19, in order to obtain a solid of revolution, we start 
out with a curve 𝑦 = 𝑓(𝑥) on an interval [𝑎, 𝑏], and then we rotate this 
curve (360ο) about a given axis, so that a volume is generated. In order to 
determine the volume of a solid of revolution on the interval [𝑎, 𝑏], we 
work as follows: we divide the interval [𝑎, 𝑏] into 𝑛 subintervals, each of 
which has width 𝛥𝑥 = 0E1

%
, and then we choose a point 𝜉<  (where 𝑘 =

1,2,… , 𝑛) from each subinterval. When we want to determine the area 
between two curves, we approximate the area by using rectangles on each 
subinterval. Understandably, when we want to calculate the volume of a 
solid of revolution, we use discs on each subinterval to approximate the 
area. The area of the face of each disc is given by 𝐴(𝜉<), and the volume 
of each disc is given by 𝑉< = 𝐴(𝜉<)𝛥𝑥, where 𝛥𝑥 is the thickness of the 
disc. Hence, the volume of the corresponding solid of revolution on the 
interval [𝑎, 𝑏] can be approximated by 𝑉 ≈ ∑ 𝐴(𝜉<)𝛥𝑥%

<>" . Then, its exact 
volume is     

𝑉 = 𝑙𝑖𝑚%→'ä𝐴(𝜉<)𝛥𝑥 = U 𝐴(𝑥)𝑑𝑥
0

1

%

<>"

 

where 𝑎 ≤ 𝑥 ≤ 𝑏. 
In other words, in this case, the volume is the integral of the cross-
sectional area𝐴(𝑥)  at any 𝑥 , and 𝑥 ∈ [𝑎, 𝑏] . Given that 𝐴 = 𝜋𝑟# , 𝑟 =
𝑓(𝑥), and 𝑓(𝑥) is a non-negative continuous function from [𝑎, 𝑏] to ℝ, the 
volume of the solid generated by a region under 𝑦 = 𝑓(𝑥) bounded by the 
𝑥-axis and the vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏 via revolution about the 𝑥-
axis is   

𝑉 = 𝜋U [𝑓(𝑥)]#
0

1
𝑑𝑥 

(we take discs with respect to 𝑥, and 𝑟 = 𝑦 = 𝑓(𝑥); 𝑑𝑥 indicates that the 
area is rotated about the 𝑥-axis). 
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Figure 8-19: A solid of revolution (source: Wikimedia Commons: Author: Pajs; 
https://commons.wikimedia.org/wiki/File:Integral_apl_rot_objem1.svg). 
 

 
 
If we rotate a curve about the 𝑦-axis, thus obtaining a cross-sectional area 
that is a function of 𝑦  instead of 𝑥 , then the aforementioned formula 
becomes 

𝑉 = U 𝐴(𝑦)𝑑𝑦
;

5
 

where 𝑐 ≤ 𝑦 ≤ 𝑑 . Given that, in this case, 𝐴 = 𝜋𝑟# , and 𝑟 = 𝑓(𝑦), the 
volume of the solid generated by a region under	𝑥 = 𝑓(𝑦) bounded by the 
𝑦-axis and the horizontal lines 𝑦 = 𝑐 and 𝑦 = 𝑑 via revolution about the 
𝑦-axis is 

𝑉 = 𝜋U [𝑓(𝑦)]#
;

5
𝑑𝑦 

(we take discs with respect to 𝑦, and 𝑟 = 𝑥 = 𝑓(𝑦); 𝑑𝑦 indicates that the 
area is rotated about the 𝑦-axis).  
If we have two curves 𝑦" and 𝑦# that enclose some area, and we rotate that 
area about the 𝑥-axis, then the volume of the solid formed is given by 

𝑉 = 𝜋U [(𝑦#)# − (𝑦")#]
0

1
𝑑𝑥 

where 𝑦" = 𝑓(𝑥), 𝑦# = 𝑔(𝑥), 𝑥 ∈ [𝑎, 𝑏], and we assume that 𝑦"  and 𝑦# 
are continuous on [𝑎, 𝑏], and 𝑦# ≥ 𝑦" over [𝑎, 𝑏]. 
For instance, a sphere of radius 𝑟 centered at the origin (0,0,0) can be 
generated by revolving the upper semicircular disc enclosed between the 
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𝑥-axis and 𝑥# + 𝑦# = 𝑟# about the 𝑥-axis. If we revolve the semi-circle 
given by 

𝑦 = 𝑓(𝑥) = Ù𝑟# − 𝑥# 
about the 𝑥-axis, we obtain a sphere of radius 𝑟. A cross-section of the 
sphere is a circle with radius 𝑓(𝑥)  and area 𝜋[𝑓(𝑥)]# . If we slice the 
sphere vertically into discs, then each disc has infinitesimal thickness	𝑑𝑥, 
and the volume of each disc is approximately	𝜋[𝑓(𝑥)]#𝑑𝑥. If we add up 
the volumes of the discs, then we obtain the volume of the 
sphere―namely: 
𝑉 = 𝜋∫ [𝑓(𝑥)]#0

1 𝑑𝑥 = 𝜋∫ (𝑟# − 𝑥#)𝑑𝑥 = 𝜋 Ã𝑟#𝑥 − V!

*
ÄJ

EJ |EJJ = A
*
𝜋𝑟*. 

Similarly, the volume of a cone can be calculated as follows: A cone with 
base radius 𝑟  and height ℎ  can be formed by rotating a straight line 
through the origin (0,0,0) about the 𝑥-axis. The slope of the straight line is 
𝑡𝑎𝑛𝜃 = J

m
, so that the equation of the line is 𝑦 = J

m
𝑥, and the limits of 

integration are 𝑥 = 0  and 𝑥 = ℎ . Therefore, the volume of the 
corresponding cone is 

𝑉 = 𝜋∫ ÃJ
m
𝑥Ä

#
𝑑𝑥 = oJ#

m#
m
) ÃV

!

*
Ä |)m =

"
*
𝜋𝑟#ℎ. 

Similarly, the volume of a cylinder with base radius 𝑟  and height ℎ 
(assuming that the plane 𝑥𝑂𝑦  is the cylinder’s base plane) is 𝑉 =
𝜋 ∫ 𝑟#𝑑𝑥 =m

) 𝜋𝑟#ℎ, 
since the volume of an infinitesimal circular strip of a cylinder having 
radius 𝑟  and infinitesimally small height 𝑑𝑥  is 𝑑𝑣 = 𝑎𝑟𝑒𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡 =
𝜋𝑟#𝑑𝑥. 
Following the same reasoning, the volume of a pyramid of height ℎ with a 
𝑏 × 𝑏 square base can be calculated using integration as follows: If 𝑦 is the 
vertical distance from the top of the pyramid (placed at the origin of the 
rectangular coordinate system), then the square cross-sectional area 𝐴(𝑦) 

is given by 𝐴(𝑦) = Ã0
m
𝑦Ä

#
= 0#

m#
𝑦# , and, hence, the volume of this 

pyramid is given by ∫ 𝐴(𝑦)𝑑𝑦 = 0#

m# ∫ 𝑦#𝑑𝑦 = "
*

m
)

m
) 𝑏#ℎ. 

 
4. The physical significance of the definite integral and basic 

applications of integral calculus in mechanics 
The development of infinitesimal calculus by Newton and Leibniz is 
intimately related to the study of celestial mechanics (and physics in 
general) by them. Infinitesimal calculus, also known as the differentiation-
integration method, is concerned with the limits of applicability of 
physical laws. The content of a physical law is not absolute, and the 
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validity of a law is restricted to the framework of the applicability limits 
(i.e., certain conditions). However, a physical law can be expanded by 
changing its form beyond the limits of applicability by means of 
infinitesimal calculus. This method is based on the following two 
principles: (i) the principle that a law can be represented in a differential 
form, and (ii) the superposition principle, according to which the quantities 
that enter into the law are additive. 
Suppose that a physical law has the form 
𝑋 = 𝑌𝑍,                                                                                                     (∗)  (∗) 
where 𝑋 , 𝑌 , and 𝑍  are physical quantities, and, in particular, 𝑌  is a 
constant representing the given law’s limits of applicability. We can 
generalize the given law to the case where 𝑌  is not a constant but a 
function of 𝑍, that is, 𝑌 = 𝑌(𝑍), as follows: As shown in Figure 8-20, we 
isolate an interval 𝑑𝑍 so small that the variation of 𝑍 over this interval can 
be ignored. Hence, in the interval (“infinitesimal”) 𝑑𝑍 , we can 
approximately assume that 𝑌 is constant, and that the law (∗) is valid in 
this interval. Therefore, as shown in Figure 8-20, 
𝑑𝑋 = 𝑌(𝑍)𝑑𝑍,                                                                                         (∗∗)  (∗∗) 
where 𝑑𝑋 is the variation of 𝑋 over 𝑑𝑍. Due to the superposition principle, 
that is, by summing the quantities (∗∗) over all the intervals of variation of 
𝑍, we obtain an expression for 𝑋 in the form 
𝑋 = ∫ 𝑌(𝑍)𝑑𝑍l#

l"
,   (∗∗∗) 

where 𝑍" and 𝑍# are the initial and the final values of 𝑍, respectively, as 
shown in Figure 8-20. 
 
Figure 8-20: The method of infinitesimal calculus. 
 

 
 
As a conclusion, the method of infinitesimal calculus consists of two parts: 
in the first part of the method, we find the differential (∗∗) of the quantity 
under investigation; in the second part of the method, we sum, or 
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“integrate,” having properly determined the integration variable and the 
limits of integration (in order to determine the integration variable, we 
must analyze the quantities on which the differential of the investigated 
quantity depends and choose the most important variable; and the limits of 
integration are the lower and the upper values of the integration variable).  
 
Eaxample 1: The work done by any force 𝐹(𝑥), assuming that 𝐹(𝑥) is 
continuous, over the range 𝑎 ≤ 𝑥 ≤ 𝑏 is  

𝑊 = U 𝐹(𝑥)𝑑𝑥
0

1
 

(the force is parallel to the displacement). This formula can be proved, 
using the method infinitesimal calculus, as follows: We divide the range 
[𝑎, 𝑏] into 𝑛 subintervals of width 𝛥𝑥, and, from each of these intervals, 
we choose the points 𝜉", 𝜉#, … , 𝜉% . If 𝑛 is large enough, and given that 
𝐹(𝑥)  is continuous, the variation of 𝐹(𝑥)  over the 𝑖 th interval ( 𝑖 =
1,2, … , 𝑛) can be ignored, and we can assume that, over such an interval, 
the force is approximately constant, so that 𝐹(𝑥) ≈ 𝐹(𝜉=). Thus, the work 
on each interval is approximately 𝑊= ≈ 𝐹(𝜉=)𝛥𝑥, and then the total work 
over [𝑎, 𝑏] is approximately 𝑊 ≈ ∑ 𝑊= =%

=>" ∑ 𝐹(𝜉=)𝛥𝑥%
=>" . If we compute 

the limit of this summation as 𝑛 → ∞, then we shall get the exact work 
done, namely: 𝑊 = 𝑙𝑖𝑚%→'∑ 𝐹(𝜉=)𝛥𝑥%

=>" , which is the definition of the 
definite integral, and, hence, 𝑊 = ∫ 𝐹(𝑥)𝑑𝑥0

1 . 
 
Example 2: Using the method of infinitesimal calculus, we can compute 
velocity from displacement, acceleration from velocity, displacement from 
velocity, and velocity from acceleration: Since, as I have already 
mentioned, the time derivative of the velocity function 𝑣(𝑡) is acceleration 
𝑎(𝑡), that is, 
;w(Y)
;Y

= 𝑎(𝑡), 
we can integrate both sides to obtain 
∫ ;w(Y)

;Y
𝑑𝑡 = ∫𝑎(𝑡)𝑑𝑡 + 𝑐", 

where 𝑐" is a constant of integration. Since ∫ ;w(Y)
;Y

𝑑𝑡 = 𝑣(𝑡), velocity is 
given by 
𝑣(𝑡) = ∫𝑎(𝑡)𝑑𝑡 + 𝑐". 
Additionally, as I have already mentioned, the time derivative of the 
position function 𝑠(𝑡) is the velocity function, 
;p(Y)
;Y

= 𝑣(𝑡), 



 

 

340 

and, similarly, by integrating both sides, we obtain the displacement 
function 
𝑠(𝑡) = ∫ 𝑣(𝑡) 𝑑𝑡 + 𝑐#, 
where 𝑐# is another constant of integration.  
Using these integrals, we can derive the three fundamental kinematic 
equations for a constant acceleration 𝑎(𝑡) = 𝑎 as follows: Since  
𝑎 = ;w

;Y
⇔ 𝑑𝑣 = 𝑎𝑑𝑡, 

integrating both sides with proper limits, we obtain 
∫ 𝑑𝑣 = ∫ 𝑎𝑑𝑡 ⇒ 𝑣|w6

w = 𝑎𝑡|)Y
Y
)

w
w6

⇒ 𝑣 − 𝑣) = 𝑎(𝑡 − 0) ⇒ 𝑣 = 𝑣) + 𝑎𝑡,  (1) 
where 𝑣)  denotes initial velocity, 𝑣 denotes final velocity, 𝑡 = 0 denotes 
initial time, and 𝑡 denotes final time. Moreover,  
𝑣 = ;p

;Y
⇔ 𝑑𝑠 = 𝑣𝑑𝑡, 

and, similarly, integrating both sides with proper limits, and using 
equation (1), we obtain 
∫ 𝑑𝑠 = ∫ 𝑣𝑑𝑡 ⇒Y

)
p
p6

𝑠|p6
p = ∫ (𝑣) + 𝑎𝑡)𝑑𝑡

Y
) ⇒ 𝑠|p6

p = ∫ 𝑣)𝑑𝑡 +
Y
)

∫ 𝑎𝑡𝑑𝑡 ⇒ 𝑠|p6
p = 𝑣)𝑡|)Y + 𝑎

Y#

#
Y
) |)Y ⇒ 𝑠 − 𝑠) = 𝑣)(𝑡 − 0) +

1
#
(𝑡# − 0), 

which ultimately yields 
𝑠 = 𝑠) + 𝑣)𝑡 +

1
#
𝑡#,                                                                                  (2) 

where 𝑠) denotes initial position, and 𝑠 denotes final position. We can also 
write 
𝑎 = ;w

;Y
= ;w

;p
;p
;Y
⇒ 𝑎 = 𝑣 ;w

;p
⇔ 𝑣𝑑𝑣 = 𝑎𝑑𝑠, 

and, similarly, integrating both sides with proper limits, we obtain 
∫ 𝑣𝑑𝑣 = ∫ 𝑎𝑑𝑠p

p6
w
w6

⇒ w#

#
|w6
w = 𝑎𝑠|p6

p , 
which ultimately yields 
𝑣# = 𝑣)# + 2𝑎(𝑠 − 𝑠)).                                                                              (3) 
The aforementioned kinematic equations refer to an object moving 
horizontally. Notice that, in case of strictly vertical motion, the only 
difference is that the acceleration will be the acceleration due to the 
Earth’s gravity (i.e., ≈ −9.8𝑚 𝑠𝑒𝑐#⁄ ). In case of projectile motion, 
however, we deal with objects moving in both directions (i.e., moving 
along a curved path under the influence of gravity). For instance, consider 
a cannonball that is fired at some angle from the horizontal: it will travel 
some distance up into the air before eventually falling back down and 
hitting the ground, a distance away from the cannon. The path of this 
object (projectile) can be represented by a parabola. In projectile motion, 
the horizontal motion and the vertical motion are independent of each 
other, and, therefore, we use separate equations in order to study motion in 
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each direction (one equation that corresponds to the 𝑥-coordinate of the 
object, and one equation that corresponds to the 𝑦 -coordinate of the 
object). The time a projectile spends in the air relates only to its 𝑦 -
direction behavior, whereas the distance it travels from its initial position 
to its final position on the ground depends only on its 𝑥-direction behavior 
(horizontal velocity). Thus, in projectile motion, we use the above 
equations (equations (1), (2), and (3)), but we split up the velocity vector 𝑣⃗ 
into 𝑥 and 𝑦 components, i.e., 𝑣V  and 𝑣W  (the initial launch angle can be 
anywhere between 0 and 90 degrees). Notice that, in projectile motion, the 
horizontal velocity will be the same at every moment in the corresponding 
trajectory (as long as we ignore wind resistance), whereas the vertical 
velocity will be the greatest at the moment the projectile is launched, and 
then it will be decreasing until it reaches zero at the zenith, after which it 
will become increasingly negative until it hits the ground (since there is a 
constant acceleration in the negative direction due to gravity); and, of 
course, the angle at which the object is launched affects the range, the 
height, and the time of flight it will experience while in projectile motion. 
 
Example 3: We shall use the method of infinitesimal calculus in order to 
find the “center of mass” or “centroid” of a thin plate with uniform density 
𝜌. Given a homogeneous region, its center of mass is the average position 
of all the parts of the given system weighted according to their masses. An 
object with mass 𝑚 and volume 𝑉  has density 𝜌 = 6

h
. Hence, given an 

object of constant cross-sectional area whose mass is distributed along a 
signle axis according to the function 𝜌(𝑥) (whose units are units of mass 
per unit of length), the total mass, 𝑀, of the given object between 𝑥 = 𝑎 
and 𝑥 = 𝑏 is given by 𝑀 = ∫ 𝜌(𝑥)𝑑𝑥0

1 . 
Assume that the plate under consideration is a region bounded by the 
curves 𝑓(𝑥) and 𝑔(𝑥) on the interval [𝑎, 𝑏]. In order to find its center of 
mass, we work as follows: Firstly, we find the “total mass” of the plate, 
using the following formula: 

𝑀 = 𝜌 × 𝑎𝑟𝑒𝑎	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑙𝑎𝑡𝑒 = 𝜌U [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
0

1
 

(without loss of generality, we assume that the curve 𝑓(𝑥) is above the 
curve 𝑔(𝑥)). Secondly, we find the two “moments” of the region, namely, 
𝑀V and 𝑀W, which measure the tendency of the region to rotate about the 
𝑥-axis and the 𝑦-axis, respectively. The two moments are given by: 

𝑀V = 𝜌U
1
2

0

1
{[𝑓(𝑥)]# − [𝑔(𝑥)]#}𝑑𝑥 
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and 

𝑀W = 𝜌U 𝑥[𝑓(𝑥) − 𝑔(𝑥)]
0

1
𝑑𝑥 

(note: in its most basic form, 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝐹𝑜𝑟𝑐𝑒 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , meaning 
that the magnitude of the moment of a force acting about a point or an axis 
is directly proportional to the distance of the force from the point or the 
axis, and it measures the tendency of a force to cause a body to rotate 
about a specific point or axis). Thirdly, we find the coordinates of the 
“center of mass” (𝑥̅, 𝑦!) by using the following formulae: 

𝑥̅ =
𝑀W

𝑀  
and 

𝑦! =
𝑀V

𝑀  

𝑀,	𝑀V , and 𝑀W  are defined as bove, that is: 𝑀 = 𝜌∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥0
1 , 

𝑀V = 𝜌∫ "
#

0
1 {[𝑓(𝑥)]# − [𝑔(𝑥)]#}𝑑𝑥 , and 𝑀W = 𝜌 ∫ 𝑥[𝑓(𝑥) − 𝑔(𝑥)]0

1 𝑑𝑥 . 
Hence, we can write: 

𝑥̅ =
1
𝑄U 𝑥[𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥

0

1
 

and 

𝑦! =
1
𝑄U

1
2

0

1
{[𝑓(𝑥)]# − [𝑔(𝑥)]#}𝑑𝑥 

where  

𝑄 = U [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
0

1
 

(the center of mass helps us to analyze how objects move and interact; for 
instance: when we are going to lift something with a crane, we have to 
center the lifting cable over the center of mass, or the center of mass of the 
load plus the counterweights must be within the crane’s stabilizing struts, 
since otherwise the object will shift and tumble when we lift it, and it 
might fall, or the crane itself will tip over; the center of mass plays a 
critical role in designing cars in order to make sure that they have control 
and stability in dangerous conditions; and an airplane must be balanced 
around its its designed center of mass, since otherwise it may not fly 
correctly or may not fly at all). 
 

5. Basic applications of integral calculus in the social sciences 
In economics, the integral shows how to find total revenue, 𝑇𝑅 , from 
marginal revenue, 𝑀𝑅, and how to find total cost, 𝑇𝐶, from marginal cost, 



 
 

 

343 

𝑀𝐶 . Since, 𝑀𝑅  can be defined as the derivative of 𝑇𝑅  with respect to 
quanty 𝑄 sold, that is,  
𝑀𝑅 = ;_[

;N
, 

it follows that, if we know the marginal revenue function 𝑀𝑅(𝑄), the total 
revenue is  
𝑇𝑅(𝑄) = ∫𝑀𝑅(𝑄)𝑑𝑄. 
Similarly, since 𝑀𝐶 can be defined as the derivative of 𝑇𝐶 with respect to 
quanty 𝑄 produced, that is, 
𝑀𝐶 = ;_P

;N
, 

it follows that, if we know the marginal cost function 𝑀𝐶(𝑄), the total 
cost is  
𝑇𝐶(𝑄) = ∫𝑀𝐶(𝑄)𝑑𝑄. 
Moreover, if 𝐼(𝑡) denotes the rate of investment (where 𝑡 denotes time), 
then the total accumulation of capital 𝐾 during the time interval [𝑡", 𝑡#] is 
given by the formula 

𝐾 = U 𝐼(𝑡)𝑑𝑡
Y#

Y"
 

(the business investment rate is defined as gross investment (gross fixed 
capital formation) divided by gross value added of non-financial 
corporations, and, thus, this ratio relates the investment of non-financial 
businesses in fixed assets (e.g., buildings, machinery, etc.) to the value 
added created during the production process). 
 
Approximate integration: When the integrand 𝑓(𝑥)  is known only at 
certain points (e.g., those obtained by sampling), or when a formula for the 
integrand is known but it is difficult or impossible to find an antiderivative 
that is an elementary function, we may use numerical methods of 
integration―that is, approximate formulae for definite integrals. The 
simplest approximate formula for definite integrals is  
∫ 𝑓(𝑥)𝑑𝑥 ≈ "

#
0
1 (𝑏 − 𝑎)[𝑓(𝑎) + 𝑓(𝑏)], 

which is exact when 𝑓(𝑥) is linear. However, a much better approximate 
formula for definite integrals is 
∫ 𝑓(𝑥)𝑑𝑥 ≈ "

G
0
1 (𝑏 − 𝑎) Ú𝑓(𝑎) + 4𝑓 Ã1B0

#
Ä + 𝑓(𝑏)Ü,   

which is known as “Simpson’s Rule,” named after the eighteenth-century 
British mathematician Thomas Simpson, who formulated it. Before him, 
however, Johannes Kepler had already used similar formulae. For this 
reason, “Simpson’s Rule” is sometimes called “Kepler’s Rule.” Simpson’s 
Rule derives from the observation that, if 𝑝(𝑥) = 𝐴𝑥# + 𝐵𝑥 + 𝐶 , then 
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∫ 𝑝(𝑥)0
1 𝑑𝑥 = 0E1

G
Ú𝑝(𝑎) + 4𝑝 Ã1B0

#
Ä + 𝑝(𝑏)Ü , and it is used in order to 

approximate any integral ∫ 𝑓(𝑥)𝑑𝑥0
1 , where 𝑓 is an arbitrary function, and 

not necessarily a quadratic polynomial (i.e., a parabola). 
 
Generalized integrals: A “generalized integral” (also known as an 
“improper integral”) is an integral with one or more infinite limits of 
integration and/or discontinuous integrands (specifically, integrands with 
vertical asymptotes).  
First Case:𝑓 is discontinuous at some points or at one point in the closed 
interval of integration [𝑎, 𝑏] ⊂ ℝ.  

i. If 𝑓(𝑥)  is discontinuous at 𝑥 = 𝑥) , that is, if 𝑓(𝑥)) → ∞  (and, 
thus, 𝑓 has a vertical asymptote at this point), and 𝑎 < 𝑥) < 𝑏, 
then   
∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚T→) ∫ 𝑓(𝑥)𝑑𝑥 + 𝑙𝑖𝑚T→) ∫ 𝑓(𝑥)𝑑𝑥0

V6BT
V6ET
1

0
1 . 

ii. If 𝑓(𝑥) is discontinuous at 𝑥 = 𝑥) = 𝑏, that is, if 𝑓(𝑏) → ∞, then 
∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚T→) ∫ 𝑓(𝑥)𝑑𝑥0ET

1
0
1 , or, equivalently,  

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚<→02 ∫ 𝑓(𝑥)𝑑𝑥<
1

0
1 .  

iii. If 𝑓(𝑥) is discontinuous at 𝑥 = 𝑥) = 𝑎, that is, if 𝑓(𝑎) → ∞, then 
∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚T→) ∫ 𝑓(𝑥)𝑑𝑥0

1BT
0
1 , or, equivalently, 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚<→10 ∫ 𝑓(𝑥)𝑑𝑥0
<

0
1 .  

For instance, in ∫ ;V
t%#EV#

%
) , the integrand is discontinuous at 𝑥 = 𝑛, and, 

therefore,   
∫ ;V

t%#EV#
%
) = 𝑙𝑖𝑚T→) ∫

;V
t%#EV#

= 𝑙𝑖𝑚T→)𝑎𝑟𝑐𝑠𝑖𝑛
V
%

%ET
) |)%ET =

𝑙𝑖𝑚T→) Ã𝑎𝑟𝑐𝑠𝑖𝑛
%ET
%
− 𝑎𝑟𝑐𝑠𝑖𝑛 )

%
Ä = 𝑙𝑖𝑚T→)𝑎𝑟𝑐𝑠𝑖𝑛

%ET
%
= 𝑎𝑟𝑐𝑠𝑖𝑛1 = o

#
. 

Second Case: the interval of integration is infinite, that is, (−∞, 𝑏] , 
[𝑎, +∞), or (−∞, −∞).  

i. If 𝑓(𝑥) is continuous on (𝑎, 𝑏) where 𝑏 = +∞, then 
∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚<→∞
∞
1 ∫ 𝑓(𝑥)𝑑𝑥<

1 . 
ii. If 𝑓(𝑥) is continuous on (𝑎, 𝑏) where 𝑎 = −∞, then 
∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚<→E∞
0
E∞ ∫ 𝑓(𝑥)𝑑𝑥0

< . 
iii. If 𝑓(𝑥) is continuous on (𝑎, 𝑏) where 𝑎 = −∞ and 𝑏 = +∞, then 
∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚<"→E∞
∞
E∞ ∫ 𝑓(𝑥)𝑑𝑥F

<"
+ 𝑙𝑖𝑚<#→∞ ∫ 𝑓(𝑥)𝑑𝑥<#

F , where 𝑝 
is any number; in other words, ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)F

E'
'
E' 𝑑𝑥 +

∫ 𝑓(𝑥)𝑑𝑥'
F . 
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For instance,  
∫ "

V#
'
" 𝑑𝑥 = 𝑙𝑖𝑚<→' ∫

"
V#
𝑑𝑥 = 𝑙𝑖𝑚<→' Ã−

"
V
Ä |"< =

<
" 𝑙𝑖𝑚<→' Ã1 −

"
<
Ä = 1. 

 
Integration of Multivariable Functions 

 
We can integrate functions of several variables as follows: suppose that 
the domain of a bivariate function is the Cartesian product of two closed 
intervals―that is, a rectangle―say   
𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] = {(𝑥, 𝑦) ∈ ℝ#|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}. 
If 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] , whenever the integrand is 𝑓(𝑥, 𝑦) , we have to 
integrate over two variables, 𝑥 and 𝑦, so that, for each variable, we have 
an integration sign. In order to indicate the variables involved, we have 𝑑𝑥 
and 𝑑𝑦, symbolically: 
∬ 𝑓(𝑥, 𝑦)[ 𝑑𝑥𝑑𝑦 ≡ ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦0

1
;
5 , 

where 𝑓(𝑥, 𝑦) is an integrable function of two real variables. In this case, 
we compute the innermost integral first, and then we work our way 
outward. In particular, we compute the 𝑑𝑥  integral inside first, while 
treating 𝑦  as a constant, and then we integrate the result over 𝑦  as we 
would do with any variable. One interpretation of the double integral of 
𝑓(𝑥, 𝑦) over the rectangle 𝑅  is the volume under the function (surface) 
𝑓(𝑥, 𝑦) and above the 𝑥𝑦-plane.  
For instance, ∫ ∫ 𝑥#𝑦#𝑑𝑥𝑑𝑦"

)
#
)  can be calculated as follows: We focus on 

the inner integral first: ∫ Ú∫ 𝑥#𝑦#𝑑𝑥"
) Ü#

) 𝑑𝑦; and, treating 𝑦 as a constant, 

we integrate normally for 𝑥#𝑑𝑥 , thus obtaining ∫ ÚV
!W#

*
|)"Ü

#
) 𝑑𝑦 =

∫ Ú"
!W#

*
− )!W#

*
Ü#

) 𝑑𝑦 = ∫ ÚW
#

*
Ü#

) 𝑑𝑦 . Now, we are left with an ordinary 

definite integral: ∫ W#

*
#
) 𝑑𝑦 = W!

*∙*
|)# =

W!

D
|)# =

#!

D
− )!

D
= 2

D
. Therefore, 

∫ ∫ 𝑥#𝑦#𝑑𝑥𝑑𝑦"
)

#
) = 2

D
. 

Recall that ordinary integration, such as ∫ 𝑓(𝑥)𝑑𝑥0
1 , gives us the area 

under the curve 𝑦 = 𝑓(𝑥), above the 𝑥-axis, and between the lines 𝑥 = 𝑎 
and 𝑥 = 𝑏 ; that’s when 𝑓  is a positive function (when 𝑓  also takes 
negative values, we get a signed area). Double integration, such as 
∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦0

1
;
5 , gives us the volume under the surface 𝑧 = 𝑓(𝑥, 𝑦), 

above the 𝑥𝑦 -plane, and above the region described by the limits of 
integration (thus, we refer to this volume as the “volume under the 
surface”). The limits of integration in case of  
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U U 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
0

1

;

5
 

indicate that the corresponding region is the rectangle consisting of the 
points (𝑥, 𝑦) such that 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑐 ≤ 𝑦 ≤ 𝑑; and the fact that 𝑑𝑥 is 
written before 𝑑𝑦 means that the function 𝑓(𝑥, 𝑦) is firstly integrated with 
respect to 𝑥 (using the “inner” limits of integration 𝑎 and 𝑏) and then the 
resulting function is integrated with respect to 𝑦 (using the “outer” limits 
of integration 𝑐 and 𝑑). 
Double integrals can be used in order to compute areas, too. Recall that, if 
a region 𝑅 is bounded from below by the curve 𝑦 = ℎ"(𝑥) and bounded 
from above by the curve 𝑦 = ℎ#(𝑥), and if 𝑎 ≤ 𝑥 ≤ 𝑏, then the area of 𝑅 
is given by 
𝐴 = ∫ [ℎ#(𝑥) − ℎ"(𝑥)]

0
1 𝑑𝑥. 

However, we can obtain the same result using double integrals as follows: 

𝐴 = U U 𝑑𝑦𝑑𝑥
m#(V)

m"(V)

0

1
 

(which gives the area of the same region 𝑅 ), since ∫ ∫ 𝑑𝑦𝑑𝑥m#(V)
m"(V)

0
1 =

∫ Ã𝑦|m"(V)
m#(V)Ä0

1 𝑑𝑥 = ∫ [ℎ#(𝑥) − ℎ"(𝑥)]
0
1 𝑑𝑥.  

Therefore, the area 𝐴  of a plane region 𝑅 = {(𝑥, 𝑦) ∈ ℝ#|𝑎 ≤ 𝑥 ≤
𝑏, ℎ"(𝑥) ≤ 𝑦 ≤ ℎ#(𝑥)} is given by 

𝐴 =Y𝑑𝑦𝑑𝑥
[

= U U 𝑑𝑦
m#(V)

m"(V)

0

1
𝑑𝑥 = U [ℎ#(𝑥) − ℎ"(𝑥)]

0

1
𝑑𝑥 

(i.e., 𝑅 lies between two vertical lines and the graphs of two continuous 
functions ℎ"(𝑥) and ℎ#(𝑥)). 
Example 1: We can use double integrals in order to calculate the area 
between the curves 𝑦 = "

#
𝑥# (which is a parabola that opens upward) and 

𝑦 = 3𝑥 − 𝑥#  (which is a parabola that opens downward) as follows: 
Firstly, we have to find where these two curves meet by solving "

#
𝑥# =

3𝑥 − 𝑥# ⇒ *
#
𝑥# = 3𝑥 ⇒ V#

#
= 𝑥 ⇒ 𝑥# − 2𝑥 = 0 ⇒ 𝑥(𝑥 − 2) = 0 ⇒

(𝑥 = 0	𝑜𝑟	𝑥 = 2). Therefore, these two curves meet at 𝑥 = 0 and at 𝑥 =
2 ; and the given region (which is enclosed by these two curves) is 
bounded from above by 𝑦 = 3𝑥 − 𝑥#  and bounded from below by 𝑦 =
"
#
𝑥#. Then the area of this region is given by  

𝐴 = ∫ ∫ 𝑑𝑦𝑑𝑥 = ∫ å𝑦|
W>"#V

#
W>*VEV#æ#

)
W>*VEV#

W>"#V
#

#
) 𝑑𝑥 = ∫ Ã3𝑥 − 𝑥# −#

)

"
#
𝑥#Ä𝑑𝑥 = ∫ Ã3𝑥 − *

#
𝑥#Ä#

) 𝑑𝑥 = Ã*V
#

#
− *

#
V!

*
Ä |)# = 2	𝑠𝑞𝑢𝑎𝑟𝑒	𝑢𝑛𝑖𝑡𝑠. 
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Example 2: Now, we shall use double integrals in order to find the volume 
between the 𝑥𝑦-plane and 𝑧 = 6 − 3𝑥 − 2𝑦 (i.e., 𝑧 is the height function) 
above the unit square 𝑅 = {(𝑥, 𝑦)|0 ≤ x ≤ 1,0 ≤ y ≤ 1} : 𝑉 =
∫ ∫ (6 − 3𝑥 − 2𝑦)"

)
"
) 𝑑𝑦𝑑𝑥 = ∫ [6𝑦 − 3𝑥𝑦 − 𝑦#]"

) |)"𝑑𝑥 =
R
#
	𝑐𝑢𝑏𝑖𝑐	𝑢𝑛𝑖𝑡𝑠. 

 
In summary, it is important to understand and keep in mind the following: 

• ∫ 𝑑𝑥0
1  represents length, specifically, 𝑏 − 𝑎  (one could say that 

∫ 𝑑𝑥0
1  is the area under the curve 𝑓(𝑥) = 1 over the region of 

integration [𝑎, 𝑏]).  
• ∫ 𝑓(𝑥)0

1 𝑑𝑥  represents area, specifically, it is the area of a 
curvilinear trapezoid bounded by the straight lines 𝑦 = 0, 𝑥 = 𝑎, 
and 𝑥 = 𝑏 and by the graph of the function 𝑦 = 𝑓(𝑥), assuming 
that 𝑓(𝑥) is continuous and non-negative on the interval [𝑎, 𝑏]. 

• ∫ ∫ 𝑑𝑥𝑑𝑦0
1

;
5  represents area associated with the region of 

integration [𝑎, 𝑏] × [𝑐, 𝑑]. 
• ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦0

1
;
5  represents the (three-dimensional) volume 

under the surface 𝑧 = 𝑓(𝑥, 𝑦), above the 𝑥𝑦-plane, and above the 
region described by the limits of integration, in the three-
dimensional space (we assume that 𝑓(𝑥, 𝑦)  is continuous and 
non-negative on the region of integration). Remark: For a 
function 𝑓(𝑥, 𝑦) that is continuous over a region of the type 𝑅 =
{(𝑥, 𝑦) ∈ ℝ#|𝑎 ≤ 𝑥 ≤ 𝑏, ℎ"(𝑥) ≤ 𝑦 ≤ ℎ#(𝑥)} , we have 
∬ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥[ = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦m#(V)

m"(V)
0
1 𝑑𝑥. For a function 𝑓(𝑥, 𝑦) 

that is continuous over a region of the type 𝑅 = {(𝑥, 𝑦) ∈ ℝ#|𝑐 ≤
𝑦 ≤ 𝑑, ℎ"(𝑦) ≤ 𝑥 ≤ ℎ#(𝑦)} , we have ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =[

∫ ∫ 𝑓(𝑥, 𝑦)m#(W)
m"(W)

;
5 𝑑𝑥𝑑𝑦. 

• ∫ ∫ ∫ 𝑑𝑥𝑑𝑦𝑑𝑧0
1

;
5

4
<  represents (three-dimensional) volume 

associated with the region of integration [𝑎, 𝑏] × [𝑐, 𝑑] × [𝑘, 𝑙], in 
the three dimensions (𝑥, 𝑦, 𝑧). For instance, the volume of the 
tetrahedron bounded by the planes 𝑥 = 0, 𝑦 = 0, and 𝑧 = 0, and 
by the equation 𝑥 + 𝑦 + 𝑧 = 1  can be calculated using triple 
integrals as follows: In this case, the limits of integration can be 
determined as follows: (i) limits for 𝑧: 𝑥 + 𝑦 + 𝑧 = 1 ⇒ 𝑧 = 1 −
𝑥 − 𝑦, and, therefore, 𝑧 varies from 0 to 1 − 𝑥 − 𝑦; (ii) limits for 
𝑦 : 𝑥 + 𝑦 = 1 ⇒ 𝑦 = 1 − 𝑥 , and, therefore, 𝑦  varies from 0  to 
1 − 𝑥; (iii) limits for 𝑥: 𝑥 varies from 0 to 1. Hence, the required 
volume is given by  
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𝑉 = UUU 𝑑𝑧𝑑𝑦𝑑𝑥
[

= U U U 𝑑𝑧𝑑𝑦𝑑𝑥
"EVEW

)

"EV

)

"

)

= U U �𝑧|)
"EVEW�

"EV

)

"

)
𝑑𝑦𝑑𝑥

= U U (1 − 𝑥 − 𝑦)
"EV

)

"

)
𝑑𝑦𝑑𝑥

= U M(1 − 𝑥)(𝑦|)"EV) − 1
𝑦#

2 |)
"EV2N

"

)
𝑑𝑥

= U M(1 − 𝑥)# −
(1 − 𝑥)#

2 N
"

)
𝑑𝑥

= U
(1 − 𝑥)#

2 𝑑𝑥 =
1
6

"

)
 

(in cubic units). 
• ∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧0

1
;
5

4
<  represents the four-dimensional 

hypervolume under the hypersurface 𝑡 = 𝑓(𝑥, 𝑦, 𝑧) , above the 
𝑥𝑦𝑧 -space, and above the region described by the limits of 
integration, in the four dimensions (𝑥, 𝑦, 𝑧, 𝑡)  (we assume that 
𝑓(𝑥, 𝑦, 𝑧)  is continuous and non-negative on the region of 
integration). For instance, in order to understand the physical 
significance of this triple integral, consider the following: 
∫∫ ∫ 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧[  is the total mass of a region 𝑅 in space, 
where 𝜌 is the density (i.e., mass per unit volume), which may 
vary from one point to another (𝑅 is the region occupied by the 
solid under consideration).  

Of course, the area, the volume, and the hypervolume are usually taken to 
be signed, so that parts below the axis, or the plane, or the space, 
respectively, are negative, and those above are positive (however, 
integrating the absolute value of the function gives the unsigned 
corresponding quantity). 
The order in which we do the integrations does not matter, provided that 
we keep track of the limits of integration of each variable. For instance, in 
the double integral ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦0

1
;
5 , 𝑑𝑥  is associated with the 𝑥 

integrand, which runs from 𝑎  to 𝑏 , while 𝑑𝑦  is associated with the 𝑦 
integrand, which runs from 𝑐 to 𝑑, and, therefore, 

U U 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = U U 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
;

5

0

1

0

1

;

5
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(meaning that the limits of integration of each integrand remain the same). 
This result is known as Fubini’s Theorem: given that a definite double 
integral can be thought of as a process of adding up all the infinitesimal 
elements of a Cartesian area 𝑑𝑥𝑑𝑦  (imagine little rectangles) over the 
required region, thus obtaining the area of that region, the equality 
between the aforementioned two iterated integrals (i.e., Fubini’s Theorem) 
can be thought of as an infinite version of the idea that addition is 
commutative and associative. By analogy, Fubini’s Theorem applies to 
triple integrals, etc.  
Increasing the number of integrals in the context of multiple integration is 
the same as increasing the number of dimensions, so that a single integral 
gives a two-dimensional area, a double integral gives a three-dimensional 
volume, a triple-integral gives a four-dimensional hypervolume, etc. In 
general, the multiple integral of a function 𝑓(𝑥", … , 𝑥%) in 𝑛 variables over 
a domain 𝑈 is represented by 𝑛 nested integral signs in the reverse order of 
computation (in the sense that the leftmost integral is computed last), 
followed by the function and the integrand arguments in such an order that 
indicates that the integral with respect to the rightmost argument is 
computed last; and the domain of integration is either represented 
symbolically for every argument over each integral sign or it is indicated 
by a characteristic letter (variable) at the rightmost integral sign: 

U…U𝑓(𝑥", … , 𝑥%)𝑑
c

𝑥"…𝑑𝑥% 

(𝑥", … , 𝑥% ∈ 𝑈). We take for granted the obvious generalizations of the 
theorems of integration to two or more variables. 
 
Line integrals: Let 𝐶  be a continuous curve. Then 𝐶  is said to be 
“piecewise smooth” if it is a finite union of smooth curves. Curves are said 
to be “smooth” if they have no corners, or cusps, associated with them. In 
general, the “smoothness” of a function is a property measured by the 
number of continuous derivatives that a function has over its domain (e.g., 
a function is said to be of “differentiability class” 𝐶<  if it has a 𝑘 th 
derivative that is continuous over its domain, and then it is also said to be 
of smoothness at least 𝑘). 
A “line integral” (or “path integral,” or “curve integral”) helps us to 
calculate the area of a fence that lies above a piecewise smooth curve 𝐶 
and under the graph of a continuous non-negative function 𝑓(𝑥, 𝑦). In 
general, by a “line integral,” we mean an integral where the function to be 
integrated is evaluated along a curve.  
For instance, suppose that it has snowed, and there are snowbanks; at some 
spots, the snow is higher, and, at some other spots, the snow is less high. 
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You want to walk out into the snow shoveling as you move. The question 
is the following: how much snow do you have to actually shovel when you 
go out and walk? The answer to this question depends on the path you take 
(in particular, it depends on the length of the route you take and on the 
concentration of snow at various points along the route). The concept of a 
line integral captures this notion of snow accumulation along a path 
(simply put, we have some path and a function that gives us the “height” 
of snow above every point along that curve).  
When the function to be integrated is a scalar field, the value of the line 
integral is the sum of values of the field at all points on the curve, 
weighted by some scalar function on the curve, commonly arc length. 
Thus, line integrals generalize definite integrals.  
The line integral with respect to the arc length of a continuous function 
𝑓(𝑥, 𝑦) along a piecewise smooth curve whose parametric expression is 
𝑐(𝑡) = �𝑥(𝑡), 𝑦(𝑡)�, where 𝑎 ≤ 𝑡 ≤ 𝑏, is defined to be 

U𝑓(𝑥, 𝑦)𝑑𝑠
5

= U 𝑓�𝑥(𝑡), 𝑦(𝑡)�
0

1
$å
𝑑𝑥
𝑑𝑡æ

#

+ å
𝑑𝑦
𝑑𝑡æ

#

𝑑𝑡 

where 𝑑𝑠 represents an element of arc length along the curve (notice that, 
if we set 𝑓(𝑥, 𝑦) = 1, then we obtain the formula for the calculation of the 
length of the curve 𝑐). Line integrals do not depend on the parametrization, 
as long as the curve is traversed once (counter-clockwise).  
For instance, in order to compute the line integral ∫ 𝑥𝑦#𝑑𝑠5  where 𝑐 is the 
right half of a circle with radius 2 , that is, of the circle 𝑥# + 𝑦# = 4 
(traversed once counter-clockwise), we work as follows: Firstly, we 
parametrize 𝑐, and, thus, we set  
𝑐(𝑡) = (2𝑐𝑜𝑠𝑡, 2𝑠𝑖𝑛𝑡), that is, 
𝑥 = 2𝑐𝑜𝑠𝑡 and 𝑦 = 𝑠𝑖𝑛𝑡,  
so that 

𝑑𝑠 = 0Ã;V
;Y
Ä
#
+ Ã;W

;Y
Ä
#
𝑑𝑡 = Ù(−2𝑠𝑖𝑛𝑡)# + (2𝑐𝑜𝑠𝑡)#𝑑𝑡 = 2𝑑𝑡. 

Since 𝑡 here represents the angle, and we have the right-hand side of the 
circle, our 𝑡 will go from −𝜋 2⁄  to +𝜋 2⁄ , that is, −𝜋 2 ≤ 𝑡 ≤⁄ 𝜋 2⁄ . 
Now, we are ready to make the corresponding substitutions in the line 
integral: 

U𝑥𝑦#𝑑𝑠
5

= U 2𝑐𝑜𝑠𝑡(2𝑠𝑖𝑛𝑡)#2𝑑𝑡
I
#

EI#

= 8U 𝑠𝑖𝑛#
I
#

EI#

𝑡𝑐𝑜𝑠𝑡𝑑𝑡 

which can be calculated by setting 𝑢 = 𝑠𝑖𝑛𝑡  and 𝑑𝑢 = 𝑐𝑜𝑠𝑡𝑑𝑡 , thus 
obtaining 
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8∫ 𝑢#𝑑𝑢 = 8 q
!

*

I
#
EI#

|
EI#

I
# = 2

*
𝑠𝑖𝑛*𝑡|

EI#

I
# = 2

*
Ú𝑠𝑖𝑛* Ão

#
Ä − 𝑠𝑖𝑛* Ã− o

#
ÄÜ =

2
*
Ú𝑠𝑖𝑛* Ão

#
Ä + 𝑠𝑖𝑛* Ão

#
ÄÜ = 2

*
(2) = "G

*
. 

By analogy, the line integral with respect to the arc length of a continuous 
function 𝑓(𝑥, 𝑦, 𝑧)  along a piecewise smooth curve whose parametric 
expression is 𝑐(𝑡) = �𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)�, where 𝑎 ≤ 𝑡 ≤ 𝑏, is defined to be 

U𝑓(𝑥, 𝑦, 𝑧)𝑑𝑠
5

= U 𝑓�𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)�
0

1
$å
𝑑𝑥
𝑑𝑡æ

#

+ å
𝑑𝑦
𝑑𝑡æ

#

+ å
𝑑𝑧
𝑑𝑡æ

#

𝑑𝑡 

etc. 
 
Surface integrals: Recall that, whereas a curve in ℝ*  is a set of points 
having an one-dimensional character, a surface is a set of points such that 
each point has two degrees of freedom. Moreover, a surface 𝑆  can be 
represented in the following ways: 
i. Explicit representation: 𝑆 is the set of points {(𝑥, 𝑦, 𝑧)} such that 
𝑧 = 𝑓(𝑥, 𝑦) for a smooth function 𝑓 with domain 𝑈VW in ℝ#  
or 𝑦 = 𝑔(𝑥, 𝑧) for a smooth function 𝑔 with domain 𝑉V` in ℝ# 
or 𝑥 = ℎ(𝑦, 𝑧) for a smooth function ℎ with domain 𝑊W` in ℝ#. 
ii. Implicit representation: 𝑆  is the set of points 
{(𝑥, 𝑦, 𝑧)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝐹(𝑥, 𝑦, 𝑧) = 0}  where 𝐹  is a smooth function on a 
domain 𝐷 in ℝ*. 
iii. Parametric representation: 𝑆 is the set of points {(𝑥, 𝑦, 𝑧)} such that 

𝑥 = 𝑥(𝑠, 𝑡) 
𝑦 = 𝑦(𝑠, 𝑡) 
𝑧 = 𝑧(𝑠, 𝑡) 

where 𝑎 ≤ 𝑠 ≤ 𝑏 , 𝑐 ≤ 𝑡 ≤ 𝑑 , and the terms 𝑥 , 𝑦 , and 𝑧  are smooth 
functions on the rectangle [𝑎, 𝑏] × [𝑐, 𝑑].  
Surface integrals generalize double integrals to integrating over a surface 
that lies in an 𝑛-dimensional space. The double integral of a function of 
two real variables over a region 𝐷  in ℝ#  is written as ∬ 𝑓(𝑥, 𝑦)� 𝑑𝐴 or 
∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦� , and these integrals can be evaluated as iterated single 
integrals, but we need a generalization similar to how line integrals 
generalize definite integrals. This need is satisfied by the concept of a 
surface integral. Whereas double integrals work when the region of 
integration is on a plane and, therefore, flat, surface integrals also work 
when the region of integration is not flat and, therefore, does not sit on a 
plane (in case of surface integrals, the region over which we integrate is an 
arbitrary smooth surface). 
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Recall that the concept of a line integral means that we integrate over a 
curve that has a range of movement in, for example, two dimensions, and, 
thus, our input curve being in two dimensions (i.e., parametrically defined 
by �𝑥(𝑡), 𝑦(𝑡)�), we compute the surface area of something that looks like 
a fence or a curtain as it moves through three dimensions. However, in 
case of a surface integral, our surface is already a three-dimensional shape, 
and, thus, if we want to represent the function evaluated at some point on 
this shape, which exists in three dimensions, we require a fourth 
dimension in order to represent the corresponding “height.” The “surface 
integral” of a scalar field (in this case, a function of three real variables) is 
written as follows: 

Y𝐹(𝑥, 𝑦, 𝑧)
a

𝑑𝑆 

where 𝑆 is the surface over which the integral is evaluated, and 𝑑𝑆 is an 
element of 𝑆. This surface integral (i.e., the integral of a smooth scalar 
field 𝐹(𝑥, 𝑦, 𝑧) over a smooth surface 𝑆) can be calculated as follows:  

Y𝐹(𝑥, 𝑦, 𝑧)
a

𝑑𝑆 =Y 𝐹�𝑥, 𝑦, 𝑓(𝑥, 𝑦)�
c59

$å
𝜕𝑓
𝜕𝑥æ

#

+ å
𝜕𝑓
𝜕𝑦æ

#

+ 1𝑑𝑥𝑑𝑦 

in case the surface 𝑆 is given by 𝑧 = 𝑓(𝑥, 𝑦); 

Y𝐹(𝑥, 𝑦, 𝑧)
a

𝑑𝑆 =Y 𝐹(𝑥, 𝑔(𝑥, 𝑧), 𝑧)
h5J

$å
𝜕𝑔
𝜕𝑥æ

#

+ å
𝜕𝑔
𝜕𝑧æ

#

+ 1𝑑𝑥𝑑𝑧 

in case the surface 𝑆 is given by 𝑦 = 𝑔(𝑥, 𝑧);  

Y𝐹(𝑥, 𝑦, 𝑧)
a

𝑑𝑆 =Y 𝐹(ℎ(𝑦, 𝑧), 𝑦, 𝑧)
�9J

$å
𝜕ℎ
𝜕𝑦æ

#

+ å
𝜕ℎ
𝜕𝑧æ

#

+ 1𝑑𝑦𝑑𝑧 

in case the surface 𝑆  is given by 𝑥 = ℎ(𝑦, 𝑧) . Notice that, if we set 
𝐹(𝑥, 𝑦, 𝑧) = 1, then the surface integral yields the exact surface area of 𝑆, 

that is: ∫ ∫ 0Ã�]
�V
Ä
#
+ Ã�]

�W
Ä
#
+ 1𝑑𝑥𝑑𝑦c59

 is the surface area of the surface 

𝑧 = 𝑓(𝑥, 𝑦)  over the region 𝑈VW , ∫∫ 0Ã�:
�V
Ä
#
+ Ã�:

�`
Ä
#
+ 1𝑑𝑥𝑑𝑧h5J

 is the 
surface area of the surface 𝑦 = 𝑔(𝑥, 𝑧)  over the region 𝑉V` , and 

∫∫ 0Ã�m
�W
Ä
#
+ Ã�m

�`
Ä
#
+ 1𝑑𝑦𝑑𝑧�9J

 is the surface area of the surface 𝑥 =
ℎ(𝑦, 𝑧) over the region 𝑊W`. 
 
Numerical approximations of multiple integrals: Frequently, when we 
have to integrate multivariable functions, we cannot calculate multiple 
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integrals exactly, and, therefore, we approximate their values by applying 
numerical methods, which are based on the concept of the average value 
of a function. By analogy with single variable calculus, the “average 
value” of a bivariate function 𝑓(𝑥, 𝑦) over a region 𝑅 is  

𝑓̅ =
1

𝐴(𝑅)UU𝑓
(𝑥, 𝑦)

[
𝑑𝐴 

where 𝐴(𝑅) is the area of the region 𝑅; and, thus,  

UU𝑓(𝑥, 𝑦)
[

𝑑𝐴 = 𝑓𝐴̅(𝑅) 

where 𝑓 ̅over the region 𝑅 represents the sum of all the values of 𝑓(𝑥, 𝑦) 
divided by the number of points in 𝑅, and, because there are infinitely 
many points in every region, we need an approximation method that will 
be based on determining a very large number 𝑁 of random points in the 
region 𝑅 (which can be generated by a computer), calculating the average 
value of 𝑓 for those points, and using that average value as the value of 𝑓̅ 
in the above formula. This is the so-called Monte Carlo method. Hence, 
we obtain the following approximation formula: 

UU𝑓(𝑥, 𝑦)
[

𝑑𝐴 ≈ 𝐴(𝑅)𝑓̅ ± 𝐴(𝑅)$
𝑓̅# − �𝑓̅�#

𝑁  

where  

𝑓̅ =
∑ 𝑓(𝑥= , 𝑦=)g
=>"

𝑁  
and 

𝑓̅# =
∑ �𝑓(𝑥= , 𝑦=)�

#g
=>"

𝑁  
(the sums are taken over 𝑁 random points (𝑥", 𝑦"), … , (𝑥g, 𝑦g), and the ± 
“error term” in the above approximation formula represents a single 
standard deviation from the expected value of the integral).  
Similarly, the average value of a trivariate function 𝑓(𝑥, 𝑦, 𝑧) over a solid 
𝑆 is  

𝑓̅ =
1

𝑉(𝑆)UUU𝑓
(𝑥, 𝑦, 𝑧)𝑑𝑉

a
 

where 𝑑𝑉 is the volume of the solid 𝑆; etc.  
 

Differentiation and Integration of Vector-Valued 
Functions 
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When a function takes a real number and sends it to a vector, then it is said 
to be a vector-valued function. In the real plane, or in the 𝑥𝑦-plane, the 
general form of a vector-valued function is the following: 
𝑟(𝑡) = 𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥;̂                                                                               (1)  (1) 
and, in the real 3-dimensional space, or in the 𝑥𝑦𝑧-space, the general form 
of a vector-valued function is the following: 
𝑟(𝑡) = 𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥̂+ ℎ(𝑡)𝑘\;                                                                 (2)  (2) 
where the component functions 𝑓, 𝑔, and ℎ are real-valued functions of the 
parameter 𝑡, and 𝚤̂, 𝚥̂, and 𝑘\  are the corresponding unit vectors on the 𝑥-
axis, the 𝑦-axis, and the 𝑧-axis, respectively. The standard unit vectors in 
the direction of the 𝑥, the 𝑦, and the 𝑧 axes of a 3-dimensional Cartesian 
coordinate system are 

𝚤̂ = é
1
0
0
ë, 𝚥̂ = é

0
1
0
ë, and 𝑘\ = é

0
0
1
ë. 

The “limit” of a vector-valued function 𝑟(𝑡)  is 𝐿3⃗  as 𝑡  tends to 𝑎 , 
symbolically: 

𝑙𝑖𝑚Y→1𝑟(𝑡) = 𝐿3⃗  
if and only if 

𝑙𝑖𝑚Y→1]𝑟(𝑡) − 𝐿3⃗ ] = 0. 
Therefore, (1) implies that 
𝑙𝑖𝑚Y→1𝑟(𝑡) = [𝑙𝑖𝑚Y→1𝑓(𝑡)]𝚤̂+ [𝑙𝑖𝑚Y→1𝑔(𝑡)]𝚥̂, 
and (2) implies that 
𝑙𝑖𝑚Y→1𝑟(𝑡) = [𝑙𝑖𝑚Y→1𝑓(𝑡)]𝚤̂+ [𝑙𝑖𝑚Y→1𝑔(𝑡)]𝚥̂ + [𝑙𝑖𝑚Y→1ℎ(𝑡)]𝑘\ , 
provided that the limits of the component functions 𝑓, 𝑔, and ℎ as 𝑡 → 𝑎 
exist. Similarly, we can define the limit of a vector-valued function of 𝑛 
component functions for 𝑛 > 3.  
A vector-valued function 𝑟⃗(𝑡), where 𝑡 ∈ [𝑎, 𝑏], is said to be “continuous” 
at a point 𝑡) ∈ [𝑎, 𝑏] if and only if 𝑙𝑖𝑚Y→Y6𝑟(𝑡) = 𝑟(𝑡)); and 𝑟(𝑡) is said to 
be continuous on [𝑎, 𝑏] if and only if it is continuous at every point of 
[𝑎, 𝑏].  
The derivative of a vector-valued function 𝑟(𝑡) , where 𝑡 ∈ [𝑎, 𝑏] , is 
defined as follows: 

𝑟@333⃗ (𝑡) ≡
𝑑𝑟⃗(𝑡)
𝑑𝑡 = 𝑙𝑖𝑚bY→)

𝑟(𝑡 + 𝛥𝑡) − 𝑟(𝑡)
𝛥𝑡  

provided that the limit exists. If 𝑟@333⃗ (𝑡)  exists, then 𝑟(𝑡)  is said to be 
differentiable at 𝑡 . If 𝑟@333⃗ (𝑡)  exists ∀𝑡 ∈ (𝑎, 𝑏) , then 𝑟⃗(𝑡)  is said to be 
differentiable on the interval (𝑎, 𝑏). In order for 𝑟⃗(𝑡) to be differentiable 
on [𝑎, 𝑏] , 𝑟⃗(𝑡)  must be differentiable on the interval (𝑎, 𝑏) , and the 
following two limits must exist as well:    
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𝑟@333⃗ (𝑎) = 𝑙𝑖𝑚bY→)0
J⃗(1BbY)EJ⃗(1)

bY
 and 

𝑟@333⃗ (𝑏) = 𝑙𝑖𝑚bY→)2
J⃗(0BbY)EJ⃗(0)

bY
. 

Consequently, (1) implies that 
𝑟@333⃗ (𝑡) = 𝑓@(𝑡)𝚤̂+ 𝑔@(𝑡)𝚥,̂  
and (2) implies that 
𝑟@333⃗ (𝑡) = 𝑓@(𝑡)𝚤̂+ 𝑔@(𝑡)𝚥̂+ ℎ@(𝑡)𝑘\, 
where 𝚤,̂ 𝚥,̂ and 𝑘\  are the unit vectors for the 𝑥-axis, the 𝑦-axis, and the 𝑧-
axis, respectively.  
The properties of the derivative of a vector-valued function are analogous 
to those of the derivative of a scalar-valued function. 
If 𝐶 is a smooth curve represented by the vector-valued function 𝑟(𝑡) on 
some interval 𝐼, then the “unit tangent vector” 𝑇3⃗ (t) at 𝑡 can be found by 
taking the derivative of 𝑟⃗(𝑡) and then normalizing it (i.e., we divide it by 
its magnitude in order to become a unit vector); symbolically: 

𝑇3⃗ (𝑡) =
𝑟@333⃗ (𝑡)
]𝑟@333⃗ (𝑡)]

 

(i.e., the normalized derivative; and, in physical terms, this is the 
normalized velocity vector). Notice that the smoothness of the curve 𝐶 
guarantees that 𝑟@333⃗ (𝑡) ≠ 03⃗ .  
In general, the equation of the tangent line to a curve 𝐶 at the point 𝑟(𝑡)) 
is given by the formula 
𝑅3⃗ = 𝑟(𝑡)) + 𝑘𝑟@333⃗ (𝑡)), where 𝑘 ∈ ℝ. 
The angle of intersection between two curves is the angle of intersection 
between their tangent vectors. Hence, given two curves 𝐶"  and 𝐶# 
represented by the vector-valued functions 𝑟(𝑢) and 𝑠(𝑣), respectively, 
the angle of intersection between them at the point that corresponds to the 
parameter values 𝑢) and 𝑣) is given by the formula  

𝑐𝑜𝑠𝜔 =
𝑟@333⃗ (𝑢)) ∙ 𝑠@333⃗ (𝑣))
Ö𝑟@333⃗ (𝑢))ÖÖ𝑠@333⃗ (𝑣))Ö

 

(𝜔 is the required angle). 
A vector-valued function 𝑟⃗(𝑡) is perpendicular to its derivative 𝑟@333⃗ (𝑡) if 
and only if the magnitude of 𝑟⃗(𝑡) is constant; symbolically: 

‖𝑟(𝑡)‖ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
(intuitively, the magnitude of a vector in space with tail at the origin and 
head moving changes if and only if the direction of its motion is not 
orthogonal to itself). Indeed, notice that a vector of constant magnitude is 
orthogonal to its derivative because 𝑟(𝑡) ∙ 𝑟(𝑡) = ‖𝑟(𝑡)‖# = 𝑐  for some 
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constant vector 𝑐  independent of 𝑡 , and, therefore, differentiating with 
respect to 𝑡, we obtain 2𝑟(𝑡) ∙ 𝑟@333⃗ (𝑡) = 03⃗ . 
A vector-valued function 𝑟(𝑡) ≠ 03⃗   has a “constant direction” if and only 
if the cross product  

𝑟(𝑡) ×
𝑑𝑟(𝑡)
𝑑𝑡 = 03⃗  

(i.e., if and only if 𝑟(𝑡) is parallel to its derivative). We can prove this 
theorem as follows: Let 𝑟̂ be the unit vector in the direction of vector 𝑟. 
Then, by the definition of a unit vector, 𝑟⃗ = ‖𝑟⃗‖𝑟̂, where 𝑟 has a constant 
direction, and so 𝑟̂ has also a constant direction. Thus,  

𝑟⃗ = ‖𝑟⃗‖𝑟̂ ⇒
𝑑𝑟
𝑑𝑡 =

‖𝑟‖
𝑑𝑟̂
𝑑𝑡 +

𝑑‖𝑟‖
𝑑𝑡 𝑟̂ ⇒ 𝑟⃗ ×

𝑑𝑟
𝑑𝑡 = 𝑟 × 1‖𝑟‖

𝑑𝑟̂
𝑑𝑡 +

𝑑‖𝑟‖
𝑑𝑡 𝑟̂2

= ‖𝑟‖𝑟̂ × 1‖𝑟‖
𝑑𝑟̂
𝑑𝑡 +

𝑑‖𝑟‖
𝑑𝑡 𝑟̂2

= ‖𝑟‖#𝑟̂ ×
𝑑𝑟̂
𝑑𝑡 +

‖𝑟⃗‖
𝑑‖𝑟‖
𝑑𝑡 𝑟̂ × 𝑟̂ = ‖𝑟⃗‖#𝑟̂ ×

𝑑𝑟̂
𝑑𝑡 + 0

3⃗  

since 𝑟̂ × 𝑟̂ = 03⃗ . This means that 

𝑟 ×
𝑑𝑟⃗
𝑑𝑡 =

‖𝑟⃗‖#𝑟̂ ×
𝑑𝑟̂
𝑑𝑡  

and, since 𝑟̂ also has a constant direction,  
𝑑𝑟̂
𝑑𝑡 = 03⃗  

we obtain  

𝑟 ×
𝑑𝑟
𝑑𝑡 = 03⃗  

as required (therefore, the condition is necessary). Conversely, suppose:  

𝑟(𝑡) ×
𝑑𝑟⃗(𝑡)
𝑑𝑡 = 03⃗ ⇒ ‖𝑟‖𝑟̂ ×

𝑑
𝑑𝑡
(‖𝑟⃗‖𝑟̂) = 03⃗ ⇒ ‖𝑟‖𝑟̂ × ‖𝑟‖

𝑑𝑟̂
𝑑𝑡 = 03⃗

⇒ ‖𝑟‖# å𝑟̂ ×
𝑑𝑟̂
𝑑𝑡æ = 03⃗ ⇒ 𝑟̂ ×

𝑑𝑟̂
𝑑𝑡 = 03⃗  

since ‖𝑟‖# ≠ 03⃗ . Moreover, since 𝑟̂ is a unit vector of constant length,  

𝑟̂ ∙
𝑑𝑟̂
𝑑𝑡 = 03⃗  

(i.e., this dot product is equal to zero, as we explained in the previous 
theorem). Hence, we have:  

𝑟̂ ×
𝑑𝑟̂
𝑑𝑡 = 03⃗ = 𝑟̂ ∙

𝑑𝑟̂
𝑑𝑡 ⇒

𝑑𝑟̂
𝑑𝑡 = 03⃗  

which implies that the unit vector 𝑟̂ is of constant direction, and, therefore, 
the vector 𝑟⃗ (where 𝑟 = ‖𝑟‖𝑟̂) is also of constant direction, as required 
(therefore, the condition is sufficient); quod erat demonstrandum.  
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Recall that 
𝑇3⃗ (𝑡) ∙ 𝑇3⃗ (𝑡) = ]𝑇3⃗ (𝑡)]

#
 

(here 𝑇3⃗ (𝑡) is a unit vector, namely, the unit tangent vector, as above, but 
this formula holds in general), and, since 𝑇3⃗ (𝑡)  is a unit vector, its 
magnitude, namely, ]𝑇3⃗ (𝑡)], is equal to 1, and, therefore, ]𝑇3⃗ (𝑡)]

#
= 1. 

Therefore, 𝑇3⃗ (𝑡) ∙ 𝑇3⃗ (𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and then, as I have already proved, 
𝑇3⃗ (𝑡) ∙ 𝑇@333⃗ (𝑡) = 03⃗ . As I have already mentioned, when the dot product of 
any two vectors is equal to zero, these vectors are perpendicular (or 
orthogonal) to each other (Chapter 7). In this case, 𝑇3⃗ (𝑡) ⊥ 𝑇@333⃗ (𝑡) (where 
the symbol ⊥ means “perpendicular”). If we normalize this 𝑇@333⃗ (𝑡), then we 
obtain the “principal unit normal vector”: 

𝑁33⃗ (𝑡) =
𝑇@333⃗ (𝑡)
]𝑇@333⃗ (𝑡)]

 

(where 𝑇3⃗ (t) is the unit tangent vector 𝑇3⃗ (t) at 𝑡  on the smooth curve 𝐶 
represented by the vector-valued function 𝑟(𝑡) on some interval 𝐼). Notice 
that the principal unit normal vector points in the direction in which the 
curve is curving, as shown, for instance, in Figure 8-21. Once you know a 
tangent vector (𝑎, 𝑏), there are two obvious vectors that are normal (i.e., 
perpendicular) to (𝑎, 𝑏), namely, (𝑏, −𝑎) and (−𝑏, 𝑎); so that, if you pick 
the one that points in the direction in which the curve is curving and you 
divide it by its magnitude (norm), then you have the principal unit normal 
vector.  
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Figure 8-21: The unit tangent vector and the principal unit normal vector (source: 
Wikimedia Commons: Author: https://math.libretexts.org; 
https://commons.wikimedia.org/wiki/File:Curvatura_PQR.png). 
 

 
 
Let 𝑓 , 𝑔 , and ℎ  be integrable real-valued functions on [𝑎, 𝑏] . Then (1) 
implies that the indefinite integral of a vector-valued function 𝑟⃗(𝑡) =
𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥 ̂is 
∫[𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥̂] 𝑑𝑡 = [∫𝑓(𝑡)𝑑𝑡]𝚤̂+ [∫𝑔(𝑡)𝑑𝑡]𝚥̂, 
and the definite integral of a vector-valued function 𝑟(𝑡) = 𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥̂ 
is 
∫ [𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥̂]𝑑𝑡 = Ú∫ 𝑓(𝑡)𝑑𝑡0

1 Ü0
1 𝚤̂+ Ú∫ 𝑔(𝑡)𝑑𝑡0

1 Ü 𝚥.̂ 
By analogy, (2) implies that 
∫^𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥̂+ ℎ(𝑡)𝑘\_𝑑𝑡 = [∫ 𝑓(𝑡)𝑑𝑡]𝚤̂+ [∫𝑔(𝑡)𝑑𝑡]𝚥̂+ [∫ℎ(𝑡)𝑑𝑡]𝑘\, 
and 
∫ ^𝑓(𝑡)𝚤̂+ 𝑔(𝑡)𝚥̂ + ℎ(𝑡)𝑘\_𝑑𝑡 = Ú∫ 𝑓(𝑡)𝑑𝑡0

1 Ü0
1 𝚤̂+ Ú∫ 𝑔(𝑡)𝑑𝑡0

1 Ü 𝚥̂+

Ú∫ ℎ(𝑡)𝑑𝑡0
1 Ü 𝑘\. 

The properties of the integral of a vector-valued function are analogous to 
those of the integral of a scalar-valued function. 
 
Differential operators and their applications in physics: Let us consider a 
function 𝑓(𝑥, 𝑦);	𝑓 depends on both 𝑥 and 𝑦, and its graph is a surface in 
space. Then, in order to interpret and compute the rate of change of 
𝑓(𝑥, 𝑦) , we find the rate of change of 𝑓(𝑥, 𝑦)  in a specific direction 



 
 

 

359 

independently. If we want the rate of change in the 𝑥-direction, then we 
differentiate 	𝑓(𝑥, 𝑦) with respect to 𝑥  while treating 𝑦  as a constant. In 
other words, we compute the partial derivative �](V,W)

�V
. Similarly, if we 

want the rate of change in the 𝑦-direction, then we differentiate 𝑓(𝑥, 𝑦) 
with respect to 𝑦  while treating 𝑥  as a constant. In other words, we 
compute the partial derivative �](V,W)

�W
. The “gradient” of 𝑓(𝑥, 𝑦) is denoted 

by ∇𝑓, and it is a concept that combines the aforementioned two partial 
derivatives; specifically, the gradient of 𝑓(𝑥, 𝑦) is a vector consisting of 
both partial derivatives of 𝑓 in their associated positions, symbolically: 

𝑔𝑟𝑎𝑑𝑓 ≡ ∇𝑓 =
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 𝚤̂+

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 𝚥̂ 

(where 𝚤 ̂is the unit vector in the 𝑥-direction, and 𝚥̂ is the unit vector in the 
𝑦 -direction). By analogy, we can define the gradient of a function 
𝑓(𝑥, 𝑦, 𝑧), etc. If you draw a little disc on the surface at the point you want 
to find the gradient, then the axis of the disc is normal (i.e., perpendicular) 
to the plane of the disc, and, therefore, it is also normal to the 
corresponding surface; and, in fact, the axis of the disc is said to be the 
gradient vector of the corresponding surface at the given point. Therefore, 
the “outward unit normal vector” to a given surface defined by a function 
𝑓 at a given point 𝑃 (on this surface) is  

𝛻𝑓(𝑃)
‖𝛻𝑓(𝑃)‖ 

(i.e., we normalize the gradient at 𝑃 in order to turn it into a unit vector). 
In general, a normal vector is a vector that points directly away from the 
corresponding plane, and, thus, if we know the normal vector, we know 
the orientation of the corresponding plane. If we have a normal vector 𝑛3⃗  
emanating from a fixed point 𝑃)(𝑥), 𝑦), 𝑧)) on a plane, then there exists a 
vector that emanates from the same point 𝑃)(𝑥), 𝑦), 𝑧)) and terminates at 
another point 𝑃(𝑥, 𝑦, 𝑧) lying in this plane. Obviously, the normal vector 𝑛3⃗  
is orthogonal to the vector 𝑃)𝑃3333333⃗  (for any terminal point 𝑃(𝑥, 𝑦, 𝑧), since 𝑛3⃗  
is orthogonal to every vector that lives in this plane), and, therefore, their 
dot product is equal to zero. Consequently, in vector notation, the formula 
of a plane, in general, can be written as follows: 
𝑛3⃗ ∙ 𝑃)𝑃3333333⃗ = 0, 
that is, by setting the dot product between the normal vector 𝑛3⃗  and the 
generic vector 𝑃)𝑃3333333⃗  that lies in the plane (and emanates from the point 
𝑃)(𝑥), 𝑦), 𝑧))  and terminates at the point 𝑃(𝑥, 𝑦, 𝑧)) equal to zero (see 
Figure 8-22). Furthermore, normal vectors help us to find the equations of 
tangent planes to surfaces at given points, as shown in Figure 8-22. 
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If the components of the normal vector are 𝑎, 𝑏, and 𝑐, that is, if 𝑛3⃗ =
〈𝑎, 𝑏, 𝑐〉, then we can expand the aforementioned formula of a plane as 
follows: 
𝑎(𝑥 − 𝑥)) + 𝑏(𝑦 − 𝑦)) + 𝑐(𝑧 − 𝑧)) = 0, 
and we make the simplifying assumption that 𝑐 = −1, so that we obtain 
𝑎(𝑥 − 𝑥)) + 𝑏(𝑦 − 𝑦)) + 𝑧) = 𝑧, 
which is a linear function 𝑧 = 𝑧(𝑥, 𝑦), where 𝑧 represents “height” and 
depends on 𝑥 and 𝑦 in a linear way. 
 
Figure 8-22: Tangent plane to a surface at a point (source: Wikimedia Commons: 
Author: A2569875; 
https://commons.wikimedia.org/wiki/File:Vertex_tangent,_bitangent_and_normal_
vector.svg). 
 

 
 
We can use the gradient vector for a function in order to find the tangent 
plane equation for the function at a particular point. If we have a function 
in two variables and the gradient vector is ∇𝑓(𝑥, 𝑦) = 〈�]

�V
, �]
�W
〉 , where 
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(𝑥, 𝑦) denotes the point in which we are interested, and if the result of 
evaluating the gradient vector at the point (𝑥, 𝑦) is 
∇𝑓(𝑥, 𝑦) = 〈𝑎, 𝑏〉, 
then 𝑎 and 𝑏 represent the slope of the original function 𝑓 in the 𝑥 and the 
𝑦 directions, respectively. Hence, the equation of the tangent plane at a 
particular point 𝑃(𝑥), 𝑦)) can be found by substituting the corresponding 
values 𝑎 and 𝑏 together with the point 𝑃(𝑥), 𝑦)) into the equation of the 
tangent plane 

𝑎(𝑥 − 𝑥)) + 𝑏(𝑦 − 𝑦)) − (𝑧 − 𝑧)) = 0 
where 𝑎 and 𝑏 come from ∇𝑓(𝑥, 𝑦) = 〈𝑎, 𝑏〉, 𝑥) and 𝑦) are the coordinates 
of the given point 𝑃 , and 𝑧)  is obtained by substituting 𝑃(𝑥), 𝑦))  into 
𝑓(𝑥, 𝑦). In other words, the equation of the tangent plane to the surface 
𝑧 = 𝑓(𝑥, 𝑦) at the point �𝑥), 𝑦), 𝑓(𝑥), 𝑦))� is 

𝜕𝑓(𝑥), 𝑦))
𝜕𝑥

(𝑥 − 𝑥)) +
𝜕𝑓(𝑥), 𝑦))

𝜕𝑦
(𝑦 − 𝑦)) − 𝑧 + 𝑓(𝑥), 𝑦)) = 0 

(as above). 
For instance, let us use the gradient vector in order to find the equation of 
the tangent plane to the surface 𝑥A − 5𝑥*𝑦 − 𝑦# + 3𝑦A = 6 at the point 
𝑃(3,4). The corresponding function is  
𝑓(𝑥, 𝑦) = 𝑥A − 5𝑥*𝑦 − 𝑦# + 3𝑦A − 6,  
and, thus, �]

�V
= 4𝑥* − 15𝑥#𝑦 , and �]

�W
= −5𝑥* − 2𝑦 + 12𝑦* . Then the 

gradient vector is  
∇𝑓(𝑥, 𝑦) = 〈4𝑥* − 15𝑥#𝑦,−5𝑥* − 2𝑦 + 12𝑦*〉, 
and its value at the point 𝑃(3,4) is 
∇𝑓(3,4) = 〈−432, 625〉, 
which is the vector that is normal to the curve at the point 𝑃(3,4); and, in 
order to find the equation of the tangent plane to 𝑓(𝑥, 𝑦) at this point, we 
work as follows: The equation of the tangent plane is 
𝑎(𝑥 − 𝑥)) + 𝑏(𝑦 − 𝑦)) − (𝑧 − 𝑧)) = 0, 
and, in this case, 𝑎 = −432, 𝑏 = 625, 𝑥) = 3, and 𝑦) = 4, so that we 
obtain 
−432(𝑥 − 3) + 625(𝑦 − 4) − (𝑧 − 𝑧)) = 0 ⇒ 𝑧 − 𝑧) = −432𝑥 +
625𝑦 − 1,204. 
In order to find 𝑧), we have to substitute 𝑃(3,4) into 𝑓(𝑥, 𝑦), and, thus, we 
obtain 𝑓(3,4) = 287. Therefore, setting 𝑧) = 287 in 𝑧 − 𝑧) = −432𝑥 +
625𝑦 − 1,204, we obtain the equation of the tangent plane to the surface 
𝑥A − 5𝑥*𝑦 − 𝑦# + 3𝑦A = 6 at the point 𝑃(3,4), namely: 
𝑧 = −432𝑥 + 625𝑦 − 917. 
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By analogy, if a surface is defined implicitly by an equation of the form 
𝐹(𝑥, 𝑦, 𝑧) = 0, then the tangent plane to the surface at a point (𝑥), 𝑦), 𝑧)) 
is given by the following equation: 

𝜕𝐹(𝑥), 𝑦), 𝑧))
𝜕𝑥

(𝑥 − 𝑥)) +
𝜕𝐹(𝑥), 𝑦), 𝑧))

𝜕𝑦
(𝑦 − 𝑦))

+
𝜕𝐹(𝑥), 𝑦), 𝑧))

𝜕𝑧
(𝑧 − 𝑧)) = 0 

(recall that the equation of a plane that contains the point (𝑥), 𝑦), 𝑧)) with 
normal vector 𝑛3⃗ = 〈𝑎, 𝑏, 𝑐〉  is 𝑎(𝑥 − 𝑥)) + 𝑏(𝑦 − 𝑦)) + 𝑐(𝑧 − 𝑧)) = 0 ). 
Thus, we observe that the equation �](V6,W6)

�V
(𝑥 − 𝑥)) +

�](V6,W6)
�W

(𝑦 −
𝑦)) − 𝑧 + 𝑓(𝑥), 𝑦)) = 0 (which we formulated previously) is the special 
case of the equation ��(V6,W6,`6)

�V
(𝑥 − 𝑥)) +

��(V6,W6,`6)
�W

(𝑦 − 𝑦)) +
��(V6,W6,`6)

�`
(𝑧 − 𝑧)) = 0  where 𝐹(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦) − 𝑧 , and 𝑧) =

𝑓(𝑥), 𝑦)). 
Since the gradient of a function is given by the vector field whose 
components are the partial derivatives of the function (and, thus, the 
gradient attaches a vector to each point of the domain of the corresponding 
function), we can, more precisely, use the term “gradient vector field” 
rather than simply “gradient” or “gradient vector.” 
In physics, the term “field” refers to an area in which forces are exerted on 
things in its midst. The modern concept of a physical field was originally 
formulated in the nineteenth century by the English physicist Michael 
Faraday. An electric charge creates an “electric field” in the region of 
space surrounding it, in the sense that the properties of space are modified 
by the presence of an electric charge. “Electric field” (sometimes called 
“electric intensity”) is defined as the electric force per unit charge. In 
particular, the “electric field” is a vector field that associates to each point 
in space the force per unit of charge exerted on an infinitesimal test charge 
at rest at the given point. Therefore (in SI unites), the unit of electric field 
magnitude is one newton per coulomb (i.e., 1𝑁 ∙ 𝐶E" ). According to 
Coulomb’s Law, the magnitude of the force of interaction between two 
point charges (i.e., electric charges) is directly proportional to the product 
of the charges and inversely proportional to the square of the distance 
between them, symbolically: 

𝐹 = 𝑘
|𝑞"𝑞#|
𝑟#  

where 𝐹 denotes the magnitude of the force that each of two point charges 
𝑞" and 𝑞# a distance 𝑟 apart exerts on the other, and 𝑘 is a proportionality 
constant, whose value is (in SI units) approximately 8.988 × 10D𝑁 ∙ 𝑚# ∙
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𝐶E#. Due to the rigorous description of the electrostatic force of attraction 
and repulsion by the French military engineer and physicist Charles-
Augustin de Coulomb (1736–1806), the SI unit of electric charge, the 
coulomb (denoted by C), has been named in his honor; it is approximately 
equivalent to 6.24 × 10"2 electrons. “Charge” is a property of matter (just 
like mass, volume, or density), and it can come in two types: positive (+) 
or negative (−). In particular, a positive charge occurs when the number of 
protons exceeds the number of electrons, and a negative charge occurs 
when the number of electrons exceeds the number of protons. The 
fundamental building blocks of ordinary matter are the negatively charged 
“electron,” the positively charged “proton,” and the uncharged “neutron.”4 
In a neutral atom, the number of electrons equals the number of protons 
that exist in the nucleus, and the net electric charge is zero. If one or more 
electrons are removed (resp. added), then the remaining positively (resp. 
negatively) charged structure is called a “positive ion” (resp. a “negative 
ion”). 
For instance, consider static electricity (triboelectric effect): Friction can 
give loosely bound electrons enough energy to leave their atoms and get 
attached to others, migrating between different surfaces. When this 
happens, the first object is left with more protons than electrons and, thus, 
becomes positively charged, whereas the object with more electrons 
accumulates a negative charge. This situation is called “net charge 
separation.” However, when one of these newly charged bodies comes into 

 
4 In simple terms, to construct an atom, one needs some protons and neutrons for 
the construction of the nucleus, and then one has to put some electrons around the 
nucleus until the whole system is electrically neutral (in fact, once you have a 
positively charged nucleus, it attracts electrons, which automatically form shells 
around the nucleus). In 1911, the New Zealand physicist Ernest Rutherford 
discovered the basic structure of the atom: it consists of a small and dense core of 
positive electric charge called the nucleus, surrounded by a “cloud” (probability 
distribution) of negatively charged electrons; and, in particular, electrons move in 
orbitals around the nucleus in an energy level (precisely, an electron has a 
probability of being in various locations based on its energy). However, it should 
be mentioned that the construction of an atomic nucleus is a complex process, 
because protons, being positively charged, repel each other. As a result, they have 
to come very close to each other in order for the nuclear force to start operating 
and, thus, keep them together, given that there exist sufficiently many neutrons. 
This process requires extremely high temperatures (hundreds of millions of 
degrees Kelvin). Such high temperatures existed briefly after the Big Bang. The 
“atomic number,” which defines the identity of an element, is the number of 
protons in the nucleus of an atom, and, since atoms are electrically neutral, the 
atomic number also indicates the number of electrons in an uncharged atom. 
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contact with another material, the mobile electrons will take the first 
chance they get to go where they are most needed, thus relocating from the 
negatively charged object to a positively charged one, restoring the neutral 
charge equilibrium. This quick movement of electrons is called “static 
discharge,” and it is recognized as a sudden spark. This process happens 
only with specific objects. In particular, “conductors,” such as metals and 
salt water, tend to have loosely bound outer electrons, which can easily 
flow between molecules, whereas “insulators,” such as plastic, rubber, and 
glass, have tightly bound electrons, which do not regularly jump to other 
atoms. “Static buildup” is the phenomenon wherein electric charges are 
exchanged between the surfaces of two objects that come into contact with 
each other; and it is most likely to occur when one of the materials 
involved is an insulator. For instance, when you shuffle your feet across a 
rug, you are creating many surface contacts between your feet and the rug, 
and, thus, electrons relocate from your body to the rug (due to friction), 
whereas the rug’s insulating wool will resist loosing its own electrons. 
Your body and the rug together constitute a system that is electrically 
neutral, but there is a charge polarization between your body and the rug 
(your body representing the positive pole, and the rug representing the 
negative pole), so that, when you reach to touch the metal door knob, you 
will experience an electric shock, since the metal door knob’s loosely 
bound electrons will relocate to your hand in order to replace the electrons 
that your body has lost. Similarly, when you rub a plastic comb on your 
head, it causes opposite static charges to build up both on your hair and the 
plastic comb, and, therefore, when you pull the plastic comb slowly away 
from your head, you can see these two opposite static charges attracting 
each other and making your hair stand up. Charge separation may happen 
in clouds, and, in this case, it is neutralized by being released towards 
another body, such as a building, the earth, or another cloud, in a giant 
spark that we know as a lightning.  
“Eelectricity” is the flow of electric charge along a path provided by a 
conductor (conductors are materials with high electron mobility). If you 
have two charges, one positive and one negative, then they have an electric 
field between them.  
The amount of work needed in order to move a unit of electric charge from 
a reference point to a specific point in an electric field without producing 
acceleration is called an “electric potential.” In terms of SI units, it is 
represented by  
𝑉 = FXYZ%Y=14	Z%ZJ:W

5m1J:Z
= ?Xq4Z

5Xq4X60
, 

where joule is the unit for work done, and 1	𝑗𝑜𝑢𝑙𝑒 =
(1	𝑛𝑒𝑤𝑡𝑜𝑛)(1	𝑚𝑒𝑡𝑒𝑟); coulomb is the unit for the charge; and V denotes 



 
 

 

365 

“volt,” the derived unit for electric potential (electromotive force), and it is 
named after the Italian physicist Alessandro Volta (1745–1827). The 
motion across the field is supposed to proceed with negligible acceleration 
in order to avoid the test charge acquiring kinetic energy or producing 
radiation. When we move a charge at constant speed, it becomes a current, 
and it generates a magnetic field (actually consisting of attraction and 
repulsion of electric fields) that is perpendicular to the motion of the 
charge; whereas, if we accelerate the charge, then the charge produces a 
squeezed electric field, which is no longer spherical, but is shaped like an 
hour glass.  
The key to the flow of electricity is making a continuous electric circuit: 
connecting a wire between a source of electrons and an attractor of 
electrons (for which reason, for instance, a battery has two poles: a source 
(a negative), and an attractor (a positive); and, similarly, an electric plug 
has at least two tongs, one for incoming electrons and one for outgoing 
electrons). Electrons do not cease to exist. Rather, being carriers of charge, 
they move from the negative (source) to the positive (attractor), and they 
are useful as they follow the path to their destination in the context of a 
continuous electric circuit. By contrast, connecting two poles of a power 
source directly can actually be very dangerous: this is what is called a 
“short circuit,” because there is no electric device between the source and 
the destination of electrons to power, such as a PC or a TV set. In case of a 
short circuit, the electron flow does not encounter any resistance, therefore 
the release of energy is instant, often paired with the involved wire heating 
dangerously. 
The electric field at a point can be calculated by using Coulomb’s law in 
order to find the total force 𝐹 on a test charge 𝑞@ placed at the point, and 
then we divide 𝐹 by 𝑞@ to obtain the electric field 𝐸. If 𝑞@ is positive, then 
the direction of 𝐸 is the direction of 𝐹. The force on a negative charge, 
such as an electron, is opposite to the direction of 𝐸.  
In order to analyze the motion of a particle with charge 𝑞 in an electric 
field, we need to use Newton’s Second Law of Motion, 𝐹 = 𝑚𝑎, with	𝐹 
caused by the electric field 𝐸, so that the magnitude of the electric force 𝐹 
is given by 

𝐹 = 𝑞𝐸 
(in vector notation, 𝐹⃗ = 𝑞𝐸3⃗ ). If the field is uniform, then the acceleration 
is constant.  
In simple terms, electric interactions can be described as follows: a charge 
distribution sets up an electric field 𝐸, and the field exerts a force 𝐹 = 𝑞𝐸 
on any charge 𝑞 that is present. The same pattern can be followed in order 
to describe magnetic interactions (phenomena of attraction or repulsion 



 

 

366 

that arise between electrically charged particles because of their motion). 
A moving charge, or a current, sets up a magnetic field in the space around 
it, and this field exerts a force 𝐹 on a moving charge. Like electric field, 
magnetic field is a vector field (a vector quantity associated with each 
point in space). The symbol for magnetic field is 𝐵.  
Whereas the electric-field force is the same whether the charge is moving 
or not, the magnetic force is proportional to the particle’s speed. Thus, a 
particle at rest experiences no magnetic force at all. Furthermore, the 
magnetic force 𝐹 acting on a charge 𝑞 moving with velocity 𝑣 does not 
have the same direction as the corresponding magnetic field 𝐵, but it is 
perpendicular to both the magnetic field 𝐵 and 𝑣. Hence, the magnitude of 
the magnetic force 𝐹 is given by 
𝐹 = |𝑞|𝑣𝐵𝑠𝑖𝑛𝜑, 
where |𝑞| is the magnitude of the charge, and 𝜑 is the angle measured 
from the direction of 𝑣 to the direction of 𝐵. The SI unit of 𝐵 is 1𝑁 ∙ 𝑠𝑒𝑐 ∙
𝐶E" ∙ 𝑚E", where 𝑁 stands for newton, 𝑠𝑒𝑐 stands for second, 𝐶 stands for 
coulomb, and 𝑚 stands for meter. This unit is called 1 tesla (1𝑇), in honor 
of the prominent Serbian-American scientist and inventor Nikola Tesla 
(1857–1943). 
Using vector notation, the force that a magnetic field 𝐵3⃗  exerts on a charge 
𝑞 with velocity 𝑣⃗ is given by 
𝐹⃗ = 𝑞𝑣⃗ × 𝐵3⃗ , 
where 𝑣 × 𝐵3⃗  denotes the cross product of the velocity and the magnetic 
field.  
In 1831, the English scientist Michael Faraday discovered electromagnetic 
induction: he placed a stationary magnet inside or outside a coil, and he 
observed no deflection in the galvanometer. However, at the moment that 
he moved the magnet towards (into/above/below) the coil, he saw the 
pointer deflecting in one direction, and, at the moment that he moved the 
magnet way from the coil, he saw the pointer deflecting in the opposite 
direction. Using the aforementioned notation, the entire electromagnetic 
force 𝐹 on the charged particle is called the Lorentz force (after the Dutch 
physicist H. A. Lorentz), and its magnitude is given by 

𝐹 = 𝐹Z4Z5YJ=5 + 𝐹61:%ZY=5 
(and, as I have already mentioned, 𝐹⃗Z4Z5YJ=5= 𝑞𝐸3⃗ , and 𝐹⃗61:%ZY=5 = 𝑞𝑣⃗ ×
𝐵3⃗ ). Faraday’s discovery was really amazing, because one could make 
something move without ever touching it, only by using the field. Indeed, 
we can affect things far away and develop telecommunications using 
electromagnetic fields. Notice that the operation of antennas is based on 
electromagnetism (by an “antenna,” we mean anything that transfers 
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electricity from the air to a wire, or from a wire to the air). In other words, 
antennas are a way of transmitting and receiving information through 
changes in the electromagnetic fields that surround them. Moreover, 
Faraday was the first to understand that waves of the electromagnetic field 
are what we call light.  
By the term “wave,” we mean a disturbance or oscillation that travels 
through space-time accompanied by a transfer of energy. The basic 
properties of a wave are its amplitude (i.e., the distance from the center 
line, that is, the still position, to the top of a crest or the bottom of a 
trough), its frequency (i.e., the number of cycles occurring per second; 
specifically, it can be measured by counting the number of crests of waves 
that pass a fixed point in one second), and its length (i.e., the distance over 
which the wave’s shape repeats; for instance, the distance between two 
adjacent crests). According to the theory of wave mechanics, which was 
formulated in the 1920s by the Austrian-Irish physicist Erwin Schrödinger, 
a wave itself does not have units of matter or energy, but it is just form, 
specifically, a pattern of information. 
In simple terms, electromagnetic radiation consists of electric and 
magnetic fields oscillating around each other, creating a freely propagating 
wave that can travel from one place to another. This event explains light, 
the operation of radio stations, the operation of microwave ovens, etc. 
These are electromagnetic phenomena, and they differ from each other 
only with respect to the wavelength of the corresponding oscillation, so 
that we use different names for electromagnetic radiation depending on the 
corresponding wavelength; for instance, if we can see electromagnetic 
radiation, then we call it light, light with large wavelengths is red, light 
with larger wavelengths that is invisible is called infrared, while, at even 
larger wavelengths, electromagnetic radiations are called microwaves, and, 
if the wavelengths are even larger, then electromagnetic radiations are 
called radio-waves.  
By the term “radiation,” we generally mean energy transferred by waves 
or particles. For instance, radiation may take the form of electromagnetic 
waves―which, however, are made of particles, photons specifically. A 
photon is a type of elementary particle that serves as the quantum of the 
electromagnetic field and the force carrier for the electromagnetic force.5 

 
5 The term “quantum” derives from the Latin language, and it means an amount of 
something. In the context of quantum mechanics, the term “quantum” means the 
smallest amount of energy that can be measured. In fact, light is made up of 
photons, which we can think of as small packets (“quanta”) of energy. For 
instance, when I point a flashlight at an object, I direct photons (which make up the 
given beam of light) to hit the object. In opaque solids, when photons hit the 
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In particular, quantum electrodynamics describes the manner in which 
electrically charged particles interact by shooting photons back and forth 
between each other. Electrons, being zero-dimensional, lack spatial 
extension (that is, they have practically zero volume). Therefore, they 
interact with each other by exchanging photons. As two electrons move 
towards each other, a photon is passed from one to another, and it changes 
the momentum of both of them, thus pushing them off.  
In Figure 8-23, we see the graph of a linearly polarized electromagnetic 
wave going in the 𝑧-axis with 𝐸 denoting the electric field (corresponding 
to the 𝑥-axis) and 𝐵 denoting the magnetic field (corresponding to the 𝑦-
axis). In electrodynamics, by the term “linear polarization,” we refer to a 
confinement of the electric field vector or the magnetic field vector to a 
given plane along the direction of propagation, and this term was coined 
by the French civil engineer and physicist Augustin-Jean Fresnel (1788–
1827). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
surface of the material, the energy of the photons is absorbed by the electrons to 
excite themselves to the next atomic orbital, and, when this happens, the photons 
lose all of their energy (and there are not any photons any more; this is the reason 
why an opaque solid is opaque). Due to the structure of opaque solids, the electron 
orbitals are not far enough from each other (in terms of energy), and the photon has 
enough energy to push the electron up to a higher energy orbital (and, thus, the 
electron absorbs the photon). However, due to the amorphous structure of glass 
(silicon dioxide), the energy gap between the atomic orbitals is too large, and, 
therefore, when a photon hits the glass, the electron does not absorb it, because the 
photon does not have enough energy to push the electron up to a higher energy 
orbital. Hence, in this case, the photon retains its energy, and the electron lets it 
pass; and this is the reason why the glass is transparent.  
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Figure 8-23: A linearly polarized electromagnetic wave (source: Wikimedia 
Commons: Author: Витольд Муратов; 
https://commons.wikimedia.org/wiki/File:%D0%93%D0%B5%D0%BD%D0%B5
%D1%80%D0%B0%D1%86%D0%B8%D1%8F_%D1%8D%D0%BB%D0%B5%
D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D
0%B8%D0%BD%D0%BE%D0%B9_%D0%B2%D0%BE%D0%BB%D0%BD%D
1%8B.jpg). 
 

 
 
Now, let us consider a vector-valued function (vector field) 𝑟(𝑥, 𝑦, 𝑧) =
𝑓(𝑥, 𝑦, 𝑧)𝚤̂+ 𝑔(𝑥, 𝑦, 𝑧)𝚥̂+ ℎ(𝑥, 𝑦, 𝑧)𝑘\  such that the partial derivatives �]
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, and �m
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 exist and are continuous on 𝑈 ⊆ ℝ*. Then the “divergence” of  
𝑟(𝑥, 𝑦, 𝑧) is a vector operator that operates on a vector field, producing a 
scalar field that gives the quantity of the vector field’s source at each 
point; and it is defined as follows:  

𝑑𝑖𝑣𝑟 ≡ ∇33⃗ ∙ 𝑟 =
𝜕𝑓
𝜕𝑥 +

𝜕𝑔
𝜕𝑦 +

𝜕ℎ
𝜕𝑧 

(where, in particular, we have: ∇33⃗ ∙ 𝑟 = Ã �
�V
𝚤̂+ �

�W
𝚥̂ + �

�`
𝑘\Ä �𝑓(𝑥, 𝑦, 𝑧)𝚤̂+

𝑔(𝑥, 𝑦, 𝑧)𝚥̂ + ℎ(𝑥, 𝑦, 𝑧)𝑘\�). 
In other words, the divergence of a function tells us how the corresponding 
vector field behaves towards or away from a point: the divergence of a 
vector field represents the tendency of the field to either converge or 
diverge at a given point (e.g., in the context of mechanical systems, 
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electromagnetism, and fluid dynamics). In particular, in physics, the 
divergence of a vector field is the extent to which the vector field flux 
behaves like a source at a given point, and, specifically, it is a local 
measure of the extent to which, in a vector field, there are more vectors 
exiting from an infinitesimal region of space than entering it (the term 
“flux” refers to any effect that appears to pass or travel through a surface 
or substance). A point at which the flux is outgoing has positive 
divergence, and it is said to be a “source” of the field, whereas a point at 
which the flux is directed inward has negative divergence, and it is said to 
be a “sink” of the field. Obviously, the greater the vector field flux through 
a small surface enclosing a point, the greater the value of divergence at 
that point. 
The divergence of an electrostatic field 𝐸3⃗  is  

𝑑𝑖𝑣𝐸3⃗ =
𝜌
𝜀)

 

where 𝜌 is the electric charge density (i.e., charge per unit volume), and 𝜀) 
is the permittivity of free space (i.e., a physical constant that reflects the 
ability of electric fields to pass through a classical vacuum; 𝜀) ≈
8.85 × 10E"# farads per meter). The divergence of an electrostatic field 
provides important information: a region with zero divergence is either a 
constant field or contains no charges; whereas non-zero divergence 
regions indicate the presence of charges, and the sign of divergence 
determines whether the charges are positive or negative.  
Given a vector-valued function (vector field) 𝑟(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧)𝚤̂+
𝑔(𝑥, 𝑦, 𝑧)𝚥̂ + ℎ(𝑥, 𝑦, 𝑧)𝑘\  such that the partial derivatives �]

�V
, �:
�W

, and �m
�`

 
exist and are continuous on 𝑈 ⊆ ℝ*, the “curl” (also known as “rotor”) of 
𝑟(𝑥, 𝑦, 𝑧) is the vector-valued function (vector field) 

𝑐𝑢𝑟𝑙𝑟⃗ ≡ ∇33⃗ × 𝑟 = å
𝜕ℎ
𝜕𝑦 −

𝜕𝑔
𝜕𝑧æ 𝚤̂+ å

𝜕𝑓
𝜕𝑧 −

𝜕ℎ
𝜕𝑥æ 𝚥̂+ å

𝜕𝑔
𝜕𝑥 −

𝜕𝑓
𝜕𝑦æ 𝑘

\

= RR

𝚤̂ 𝚥̂ 𝑘\
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑓 𝑔 ℎ

RR 

(notice that, in this case, we expand the determinant only across the first 
row, and it is used as a mnemonic rule). The curl of a vector field 
represents the rotation (or “circulation”) of the field around a point (it is 
used, for instance, in order to analyze the rotation of a fluid flow, magnetic 
fields, and stress distributions). In particular, the curl at a point in the 
vector field is a vector whose length and direction denote, respectively, the 
magnitude and the axis of the maximum rotation of the field. A zero curl 
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implies that a vector field is irrotational (circulation is zero), and, in 
electrostatics, it is indicative of electrostatic fields with no magnetic field 
present (note: a moving electric charge generates a magnetic field, and a 
magnetic field induces electric charge movement, producing an electric 
current, but electric fields and magnetic fields may also exist 
independently of each other: an electric field with no magnetic field 
present exists in charges at rest; just as a magnetic field with no electric 
field present exists in permanent magnets).  
 
Line integrals of vector fields: Consider a vector field  

𝐹4⃗ (𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦, 𝑧)𝑖 ̂ + 𝑄(𝑥, 𝑦, 𝑧)𝑗̂ + 𝑅(𝑥, 𝑦, 𝑧)𝑘7 
and the three-dimensional smooth curve 𝐶 given by 

𝑟⃗(𝑡) = 𝑥(𝑡)𝑖 ̂ + 𝑦(𝑡)𝑗̂ + 𝑧(𝑡)𝑘7 
where 𝑎 ≤ 𝑡 ≤ 𝑏. The “line integral of 𝐹4⃗  along 𝐶” is  

8𝐹4⃗ ∙
-

𝑑𝑟⃗ = 8 𝐹4⃗ :𝑟⃗(𝑡);
𝑏

𝑎
∙ 𝑟′44⃗ (𝑡)𝑑𝑡 

where, in the integral on the left side, the dot denotes a dot product of the 
vector field, and the differential is a vector. Moreover, notice that  
𝐹4⃗ :𝑟⃗(𝑡); = 𝐹4⃗ :𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡); . The line integral can be written with 
respect to the arc length as follows: 

U𝐹⃗ ∙
P

𝑑𝑟 = U𝐹⃗ ∙
P

𝑇3⃗ 𝑑𝑠 

where 𝑇3⃗ (𝑡) is the unit normal vector, that is, 

𝑇3⃗ (𝑡) =
𝑟@333⃗ (𝑡)
]𝑟@333⃗ (𝑡)]

 

(as we have previously explained). Line integrals of vector fields are 
useful in physics for computing the work done by a force on a moving 
object along a curve. 
For instance, let us compute the line integral ∫ 𝐹⃗ ∙P 𝑑𝑟 where 𝐹⃗(𝑥, 𝑦, 𝑧) =
8𝑥#𝑦𝑧𝚤̂+ 5𝑧𝚥̂− 4𝑥𝑦𝑘\ , and the curve 𝐶  is defined by 𝑟(𝑡) = 𝑡𝚤̂+ 𝑡#𝚥̂+
𝑡*𝑘\ with 0 ≤ 𝑡 ≤ 1. Firstly, the given vector field along the given curve is 
𝐹⃗�𝑟(𝑡)� = 8𝑡#(𝑡#)(𝑡*)𝚤̂+ 5𝑡*𝚥̂− 4𝑡(𝑡#)𝑘\ = 8𝑡R𝚤̂+ 5𝑡*𝚥̂− 4𝑡*𝑘\.  
Secondly, the derivative of the parametric expression of the curve is 
𝑟@333⃗ (𝑡) = 𝚤̂+ 2𝑡𝚥̂ + 3𝑡#𝑘\. 
Thirdly, the corresponding dot product is 
𝐹⃗�𝑟(𝑡)� ∙ 𝑟@333⃗ (𝑡) = 8𝑡R + 10𝑡A − 12𝑡C. 
Hence, the given line integral is 
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∫ 𝐹⃗ ∙P 𝑑𝑟 = ∫ (8𝑡R + 10𝑡A − 12𝑡C)𝑑𝑡 = 1"
) . 

In general, as we can easily see, another (equivalent) way of computing 
line integrals of vectors fields is the following: Given a vector field  

𝐹⃗(𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦, 𝑧)𝚤̂+ 𝑄(𝑥, 𝑦, 𝑧)𝚥̂+ 𝑅(𝑥, 𝑦, 𝑧)𝑘\ 
and the three-dimensional smooth curve 𝐶 defined by 

𝑟(𝑡) = 𝑥(𝑡)𝚤̂+ 𝑦(𝑡)𝚥̂ + 𝑧(𝑡)𝑘\ 
where 𝑎 ≤ 𝑡 ≤ 𝑏, the “line integral of 𝐹⃗ along 𝐶” is  

U𝐹⃗ ∙
P

𝑑𝑟 = U(𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧)
P

 

since  
∫ 𝐹⃗ ∙P 𝑑𝑟 = ∫ �𝑃𝚤̂+ 𝑄𝚥̂+ 𝑅𝑘\� ∙ �𝑥@𝚤̂+ 𝑦@𝚥̂ + 𝑧@𝑘\�0

1 = ∫ (𝑃𝑥@ + 𝑄𝑦@ +0
1

𝑅𝑧@) 𝑑𝑡 = ∫ 𝑃𝑥@𝑑𝑡 + ∫ 𝑄𝑦@𝑑𝑡 + ∫ 𝑅𝑧@𝑑𝑡 = ∫ 𝑃𝑑𝑥 +P
0
1

0
1

0
1

∫ 𝑄𝑑𝑦 +P ∫ 𝑅𝑑𝑧P . 
Green’s and Stokes’s Formulae: Let us consider in the plane ℝ# a smooth 
closed curve 𝐾 without self-intersections which bounds an open domain 𝐷 
in ℝ#, as shown in Figure 8-24. Suppose that, on 𝐾, a parameter 𝑡 is valid 
and defines the circulation direction and, therefore, the orientation of 𝐾 as 
an one-dimensional manifold. Then the closure 𝐶𝑙𝑠(𝐷) ≡ 𝐷� is an oriented 
two-dimensional manifold with the boundary 𝜕𝐷� = 𝐾. If the orientation of 
the domain 𝐷� is defined by a linear coordinate system (𝑥, 𝑦), then  the 
orientation on the boundary 𝐾 will be compatible with the orientation of 
the entire 𝐷�, provided of course that the domain 𝐷� lies on the left of 𝐾 
when 𝐾 is traversed in the direction of increasing parameter 𝑡. Let 𝐹⃗ =
(𝑃, 𝑄) be a 𝐶"  vector field on ℝ# . In the  coordinate system (𝑥, 𝑦), the 
vector field 𝐹⃗ can be expressed as 𝐹⃗ = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦. Then the 
integral of 𝐹⃗ along the curve 𝐾 is given by 

U (𝑃𝑑𝑥 + 𝑄𝑑𝑦) = U å𝑃�𝑥(𝑡), 𝑦(𝑡)�
𝑑𝑥
𝑑𝑡 + 𝑄�𝑥

(𝑡), 𝑦(𝑡)�
𝑑𝑦
𝑑𝑡æ

Y"

Y6�
𝑑𝑡

= UU å
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦æ𝑑𝑥𝑑𝑦�

 

(this result is “Green’s formula,” named after the British mathematical 
physicist George Green, who published an initial version of this formula in 
1828). Hence, Green’s formula relates a line integral around a simple 
closed curve 𝐾 to a double integral over the plane region 𝐷 bounded by 𝐾. 
In other words, Green’s formula tells us the following: If 𝑈 is a region in 
ℝ# whose boundary 𝜕𝑈 consists of a finite union of curves of class 𝐶", if 
we orient 𝜕𝑈 so that, whenever we traverse the boundary in the direction 
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of orientation, 𝑈 remains on the left, and if 𝐹⃗ = (𝑃, 𝑄) is a 𝐶" vector field 
on 𝑈, then 

U (𝑃𝑑𝑥 + 𝑄𝑑𝑦) =
�c

UU å
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦æ𝑑𝑥𝑑𝑦c

 

(where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are the components of the given vector field 
𝐹⃗). 
 
Figure 8-24: Green’s formula (source: Wikimedia Commons: Author: Theon; 
https://commons.wikimedia.org/wiki/File:Th%C3%A9or%C3%A8me_de_Green-
Riemann.svg?uselang=eo). 

 
 
Similarly, let 𝐾 be a smooth closed curve without self-intersections in the 
space ℝ*, and let this curve be the boundary of a two-dimensional surface 
𝐷. Given a 𝐶" vector field on ℝ*, Stokes’s formula (named after the Irish 
physicist and mathematician George Stokes) relates the surface integral of 
the curl of the vector field over the given surface to the line integral of the 
vector field around the boundary of the given surface, as follows: 
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U (𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧)
�

= UU çå
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦æ𝑑𝑥𝑑𝑦 + å

𝜕𝑅
𝜕𝑦 −

𝜕𝑄
𝜕𝑧æ 𝑑𝑦𝑑𝑧�

+ å
𝜕𝑃
𝜕𝑧 −

𝜕𝑅
𝜕𝑥æ𝑑𝑧𝑑𝑥è 

(i.e., ∫ 𝐹⃗� 𝑑𝑠 = ∫∫ 𝑐𝑢𝑟𝑙𝐹⃗� ∙ 𝑑𝑆 for 𝐹⃗ = (𝑃, 𝑄, 𝑅)). 
 
Surface integrals of vector fields: Let us think of a two-sided6 smooth (or 
at least piecewise smooth) surface immersed in a vector field, so that the 
vector field under consideration contains this surface. If a vector field 𝐹⃗ 
contains such a surface 𝑆, then 𝐹⃗ describes the velocity of the flow at any 
point across the surface. The rate of flow (i.e., the amount or the volume of 
flow across the surface) is called the “flux,” and this concept is the key to 
understanding surface integrals of vector fields. For instance, if the vector 
field 𝐹⃗ represents the flow of a fluid, then the surface integral of 𝐹⃗ 
represents the flux, that is, the amount or the volume of fluid flowing 
through the surface (per unit time). This is the reason why the surface 
integral of a vector field is frequently called a “flux integral.” If 𝑑𝑆 is an 
element (infinitesimal) of the surface (i.e., a really small surface area), and 

 
6 It should be mentioned that a surface may be one-sided. For instance, a “Möbius 
strip” can be constructed by gluing together the edges of a sheet of paper with a 
twist. Thus, we obtain an one-sided, non-orientable surface (within it, one cannot 
consistently distinguish clockwise from counterclockwise turns), as shown in 
Figure 8-25. A surface is “orientable” if and only if, during any smooth shifting 
across the surface, any sufficiently small circle on the surface with a fixed 
direction of the journey along its boundary preserves the original direction of the 
journey along its boundary (we assume that the circle does not intersect the edge of 
the surface). 
 
Figure 8-25: Möbius strip (source: Wikimedia Commons: Author: Fropuff; 
https://commons.wikimedia.org/wiki/File:MobiusStrip-01.svg). 
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if 𝑛3⃗  is the unit normal vector to 𝑑𝑆 at one of its points, then the flux of the 
vector field 𝐹⃗ through the elementary region 𝑑𝑆 is given by 

𝐹⃗ ∙ 𝑛3⃗ 𝑑𝑆 
where 𝐹⃗ is taken at the same point as 𝑛3⃗ , and 𝐹⃗ ∙ 𝑛3⃗  denotes the dot product 
between 𝐹⃗ and 𝑛3⃗ . For instance, if a fluid is flowing perpendicular to the 
surface, a lot of that fluid will flow through the surface, and the flux will 
be large, whereas, if a fluid is flowing parallel to the surface, that fluid will 
not flow through the surface, and the flux will be zero. In order to 
calculate the total amount of a fluid flowing through the surface, we must 
add up (i.e., integrate) the component of the vector field 𝐹⃗ that is normal 
(i.e., perpendicular) to the surface. Notice that, if 𝑛3⃗  is the unit normal 
vector to 𝑑𝑆, the dot product 𝐹⃗ ∙ 𝑛3⃗  will be positive if 𝐹⃗ and 𝑛3⃗  are pointing 
in the same direction, and it will be negative if 𝐹⃗ and 𝑛3⃗  are pointing in 
opposite directions (in general, the choice of a normal vector orients the 
surface and determines the sign of the flux).  
Hence, by analogy, the flux of the vector field 𝐹⃗ through the whole surface 
𝑆 is defined to be the integral  

Y	𝐹⃗ ∙
a

𝑛3⃗ 𝑑𝑆 =Y	𝐹⃗ ∙ 𝑑𝑆
a

 

(this is the “flux integral,” that is, the surface integral of the vector field 
under consideration).  
Thus, the total flux of fluid flow through a surface 𝑆  is denoted by 
∬ 	𝐹⃗ ∙ 𝑑𝑆a , since it is the integral of the vector field 𝐹⃗ over the surface 𝑆. 
Similarly, we can calculate the “electric flux” through a surface as follows: 

𝛷y =Y𝐸3⃗
a
∙ 𝑑𝑆 

where 𝐸3⃗  is the electric field (having units of volt per meter), and 𝑑𝑆 is a 
differential area on the given surface 𝑆 with an outward facing normal 
vector defining its direction. The “electric flux” through a surface is 
proportional to the number of field lines crossing that surface. In other 
words, its magnitude is proportional to the portion of the field 
perpendicular to the surface area: 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝐹𝑙𝑢𝑥 = (𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝐹𝑖𝑒𝑙𝑑) ∙ (𝑆𝑢𝑟𝑓𝑎𝑐𝑒	𝐴𝑟𝑒𝑎) ∙ (𝑐𝑜𝑠𝜃), 
where 𝑐𝑜𝑠𝜃 denotes the cosine of the angle 𝜃 between the electric field 
and the vector that is perpendicular to the area. A “field line” is an 
imaginary line drawn through a region of space in such a way that, at 
every point, it is tangent to the direction of the electric-field vector at that 
point. In particular, in an “electrostatic field,” every field line is a 
continuous curve with a positive charge at one end and a negative charge 
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at the other. In mathematics, we use the term “trajectory of a vector field” 
in order to refer to a curve whose tangent at every point has the same 
direction as the corresponding vector field.  
Suppose that a surface is defined by a function 𝑧 = 𝑔(𝑥, 𝑦). In order to 
work with with surface integrals of vector fields, we have to define a new 
function, namely, 

𝑓(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑔(𝑥, 𝑦) 
(and, in this way, the surface is defined by the equation 𝑓(𝑥, 𝑦, 𝑧) = 0). 
The unit normal vector to the surface defined by the equation 𝑓(𝑥, 𝑦, 𝑧) =
0 is  

𝑛3⃗ =
𝛻𝑓
‖𝛻𝑓‖ 

and, in this case,  

𝑛3⃗ =
−𝑔V@ 𝚤̂− 𝑔W@ 𝚥̂+ 𝑘\

0(𝑔V@ )# + �𝑔W@ � + 1
 

(where, of course, 𝚤,̂ 𝚥̂, and 𝑘\ are the corresponding unit vectors on the 𝑥-
axis, the 𝑦-axis, and the 𝑧-axis, respectively). Notice that the component of 
this normal vector in the 𝑧  direction (that is, 𝑘\  in the aforementioned 
formula of 𝑛3⃗ ) is positive, meaning that the normal vector general points 
upward, specifically, it has an upward component to it. However, in 
general, “positive orientation” points out of the region under 
consideration, and, sometimes, this may mean downward. Thus, if we 
need the downward orientation, we can take the negative of 𝑛3⃗  to obtain the 
required result. Hence, if a surface 𝑆  is defined by 𝑧 = 𝑔(𝑥, 𝑦) , if the 
corresponding vector field is defined by 𝐹⃗(𝑥, 𝑦, 𝑧) = 𝑃(𝑥, 𝑦, 𝑧)𝚤̂+
𝑄(𝑥, 𝑦, 𝑧)𝚥̂+ 𝑅(𝑥, 𝑦, 𝑧)𝑘\, and if the orientation in which we are interested 
is the upward orientation, then the surface integral of 𝐹⃗ over 𝑆 is computed 
according to the following formula: 
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Y	𝐹⃗ ∙
a

𝑛3⃗ 𝑑𝑆 =Y	𝐹⃗ ∙ 𝑑𝑆
a

= UU �𝑃𝚤̂+ 𝑄𝚥̂ + 𝑅𝑘\�
�

∙

⎝

⎛ −𝑔V@ 𝚤̂− 𝑔W@ 𝚥̂ + 𝑘\

0(𝑔V@ )# + �𝑔W@ � + 1⎠

⎞0(𝑔V@ )# + �𝑔W@ � + 1𝑑𝐴

= UU �𝑃𝚤̂+ 𝑄𝚥̂ + 𝑅𝑘\� ∙
�

�−𝑔V@ 𝚤̂− 𝑔W@ 𝚥̂ + 𝑘\�𝑑𝐴

= UU �−𝑃𝑔V@ − 𝑄𝑔W@ + 𝑅�
�

𝑑𝐴 

(notice that this computation holds in case the surface is given in the form 
𝑧 = 𝑓(𝑥, 𝑦), but we can obviously think and work in a similar fashion 
when the surface is given in the form 𝑦 = 𝑔(𝑥, 𝑧), in which case we we 
define 𝑓(𝑥, 𝑦, 𝑧) = 𝑦 − 𝑔(𝑥, 𝑧), as well as when the surface is given in the 
form 𝑥 = 𝑔(𝑦, 𝑧) , in which case we define 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 − 𝑔(𝑦, 𝑧) ). 
Given that we can consider two different orientations, there are six 
possible surface integrals, that is, two for each form of the surface: 𝑧 =
𝑓(𝑥, 𝑦) , 𝑦 = 𝑔(𝑥, 𝑧) , and 𝑥 = 𝑔(𝑦, 𝑧), so that, given each form of the 
surface, there will be two possible unit normal vectors, and we have to 
choose the one that matches the given orientation of the surface (but the 
derivation of the corresponding formula of the surface integral is always 
similar to that given above).  
Now, suppose that the surface 𝑆 is defined parametrically, as follows: 

𝑟(𝑢, 𝑣) = 𝑥(𝑢, 𝑣)𝚤̂+ 𝑦(𝑢, 𝑣)𝚥̂+ 𝑧(𝑢, 𝑣)𝑘\ 
(as always, 𝚤,̂ 𝚥̂, and 𝑘\  denote the corresponding unit vectors on the 𝑥-axis, 
the 𝑦-axis, and the 𝑧-axis, respectively). In this case, the vector 𝑟q@333⃗ × 𝑟w@333⃗  is 
normal to the tangent plane to the curve at a particular point of the curve 
(and, therefore, to that point of the curve itself), and the corresponding unit 
normal vector is  

𝑛3⃗ =
𝑟q@333⃗ × 𝑟w@333⃗

]𝑟q@333⃗ × 𝑟w@333⃗ ]
 

(and, as previously, we have to consider the adequate direction). 
Therefore, if the surface 𝑆  is given parametrically by 𝑟(𝑢, 𝑣)  with 
parameter domain 𝐷 , the surface integral of 𝐹⃗  over 𝑆  is computed 
according to the following formula: 
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Y	𝐹⃗ ∙
a

𝑛3⃗ 𝑑𝑆 =Y	𝐹⃗ ∙ 𝑑𝑆
a

= UU 𝐹⃗ ∙ 1
𝑟q@333⃗ × 𝑟w@333⃗

]𝑟q@333⃗ × 𝑟w@333⃗ ]
2 ]𝑟q@333⃗ × 𝑟w@333⃗ ]𝑑𝐴

�

= UU 𝐹⃗ ∙ �𝑟q@333⃗ × 𝑟w@333⃗ �
�

𝑑𝐴 

(as previously, we may have to change the sign of 𝑟q@333⃗ × 𝑟w@333⃗  in order to 
match the orientation of the surface).  
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Chapter 9 
Complex Numbers and Complex Analysis 

 
As I have already mentioned, the concept of a number has been extended 
from natural to real numbers, both because of human practice and because 
of the needs of mathematics itself. In particular, the concept of a number 
grew out of the counting of objects. Counting gave rise to the numbers 1, 
2, 3, and so on, which are called natural numbers. Then the necessity of 
performing the operation of division led to the concept of positive 
fractional numbers; furthermore, the necessity of performing the operation 
of subtraction led to the concepts of zero and negative numbers; finally, 
the necessity of taking roots of positive numbers led to the concept of 
irrational numbers. The aforementioned operations are feasible in the set 
of real numbers. However, there are still impracticable operations―for 
instance, taking a square root of a negative number. Hence, there is a need 
to extend the concept of a number even further, specifically, to invent new 
numbers different from the real numbers.  
Indeed, if we adjoin to the real system ℝ a root 𝑖 of the polynomial 𝑥# +
1 = 0 , which is irreducible to ℝ , we obtain the system of complex 
numbers ℂ ≡ ℝ(𝑖). The symbol  
𝑧 = 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ ℝ and 𝑖 = √−1,  
is called a “complex number”; the number 𝑎 is called the “real part” of 
𝑧 = 𝑎 + 𝑏𝑖 , and it is denoted by 𝑅𝑒(𝑧) ; the number 𝑏  is called the 
“imaginary part” of 𝑧 = 𝑎 + 𝑏𝑖, and it is denoted by 𝐼𝑚(𝑧); and 𝑖 = √−1 
is called the “imaginary unit.” As we can see in Figure 9-1, a complex 
number is a two-dimensional number. The number 𝑖 = √−1 signifies a 
90X rotation about the real axis, turning 1 into −1. Hence, 𝑖 = √−1 done 
twice, or squared, is equal to −1. Two complex numbers 𝑧 = 𝑎 + 𝑏𝑖 and 
𝑤 = 𝑐 + 𝑑𝑖 are “equal” if and only if 𝑎 = 𝑐 (that is, 𝑅𝑒(𝑧) = 𝑅𝑒(𝑤)) and 
𝑏 = 𝑑 (that is, 𝐼𝑚(𝑧) = 𝐼𝑚(𝑤)).  
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Figure 9-1: A complex number (source: Wikimedia Commons: Author: Zgyorfi; 
https://commons.wikimedia.org/wiki/File:Depicting_complex_numbers.JPG). 
 

 
 
Αny polynomial equation with coefficients can be solved in the system of 
complex numbers, and the system of complex numbers is the fundamental 
connection between geometry and algebra. The development of the system 
of complex numbers is originally due to the sixteenth-century Italian 
mathematicians Gerolamo Cardano and Rafael Bombelli; and, in the 
nineteenth century, the system of complex numbers was put in a more 
rigorous and conceptually richer mathematical setting by Cauchy and 
Riemann.  
As shown in Figure 9-1, we picture the complex number 𝑧 = 𝑎 + 𝑏𝑖 by 
putting 𝑎 on the 𝑥-axis and  𝑏 (or rather 𝑏𝑖) on the 𝑦-axis.  
The “modulus” or “absolute value” of 	𝑎 + 𝑏𝑖  is √𝑎# + 𝑏# , and it is 
denoted by 𝑚𝑜𝑑(𝑎 + 𝑏𝑖)  or |𝑎 + 𝑏𝑖| . The square of the modulus of a 
complex number 𝑧 = 𝑎 + 𝑏𝑖  is called its “norm,” and it is denoted by 
𝑁𝑚(𝑧); so that, if 𝑧 = 𝑎 + 𝑏𝑖, then 𝑁𝑚(𝑧) = 𝑎# + 𝑏#.  
Now, let us consider Figure 9-2. The “argument” of 𝑧 = 𝑎 + 𝑏𝑖, denoted 
by 𝑎𝑟𝑔(𝑧), is a quantity 𝜃 such that 𝑐𝑜𝑠𝜃 = 1

|`|
 and	𝑠𝑖𝑛𝜃 = 0

|`|
. It is many-

valued and determined only up to multiples of 2𝜋. In other words, the 
argument of a complex number is the inclined angle developed in between 
the real axis and the complex number in the direction of the complex 
number; and, given a complex number 𝑧 = 𝑎 + 𝑏𝑖, its argument is 𝜃 =
𝑡𝑎𝑛E" Ã0

1
Ä. 

As shown in Figure 9-2, the angle (in radians) that 𝜃 intercepts forms an 
arc of length 𝑠 , so that 𝑠 = 𝑟𝜃  (where 𝑟  denotes the radius of the 
corresponding circle), and, if 𝑟 = 1, that is, for the unit circle, 𝑠 = 𝜃. Τhe 
study of the unit circle implies that the sine of an angle 𝜃 equals the 𝑦-
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value of the endpoint on the unit circle of an arc of length 𝜃, and the 
cosine of an angle 𝜃 equals the 𝑥-value of the endpoint. Therefore, using 
the unit circle, and given Figure 9-2, we obtain the following 
trigonometric form of a complex number: 
𝑧 = 𝑎 + 𝑏𝑖 = |𝑧|𝑐𝑜𝑠𝜃 + |𝑧|𝑠𝑖𝑛𝜃 ∙ 𝑖 = |𝑧|(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = |𝑧|𝑒=r, 
where |𝑧| is the modulus of 𝑧, |𝑧| is equal to the radius vector of the point 
𝑧 (in the case of the unit circle, |𝑧| = 1), and 𝑒 is the base of the natural 
logarithm. Hence, we obtain Euler’s formula: 
𝑒=V = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥 for any real or complex number 𝑥. It is noteworthy 
that, when 𝑥 = 𝜋 , Euler’s formula yields 𝑒=o + 1 = 0 ⇔ 𝑒=o = −1 . 
Moreover, in polar coordinates, for some 𝑟 and 𝜃 depending on 𝑥, Euler’s 
formula can be written as follows: 
𝑒=V = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃	). 
 
Figure 9-2: The complex plane (source: Wikimedia Commons: Author: Lickyvi; 
https://commons.wikimedia.org/wiki/File:Nthrootofunity.png).  
 

 
 
In general, a circle of radius 𝑟 (where 𝑟 is a positive real number) centered 
at a point 𝑎 ∈ ℂ is given by the equation 

|𝑧 − 𝑎| = 𝑟 
(where |·| denotes the complex modulus). 
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Notice that the periods of hyperbolic functions are complex numbers: the 
functions 𝑠𝑖𝑛ℎ𝑥  and 𝑐𝑜𝑠ℎ𝑥  have period 2𝜋𝑖 , and 𝑡𝑎𝑛ℎ𝑥  has period 𝜋𝑖 , 
where 𝑖 = √−1. 
In 1833, at the Royal Irish Academy, the Irish mathematician and 
astronomer Sir William Rowan Hamilton presented the complex numbers 
as ordered pairs of real numbers, thus denoting a complex number by an 
ordered pair (𝑎, 𝑏), and denoting the imaginary unit by 𝑖 = √−1, so that  
𝑖# = (0,1) ∙ (0,1) = (−1,0) = −1.  
The zero of ℂ is (0,0), and the unit of ℂ is (1,0). 
The (complex) “conjugate” of 𝑎 + 𝑏𝑖  is 𝑎 − 𝑏𝑖 , and the conjugate of a 
complex number 𝑧 is denoted by 𝑧̅ or by 𝑧∗; so that, if 𝑧 = 𝑎 + 𝑏𝑖, then: 
𝑧 + 𝑧̅ = 2𝑎, 𝑧 − 𝑧̅ = 2𝑖𝑏, and 	𝑧 ∙ 𝑧̅ = 𝑎# + 𝑏# = |𝑧|#. 
As shown by Hamilton, the complex number system ℂ is the set ℝ×ℝ 
with operations defined as follows:  

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖, 
(𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖, 

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖, and 
(𝑎 + 𝑏𝑖)
(𝑐 + 𝑑𝑖) =

(𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)
(𝑐 + 𝑑𝑖)(𝑐 − 𝑑𝑖) =

(𝑎𝑐 + 𝑏𝑑) + (𝑏𝑐 − 𝑎𝑑)𝑖
𝑐# + 𝑑#  

where 𝑎, 𝑏 ∈ ℝ, and 𝑖 = √−1. 
The algebraic form of a complex number enables us to easily carry out 
such arithmetic operations on complex numbers as addition, subtraction, 
multiplication, and division, but raising a complex number to a natural 
power is more convenient in trigonometric form. For this purpose, we 
usually use “De Moivre’s formula” (named after the French 
mathematician Abraham de Moivre):  

(𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥)% = 𝑐𝑜𝑠𝑛𝑥 + 𝑖𝑠𝑖𝑛𝑛𝑥 
(where 𝑖 = √−1 ). De Moivre’s formula can be easily proved using 
mathematical induction and the angle sum and difference trigonometric 
identities. Moreover, we can obviously derive De Moivre’s formula from 
Euler’s formula and the exponential law for integral powers: (𝑒=V)% =
𝑒=%V , where, by Euler’s formula, (𝑒=V)% = (𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥)% , and 𝑒=%V =
𝑐𝑜𝑠𝑛𝑥 + 𝑖𝑠𝑖𝑛𝑛𝑥. 
 
Complex Vector Spaces: The set of complex numbers ℂ with addition and 
multiplication as defined above is a field with additive and multiplicative 
identities (0,0)  and (1,0) , respectively (the notion of a “field” was 
discussed in Chapter 7). Thus, we can define complex vector spaces. A 
“complex vector space” is a vector space whose scalar field is the complex 
numbers. The set ℂ% is the set of column vectors  
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𝑣 = é
𝑧"
⋮
𝑧%
ë 

where 𝑧= ∈ ℂ, 𝑖 = 1,2, … , 𝑛. Such vectors can be added componentwise, 
and any such vector can be multiplied by a complex scalar. Hence, this is 
the fundamental example of a complex vector space; and a complex vector 
space 𝑉 ⊆ ℂ% is a subset such that: for any 𝑣,𝑤 ∈ 𝑉, it holds that 𝑣 + 𝑤 ∈
𝑉, and, for any 𝑣 ∈ 𝑉 and any 𝑧 ∈ ℂ, it holds that 𝑧𝑣 ∈ 𝑉. The concepts of 
vector basis and of linearly independent and linearly dependent vectors 
can be defined in the case of complex vector spaces in the same way as 
they are defined in the case of real vector spaces (see Chapter 7). The 
algebra we have done with matrices over the real numbers works perfectly 
for matrices over ℂ, without any change (see Chapter 3). The dot product 
of complex vectors is defined as follows: 
𝑣⃗ ∙ 𝑤33⃗ = ∑ 𝑣=𝑤 !!!= , where 𝑤 !!! is the complex conjugate of 𝑤=. 
Let 𝑧" = 𝑎" + 𝑏"𝑖 and 𝑧# = 𝑎# + 𝑏#𝑖. The “cross product” of 𝑧" and 𝑧# is 
defined as follows: 
𝑧" × 𝑧# = 𝑎"𝑏# − 𝑏"𝑎# = |𝑧"||𝑧#|𝑠𝑖𝑛𝜃, 
where |·| denotes the complex modulus, and 𝜃 denotes the angle from 𝑧" 
to 𝑧# measured in the positive direction.   
 
The 𝑛th Roots of Unity: The solutions to the equation 𝑧% = 1, where 𝑧 ∈ ℂ 
and 𝑛 is a positive integer, are said to be the “𝑛th roots of unity,” and each 
root of unity is given by 

𝑧 = 𝑐𝑜𝑠
2𝑘𝜋
𝑛 + 𝑖𝑠𝑖𝑛

2𝑘𝜋
𝑛 = 𝑒

#$I%
'  

where 𝑘 = 0,1,2, … , 𝑛 − 1. If we set 𝜔 = 𝑐𝑜𝑠 #o
%
+ 𝑖𝑠𝑖𝑛 #o

%
= 𝑒

#I%
' , then the 

𝑛  roots are 1,𝜔", 𝜔#, … , 𝜔%E" , and, geometrically, they represent the 𝑛 
vertices of a regular polygon of 𝑛 sides inscribed in a circle of radius 1 
centered at the origin (the circle is given by the equation |𝑧| = 1, and it is 
the “unit circle” in the complex plane).  
 
Differentiation and Integration of Complex-Valued Functions: If a 
function 𝑓  takes real inputs and gives complex outputs, then the 
“derivative” with respect to its real input is computed by taking the 
derivatives of the real and the imaginary parts separately, namely: 

𝑑𝑓
𝑑𝑥 =

𝑑𝑅𝑒(𝑓)
𝑑𝑥 + 𝑖

𝑑𝐼𝑚(𝑓)
𝑑𝑥  
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where 𝑖 = √−1, 𝑅𝑒(𝑓) is the real part of 𝑓, and 𝐼𝑚(𝑓) is the imaginary 
part of 𝑓. In other words, if 𝑓 = 𝑢 + 𝑖𝑣 is a complex-valued function of a 
real variable 𝑥, then the derivative of 𝑓 at the point 𝑥) is defined by 

𝑓@(𝑥)) = 𝑢@(𝑥)) + 𝑖𝑣@(𝑥)) 
where 𝑢@ and 𝑣@ are the derivatives of 𝑢 and 𝑣, respectively, and 𝑖 = √−1. 
However, the situation becomes more complicated when we consider 
functions that take complex inputs and give complex outputs. Let us 
consider a complex-valued function 𝑓 = 𝑢 + 𝑖𝑣 of a complex variable 𝑧 =
𝑥 + 𝑖𝑦. As in real analysis, we can define the “derivative” of a complex-
valued function 𝑓 = 𝑢 + 𝑖𝑣 of a complex variable 𝑧 = 𝑥 + 𝑖𝑦 as follows: 

𝑓@(𝑧)) = 𝑙𝑖𝑚b`→)
𝑓(𝑧) + 𝛥𝑧) − 𝑓(𝑧))

𝛥𝑧  
where 𝛥𝑧, being a complex number, can approach zero in more than one 
way; specifically, if we write 𝛥𝑧 = 𝛥𝑥 + 𝑖𝛥𝑦, then we observe that we can 
approach zero along the real axis 𝛥𝑦 = 0, or along the imaginary axis 
𝛥𝑥 = 0, or indeed along any direction. Therefore, this derivative exists if 
and only if its value does not depend on how 𝛥𝑧 approaches zero, and, in 
particular, if and only if the following equations are satisfied at the point 
(𝑥), 𝑦)): 

𝜕𝑢
𝜕𝑥 =

𝜕𝑣
𝜕𝑦 

and 
𝜕𝑣
𝜕𝑥 = −

𝜕𝑢
𝜕𝑦 

(where 𝑓 = 𝑢 + 𝑖𝑣 ). These equations are called the “Cauchy–Riemann 
equations” (the first formulation of these conditions appeared in an essay 
on fluid mechanics that was published by Jean-Baptiste le Rond 
d’Alembert in 1752). A complex-valued function 𝑓 = 𝑢 + 𝑖𝑣 of a complex 
variable 𝑧 = 𝑥 + 𝑖𝑦 is “differentiable” at 𝑧) if and only if 𝑓@(𝑧)) is well-
defined at 𝑧), and, in view of the foregoing, 

𝑓@(𝑧) =
𝜕𝑢
𝜕𝑥 + 𝑖

𝜕𝑣
𝜕𝑥 =

𝜕𝑣
𝜕𝑦 − 𝑖

𝜕𝑢
𝜕𝑦 

(according to the Cauchy–Riemann equations). The function 𝑓 is said to 
be “analytic” (or “holomorphic”) in a neighborhood 𝑈  of 𝑧)  if it is 
differentiable everywhere in 𝑈 (i.e., a function can be differentiable at a 
point, but analyticity of complex functions only makes sense in an open 
set).  If a function is analytic in the whole complex plane, then it is called 
“entire.”  
Having discussed differentiation of complex-valued functions, let us now 
discuss integration of complex-valued functions. Suppose that 𝑓(𝑥) =
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𝑔(𝑥) + 𝑖ℎ(𝑥) is a complex-valued function of a real variable 𝑥. Then the 
“integral” of 𝑓(𝑥) between the limits 𝑎 and 𝑏 is defined by 

U 𝑓(𝑥)𝑑𝑥 = U [𝑔(𝑥) + 𝑖ℎ(𝑥)]𝑑𝑥 = U 𝑔(𝑥)𝑑𝑥 + 𝑖U ℎ(𝑥)𝑑𝑥
0

1

0

1

0

1

0

1
 

where 𝑖 = √−1, and 𝑥 is a real variable. Obviously, the properties of such 
integrals may be deduced from the properties of the real integrals. 
Now, let us consider a complex-valued function 𝑓 = 𝑔 + 𝑖ℎ of a complex 
variable 𝑧 = 𝑥 + 𝑖𝑦. Let 𝑧) and 𝑧" be two points in the complex plane. A 
curve joining 𝑧) and 𝑧" can be defined as follows: imagine a point-particle 
moving in the complex plane, starting at some time 𝑡) at the point 𝑧), and 
ending at some later time 𝑡" at the point 𝑧", so that, at any given instant in 
time 𝑡) ≤ 𝑡 ≤ 𝑡" , this point-particle is at the point 𝑧(𝑡) in the complex 
plane. Thus, a curve joining 𝑧) and 𝑧" can be defined by a function 𝑧(𝑡) 
that takes points 𝑡 ∈ [𝑡), 𝑡"] to points 𝑧(𝑡) in the complex plane in such a 
way that 𝑧(𝑡)) = 𝑧)  and 𝑧(𝑡") = 𝑧" . In other words, a “(parametrized) 
curve” joining 𝑧) and 𝑧" is a continuous function 𝑧: [𝑡), 𝑡"] → ℂ such that 
𝑧(𝑡)) = 𝑧) and 𝑧(𝑡") = 𝑧"; and, obviously, 𝑧(𝑡) can be decomposed into 
its real part, which is the continuous real-valued function 𝑥(𝑡), and into its 
imaginary part, which is the continuous real-valued function 𝑦(𝑡). The 
curve 𝑧(𝑡) is “smooth” if and only if its velocity (first derivative with 
respect to 𝑡), that is, 𝑧@(𝑡), is a non-zero continuous function [𝑡), 𝑡"] → ℂ.  
Suppose that 𝛾  is a smooth curve joining 𝑧)  and 𝑧" , and let 𝑓(𝑧)  be a 
complex-valued function that is continuous on the curve 𝛾 (𝑧 ∈ ℂ). Then 
the “integral of 𝑓(𝑧) along 𝛾” is defined as follows: 

U 𝑓(𝑧)𝑑𝑧 = U 𝑓�𝑧(𝑡)�𝑧@(𝑡)𝑑𝑡
Y"

Y6¡
 

(as I have already mentioned, 𝑡 ∈ [𝑡), 𝑡"], 𝑧 = 𝑥 + 𝑖𝑦, 𝑥(𝑡)) = 𝑥), 𝑥(𝑡") =
𝑥", 𝑦(𝑡)) = 𝑦), 𝑦(𝑡") = 𝑦", 𝑧) = 𝑥) + 𝑖𝑦), and 𝑧" = 𝑥" + 𝑖𝑦").  
 

The Fundamental Theorem of Algebra  
(originally due to Carl Friedrich Gauss) 

 
The Fundamental Theorem of Algebra (also known as the D’Alembert–
Gauss theorem) is the statement that every univariate polynomial of 
positive degree with complex (possibly real) coefficients has at least one 
complex (possibly real) zero. Therefore, any non-zero polynomial 𝑝(𝑧) 
over ℂ can be written uniquely (except for order) as a product 
𝑝(𝑧) = 𝑘(𝑧 − 𝜆")(𝑧 − 𝜆#)…(𝑧 − 𝜆%), where 𝑘, 𝜆= ∈ ℂ, and 𝑛 = 𝑑𝑒𝑔(𝑝), 
meaning that a polynomial in a single variable of degree 𝑛 > 0  with 
complex (possibly real) coefficients has exactly 𝑛 complex (possibly real) 
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zeros, counting multiplicity (i.e., zeros of multiplicity 𝑘  are counted 𝑘 
times). 
In G. H. Hardy’s book A Course of Pure Mathematics, Appendix II 
(entitled “The proof that every equation has a root”), we can find an 
explanation of the proof of this theorem that is based on the concept of 
continuity and can be summarized as follows: In essence, we want to 
prove that every algebraic equation must have a root. First of all, we have 
to realize that a polynomial equation in the complex variable 𝑧 = 𝑥 + 𝑦𝑖 is 
equivalent to a pair of real equations in the variables 𝑥 and 𝑦, whose loci 
are curves in the plane. The proof of the Fundamental Theorem of Algebra 
involes the idea of curves winding around the origin. In the case of real 
functions, we can visualize the action of functions by sketching graphs in 
the plane. But, since the space of complex numbers has two real 
dimensions, the visualization of the action of functions of complex 
variables requires a four-dimensional space in which we have to construct 
the graph of a complex function of a complex variable. Alternatively, we 
can consider two complex planes, one for the domain of the function (the 
“input plane”) and the other for the range of the function (the “output 
plane”). In other words, if 𝑓(𝑧) is a function of the complex variable 𝑧, 
and if 𝑤 = 𝑓(𝑧), then, for each 𝑧 in the complex plane of the domain (i.e., 
in the “input plane”), we plot the corresponding point 𝑤 = 𝑓(𝑧) in the 
complex plane of the range (i.e., in the “output plane”), and we write 𝑧 =
𝑥 + 𝑦𝑖 and 𝑤 = 𝑢 + 𝑣𝑖. However, in order to understand the behavior of 
the function 𝑓, we must envisage 𝑧 as a moving point in the “input plane” 
(𝑧-plane) and consider how the image point 𝑓(𝑧) moves correspondingly 
through the “output plane” (𝑤-plane). In fact, as 𝑧 traces out a certain 
curve in the “input plane,” 𝑓(𝑧) traces out a curve in the “output plane,” 
and, by examining the images of special curves, we can analyze the 
behavior of the function 𝑓. In particular, if a curve in the “input plane” (𝑧-
plane) passes through a zero of 𝑓(𝑧), then its image in the “output plane” 
(𝑤-plane) must pass through the origin. Hence, the problem of showing 
that 𝑓 has a zero reduces to the problem of showing that some image curve 
must pass through the origin.   
Now, let us become more specific: We shall continue thinking in terms of 
a complex plane called the “input plane,” on which we locate the input 
values of the polynomial, and these inputs are mapped to outputs on 
another complex plane, the “output plane.” For, instance, given a 
polynomial 𝑝(𝑧) = 𝑎)𝑧% + 𝑎"𝑧%E" +⋯+ 𝑎% , if 𝑧 = 0, then 𝑝(𝑧) = 𝑎% . 
Hence, we know that the zero point on the input plane goes to the point 𝑎% 
on the output plane (𝑎% is a complex constant). This is not really helpful, 
because we wanted to get a point to go to zero, not to 𝑎%. However, we 
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know that, if we take 𝑧 to have an enormously large magnitude, then 𝑧% 
will have that magnitude to the 𝑛th power, and it will be very much bigger 
than 𝑧%E" . Therefore, for sufficiently large 𝑧’s (i.e., |𝑧| ≫ 0), 𝑧  ranges 
around a big circle centered at the origin of the the input plane (we get a 
circle because we can have any argument, any angle), and 𝑧% would be 
even bigger. Let the constant term 𝑎% of 𝑝(𝑧) be non-zero; otherwise, 𝑧 =
0 is a root. Consider the circuit created by 𝑝(𝑧) as 𝑧 ranges around a very 
small circle centered at the origin. If we make the circle sufficiently small, 
then all the terms involving powers of 𝑧 are insignificant compared to the 
constant 𝑎% , and, therefore, we realize that the image of the circle is 
contained in a circle winding around 𝑎% that cannot wind around the origin 
(this follows from the (epsilon-delta)-definition of continuity, setting, for 
instance, 𝜀 = 𝑎% 2⁄ ). However, for a very large circle (i.e., when |𝑧| ≫ 0), 
the highest power of 𝑧 dominates, and, therefore, the image of the circle 
will wind around the origin (𝑛 times, where 𝑛 is the degree of 𝑝(𝑧)). Due 
to the continuity of 𝑝(𝑧), as the radius of the circle grows, there must be 
some point in between where the image passes through the origin, namely, 
there must exist a zero of the polynomial (as required).  
Regarding the exact number of zeros, we can think as follows: If 𝜆 is 
complex (possibly real) zero of the polynomial 𝑝(𝑧), where 𝑑𝑒𝑔�𝑝(𝑧)� =
𝑛 ≥ 1, with complex (possibly real) coefficients, then, by dividing this 
polynomial by 𝑧 − 𝜆, we obtain 𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧) + 𝑟, where 𝑞(𝑧) is a 
polynomial of degree 𝑛 − 1, and 𝑟 is a constant. But  𝑝(𝜆) = 𝑟 = 0, and, 
therefore, 𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧). Continuing by induction, we conclude that 
𝑝(𝑧), which is an arbitrary polynomial of degree 𝑛 ≥ 1, has exactly 𝑛 
complex (possibly real) zeros (although some might be repeated), quod 
erat demonstrandum.  
 

The Applications of Complex Numbers in  
Quantum Physics 

 
Everything that we can definitively say about the physical world, and 
about the past of the physical world, is based on the classical worldview, 
which is founded on two major theoretical pillars, depending on the scale 
of our analysis: Newtonian mechanics and the general theory of relativity. 
In fact, the general theory of relativity is a geometric theory of gravitation 
and of space-time, explaining the behavior of the universe on the large 
scale. On the other hand, the quantum world is not directly observable, and 
it can be used only for calculating probabilities. Hence, quantum 
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mechanics, pioneered by Niels Bohr, Werner Heisenberg, Wolfgang Pauli, 
and Erwin Schrödinger, is a theory of physical probability. 
In quantum physics, everything is described in terms of wave functions, a 
wave function is a vector in a complex Hilbert space, and the vector 
coefficients are complex numbers. According to Paul Dirac’s notation, in 
quantum physics, vectors are symbolized in the following way, known as 
the bra-ket notation:  

|𝛹〉 = 𝑎" é
1
0
0
ë + 𝑎# é

0
1
0
ë+𝑎* é

0
0
1
ë, where 𝑎", 𝑎#, 𝑎* ∈ ℂ. 

The aforementioned type of brackets helps us to keep track of whether a 
vector is a row vector or a column vector: |𝛹〉 is a column vector, whereas 
〈𝛹| is a row vector. In quantum mechanics, if we convert a row vector to a 
column vector, then we have to take the complex conjugate of each 
coefficient. In other words, for instance,  

|𝛹〉 = é
𝑎"
𝑎#
𝑎*
ë and 〈𝛹| = (𝑎"∗ , 𝑎#∗ , 𝑎*∗), where 𝑎"∗ , 𝑎#∗ , 𝑎*∗  are, respectively, the 

complex conjugates of 𝑎", 𝑎#, 𝑎*. 
In quantum mechanics, all vectors describe probabilities. Usually, we 
choose the basis of the space under consideration in such a way that the 
basis vectors correspond to possible measurement outcomes; for instance: 

|𝛹〉 = 𝑎" é
1
0
0
ë + 𝑎# é

0
1
0
ë+𝑎* é

0
0
1
ë corresponds to  

|𝛹〉 = 𝑎"|𝑋〉 + 𝑎#|𝑌〉 + 𝑎*|𝑍〉.  
Hence, the probability of a particular measurement outcome is the absolute 
square of the scalar product with the basis vector that corresponds to the 
outcome; so that, for instance, the probability of measuring 𝑋 is   
|〈𝑋|𝛹〉|# = 𝑎"𝑎"∗, 
and this is known as Born’s Rule. In other words, the probability density 
of finding a particle at a given point, when measured, is proportional to the 
square of the amplitude of the particle’s wave function at that point. In 
quantum physics, the gradient of a wave function is denoted as follows: 
∇|𝛹〉 = �

�V
|𝛹〉𝚤̂+ �

�W
|𝛹〉𝚥̂ + �

�`
|𝛹〉𝑘\ . 

In order to understand quantum physics, we must understand the 
difference between the potential mode of being and the actual mode of 
being. In the context of quantum mechanics, a molecule can be thought of 
like a mountain range (described by a wave function) filled with infinitely 
many energy steps, where each energy step, representing a quantum of 
energy, is a quantum state. A molecule stands on one of these quantum 
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states, and all the other infinitely many quantum states are empty, they are 
virtual states. Moreover, each quantum state is characterized by a wave 
form. When a system stands on one of these states, the other states also 
exist, but potentially. This means that they cannot be observed, and they 
actually look empty. Those virtual states are potential modes of being, by 
virtue of which a molecule can jump into other quantum states. Due to 
Heisenberg’s uncertainty principle, we know that molecules can make 
“quantum jumps,” because they have empty states into which they can 
jump. Of course, understanding the difference between “actuality” and 
“potentiality,” we must never confuse the realm of potentiality with the 
realm of actuality―that is, we must never attribute actuality to probability; 
and quantum physics is a physical probability theory. 
A successful scientific theory (such as the general theory of relativity, 
quantum mechanics, etc.) is a mathematical framework―that is, an 
abstract system―from which we can derive predictions that agree with 
observation. Therefore, physical objects, such as time, black holes, quarks, 
bosons, etc., which are said to “exist actually” in the physical world are 
names that physicists give to mathematical structures or concepts that are 
necessary parts of successful hypothetico-deductive systems. In physics, a 
hypothetico-deductive system is said to be successful if the predictions, or 
the generalizations, that derive from it agree with observations and logic, 
and then the physical objects that constitute necessary parts of such a 
hypothetico-deductive system (which is consistent with both observation 
and mathematics) are said to exist actually in the physical universe. 
As already mentioned, in quantum physics, every system is described by a 
wave function, usually denoted by the Greek letter 𝛹 , from which 
physicists calculate the probability of obtaining a specific measurement 
outcome. In other words, this wave function is a way of studying the realm 
of potentiality in a scientifically rigorous way. For instance, from this 
wave function, one can calculate that a particle that enters a beam-splitter 
has a 50% chance of going left and a 50% chance of going right. This is a 
way of analyzing that particle’s potential mode of being. On the other 
hand, we can analyze that particle’s actual mode of being by measuring 
the given particle. 
After measuring the particle, we know with 100% probability where it is. 
Therefore, we must update our probabilistic study of the particle under 
consideration accordingly and with it the wave function. This update is 
known as the “wave function collapse,” and it is an observational 
requirement that stems from the fact that, by measuring the particle, we 
have achieved a transition from potentiality to actuality. At the level of 
potentiality, or when we study the potential mode of being of a particle, 
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that particle may be 50% at point 𝐴 and 50% at point 𝐵; but, at the level 
of actuality, or when we study the actual mode of being of a particle by 
managing to measure it, that particle is 100% in a particular position, and 
we never observe a particle that is 50% at point 𝐴 and 50% at point 𝐵. If 
we observe a particle at all, then we find that it is either in a particular 
position or not.  
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Chapter 10 
Basic Principles of Ordinary Differential 

Equations 
 
The Fundamental Theorem of Infinitesimal Calculus is a rigorous 
explanation of the dialectical relationship between integration and 
differentiation, and, thus, it is a major underpinning of the theory of 
differential equations. Moreover, in Chapter 8, I explained the significance 
of the method of infinitesimal calculus in general.  
By the term “ordinary differential equation,” we refer to any equation that 
contains an unknown function, some of its derivatives, and an independent 
variable. The “order” of a differential equation is the order of the highest-
ordered derivative occurring in the given differential equation. The 
fundamental problem of the theory of differential equations is to find all of 
the functions 𝑦 = 𝑓(𝑥)  that satisfy some differential equation. Every 
function 𝑦 = 𝑓(𝑥) that satisfies some differential equation is said to be a 
“solution” of the given differential equation. 
A family of functions  
𝑦 = 𝑓(𝑥, 𝑐)                                                                                                (∗)  (∗) 
where 𝑐  is a constant belonging to 𝐴 ⊆ ℝ , is said to be a “general 
solution” of a differential equation 
𝑦′ ≡ ;W

;V
= 𝐹(𝑥, 𝑦)                                                                                    (∗∗)  (∗∗) 

if, for every 𝑐 ∈ 𝐴, (∗) is a solution to (∗∗). The solution that we obtain for 
each particular value of 𝑐  is said to be a “partial solution” of the 
differential equation (∗∗). 
The theory of differential equations is a branch of mathematics in which 
the study of theoretical problems can hardly be distinguished from the 
study of practical problems, and dynamics, which is a characteristic aspect 
of modern mathematics, is clearly manifested. Moreover, the theory of 
differential equations has played an important role in the transition from 
the eighteenth-century infinitesimal calculus to advanced mathematical 
analysis and modern geometry. One of the major advantages of differential 
equations is that they constitute one of the most important underpinnings 
and instruments of the “mathematization” (i.e., of the “mathematical 
modeling”) of many problems both in the context of the natural sciences 
and in the context of the social sciences.  
The systematic study of differential equations began in the 1670s by 
Leibniz. The methods that I present in this chapter are based on the 
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scientific works of Leibniz, Newton, the Bernoulli brothers, Euler, Riccati, 
Lagrange, and Cauchy.   
 

General Methods for the Solution of Differential 
Equations 

 
In this section, we shall study different types of ordinary differential 
equations, and we shall present general methods for finding their general 
solutions.  

 
The Method of Separation of Variables 

 
This method was originally developed by Leibniz. If a differential 
equation may be written in the form 
;W
;V
= 𝑓(𝑥)𝑔(𝑦), 

or, similarly, in the form 𝑓(𝑥) + 𝑔(𝑦) ;W
;V
= 0, then it is said to be solvable 

by “separation of variables” as follows: 
∫ ;W
:(W)

=∫𝑓(𝑥) 𝑑𝑥 + 𝑐. 
Remark: In case we have a differential equation of the form 
𝑦(%) = 𝑓(𝑥) ⇔ ;'W

;V'
= 𝑓(𝑥),                                                                (1)       (1) 

then, by integrating (1), we obtain 
;'2"W
;V'2"

= ∫𝑓(𝑥)𝑑𝑥 + 𝑐".                                                                        (2)  (2) 
By setting ∫𝑓(𝑥)𝑑𝑥 = 𝑓" (𝑥) and then integrating (2), we obtain 
;'2#W
;V'2#

= ∫𝑓"(𝑥)𝑑𝑥 + 𝑐" 𝑥 + 𝑐#.   (3) 
Repeating the same process, we obtain the general solution to (1), which is 
of the form 
𝑦 = 𝑤(𝑥) + 5"

(%E")!
𝑥%E" + 5#

(%E#)!
𝑥%E# +⋯+ 𝑐%, 

meaning that the general solution to 𝑦(%) = 𝑓(𝑥) can be obtained through 
𝑛 successive integrations. 
For instance, let us find the general solution to the differential equation 
𝑥#𝑑𝑦 − 𝑦𝑑𝑥 = 0, 
and then let us find its partial solution that satisfies the condition 𝑦(2) = 4 
(i.e., the integral curve that passes through the point 𝑃(2,4)). We shall 
apply the method of separation of variables: 
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𝑥#𝑑𝑦 − 𝑦𝑑𝑥 = 0 ⇒ ;W
W
= ;V

V#
⇒ ;W

W
= 𝑥E#𝑑𝑥 ⇒ ∫ ;W

W
= ∫𝑥E#𝑑𝑥 ⇒ 𝑙𝑛𝑦 =

V2"

E"
+ 𝑐 ⇒ 𝑙𝑛𝑦 = − "

V
+ 𝑐 ⇒ 𝑦 = 𝑒E

"
5B5 ⇒ 𝑦 = 𝑒5𝑒E

"
5 ⇒ 𝑦 = 𝑘𝑒E

"
5, which 

is the general solution to the given differential equation. In order to find 
the partial solution for which 𝑥 = 2 ⇒ 𝑦 = 4 (i.e., the integral curve that 
passes through the point 𝑃(2,4)), we must determine the constant 𝑘. If we 
substitute 𝑥 = 2 and 𝑦 = 4 into the general solution, then we obtain 4 =
𝑘𝑒E

"
# ⇒ 𝑘 = 4𝑒

"
# = 4√𝑒. Hence, if we substitute this value of 𝑘 into the 

general solution, then we shall obtain the required partial solution, namely, 
𝑦 = 4√𝑒𝑒E

"
5. 

 
Homogeneous Differential Equations 

 
The systematic study of homogeneous differential equations is originally 
due to Johann Bernoulli, who first applied the term “homogeneous” to 
differential equations in his research paper “On the Integration of 
Differential Equations” (1726). A differential equation is said to be 
“homogeneous” if it may be written in the form 
𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑔(𝑥, 𝑦)𝑑𝑦 = 0,                                                                     (1)  (1) 
where the functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are homogeneous with respect to 
𝑥 and 𝑦 of the same degree of homogeneity, meaning that  
𝑓(𝑥, 𝑦) may be written in the form 𝑥6𝐴 ÃW

V
Ä and                                      (2)  (2) 

𝑔(𝑥, 𝑦) may be written in the form 𝑥6𝐵 ÃW
V
Ä.                                           (3)  (3) 

Thus, due to (2) and (3), (1) becomes (for 𝑥6 ≠ 0): 

𝐴 ÃW
V
Ä 𝑑𝑥 + 𝐵 ÃW

V
Ä 𝑑𝑦 = 0 ⇒ ;W

;V
= −

(�95�

L�95�
, 

which ultimately reduces to the form  
;W
;V
= 𝑓 ÃW

V
Ä ⇔ 𝑦′ = 𝑓 ÃW

V
Ä,                                                                         (4)  (4) 

where 𝑓 ÃW
V
Ä is a homogeneous function whose degree of homogeneity is 

equal to zero. In order to find the general solution to (4), we set  
W
V
= 𝑤 ⇔ 𝑦 = 𝑥𝑤                                                                                      (5)  (5) 

where 𝑤 is a function of the independent variable 𝑥, that is, 𝑤 = 𝑤(𝑥).  
By differentiating (5), we obtain 
𝑑𝑦 = 𝑤𝑑𝑥 + 𝑥𝑑𝑤, 
and, after dividing by 𝑑𝑥, we obtain 
;W
;V
= 𝑤 + 𝑥 ;^

;V
.                                                                                          (6)  (6) 

Therefore, due to (5) and (6), the differential equation (4) becomes 
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𝑤 + 𝑥 ;^
;V
= 𝑓(𝑤) ⇒ 𝑥 ;^

;V
= 𝑓(𝑤) − 𝑤 ⇒ ;^

](^)E^
= ;V

V
.                         (7) (7) 

The differential equation (7), which is equivalent to (4), and, therefore, 
equivalent to (1), can be solved by the method of separation of variables. 
In particular, (7) yields: 

∫ ;^
](^)E^

= 𝑙𝑛𝑥 + 𝑙𝑛𝑐 ⇒ ∫ ;^
](^)E^

= 𝑙𝑛𝑐𝑥 ⇒ 𝑐𝑥 = 𝑒∫
?K

>(K)2K.                  (8)  (8) 

In (8), we have to compute the integral ∫ ;^
](^)E^

 and then to make the 

substitution 𝑤 = W
V
 in order to ultimately find the general solution to (1). 

For instance, let us solve the differential equation  
(𝑥# − 𝑦#)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0.  
This differential equation is homogeneous, because the expressions 
𝑓(𝑥, 𝑦) = 𝑥# − 𝑦# and 𝑔(𝑥, 𝑦) = 2𝑥𝑦 are homogeneous with respect to 𝑥 
and 𝑦, and, in particular, their degree of homogeneity is 2. We set 
W
V
= 𝑤 ⇔ 𝑦 = 𝑥𝑤                                                                                      (∗)  (∗) 

where 𝑤 = 𝑤(𝑥). By differentiating (∗) with respect to 𝑥, we obtain 
𝑦′ = 𝑤 + 𝑥 ;^

;V
.                                                                                         (∗∗)  (∗∗) 

Due to (∗) and (∗∗), the given differential equation becomes 
(𝑥# − 𝑥#𝑤#) + 2𝑥#𝑤 Ã𝑤 + 𝑥 ;^

;V
Ä = 0 ⇒ 𝑥#(1 − 𝑤#) + 2𝑥#𝑤 Ã𝑤 +

𝑥 ;^
;V
Ä = 0, and, because, by (∗), 𝑥 ≠ 0, we divide the last expression by 

𝑥# to obtain 
(1 − 𝑤#) + 2𝑤 Ã𝑤 + 𝑥 ;^

;V
Ä = 0 ⇒ 1 −𝑤# + 2𝑤# + 2𝑥𝑤 ;^

;V
= 0 ⇒

1 +𝑤# + 2𝑥𝑤 ;^
;V
= 0 ⇒ #^;^

^#B"
= − ;V

V
⇒ ∫ #^;^

^#B"
=

−∫ ;V
V
⇒ 𝑙𝑛(𝑤# + 1) = −𝑙𝑛𝑥 + 𝑙𝑛𝑐 ⇒ 𝑙𝑛(𝑤# + 1) = 𝑙𝑛 Ã5

V
Ä ⇒

𝑤# + 1 = 5
V
. 

By the substitution 𝑤 = W
V
, we find that the general solution to the given 

differential equation is 𝑦# + 𝑥# = 𝑐𝑥. 
It is worth pointing out that homogeneous equations have important 
applications in electromagnetism, communication technology, and optics. 
For instance, homogeneous equations formulated by Maxwell 
(specifically, 𝛻3⃗ ∙ 𝐸3⃗ = 𝜌 𝜀)⁄  and 𝛻3⃗ ∙ 𝐵3⃗ = 0, where 𝐸3⃗  is the electric field, 𝐵3⃗  
is the magnetic field, 𝜌 is the electric charge density, and 𝜀) is the vacuum 
permittivity, and, of course, 𝛻3⃗ ∙  is the divergence operator) predict the 
existence of electromagnetic waves, which are fundamental in 
communication technology, and they are essential in optics, too, because 
they explain the behavior of light, including reflection (change in the 
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direction of waves when they bounce off a barrier), refraction (change in 
the direction of waves as they pass from one medium to another), and 
diffraction (change in the direction of waves as they pass through an 
opening or around a barrier in their path), and optics is fundamental in 
various technologies (e.g., lenses, microscopes, telescopes, lasers, and 
fiber optics communication). Moreover, homogeneous Maxwell’s 
equations underpin our understanding of the electromagnetic spectrum, 
and this knowledge is important in astronomy, medical imaging (X-rays 
and MRI), and spectroscopy (the study of absorption and emission of light 
and other radiation by matter). The equation 𝛻3⃗ ∙ 𝐸3⃗ = 𝜌 𝜀)⁄  implies that the 
electric field produced by electric charge diverges from positive charge 
and converges upon negative charge; and the equation 𝛻3⃗ ∙ 𝐵3⃗ = 0 implies 
that the divergence of the magnetic field at any point is zero, as well as the 
assumption that there no magnetic monopoles (a magnetic flux that is 
generated from magnetic materials is a closed loop, specifically, the 
direction of the flux lines is from the north pole to the south pole in the 
atmosphere, so that, in the absence of any poles, these flux lines are 
unthinkable). 
 

Differential Equations Reducible to Homogeneous 
Differential Equations 

 
The following methodology is originally due to Johann Bernoulli. The 
differential equations of the form  
;W
;V
= 𝑓 Ã1"VB0"WB5"

1#VB0#WB5#
Ä,                                                                                 (∗)  (∗)  

where 𝑎", 𝑏", 𝑐", 𝑎#, 𝑏#, 𝑐# are real constants, are reducible to homogeneous 
differential equations. In order to solve ( ∗ ) by reducing it to a 
homogeneous differential equation, we distinguish the following two 
cases: 
 
Case I: If 1"

1#
≠ 0"

0#
⇔ 𝑎"𝑏# − 𝑎#𝑏" ≠ 0 , then we can find the general 

solution to (∗) as follows: We solve the system of equations 

{𝑎"𝑥 + 𝑏"𝑦 + 𝑐" = 0
𝑎#𝑥 + 𝑏#𝑦 + 𝑐# = 0Ï.                                                                              (1)  (1) 

Let (𝑥, 𝑦) = (𝑥), 𝑦)) be the solution to (1). Then we set 
�𝑥 = 𝑥) +𝑤
𝑦 = 𝑦) + 𝑣

¬,                                                                                           (2)  (2) 
where 𝑤 = 𝑤(𝑥) and 𝑣 = 𝑣(𝑥), and, by differentiating (2), we obtain  

{𝑑𝑥 = 𝑑𝑤
𝑑𝑦 = 𝑑𝑣Ï,                                                                                                (3)  (3) 
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so that, by (2) and (3), the differential equation (∗) becomes  
;w
;^
= 𝑓 Ã1"(V6B^)B0"(W6Bw)B5"

1#(V6B^)B0#(W6Bw)B5#
Ä ⇒ ;w

;^
= 𝑓 Ã1"V6B0"W6B5"B1"^B0"w

1#V6B0#W6B5#B1#^B0#w
Ä. 

But 𝑎"𝑥) + 𝑏"𝑦) + 𝑐" = 0 and 𝑎#𝑥) + 𝑏#𝑦) + 𝑐# = 0, because (𝑥), 𝑦)) is 
the solution to (1), and, therefore, 
;w
;^
= 𝑓 Ã1"^B0"w

1#^B0#w
Ä.                                                                                     (4)  (4)  

The differential equation (4) is homogeneous with respect to 𝑣 and 𝑤, and, 
in order to find its general solution, we set w

^
= 𝑧 ⇔ 𝑣 = 𝑤𝑧, where 𝑧 =

𝑧(𝑤), and we work according to the method of solving homogeneous 
differential equations, which I have already explained. When we find the 
general solution to (4), we set 𝑧 = w

^
, and then, by (2), we set 𝑤 = 𝑥 − 𝑥) 

and 𝑣 = 𝑦 − 𝑦) in order to ultimately find the general solution to (∗).  
 
Case II: If 1"

1#
= 0"

0#
= 𝜆 ⇒ 𝑎"𝑏# − 𝑎#𝑏" = 0, then we can find the general 

solution to (∗) as follows: Because 𝑎" = 𝜆𝑎# and 𝑏" = 𝜆𝑏#, (∗) becomes 
;W
;V
= 𝑓 ÃM(1#VB0#W)B5"

1#VB0#WB5#
Ä.                                                                             (5)  (5) 

We set 𝑎#𝑥 + 𝑏#𝑦 = 𝑤 , where 𝑤 = 𝑤(𝑥) , and, by differentiating with 
respect to 𝑥, we obtain 𝑎# + 𝑏#𝑦′ = 𝑤 ′ ⇔ 𝑦′ = "

0#
(𝑤 ′ − 𝑎#), so that (5) 

becomes 
"
0#
Ã;^
;V
− 𝑎#Ä = 𝑓 ÃM^B5"

^B5#
Ä.                                                                        (6)  (6) 

The differential equation (6) can be solved by the method of separation of 
variables, which I have already explained. When we find the general 
solution to (6), we set 𝑤 = 𝑎#𝑥 + 𝑏#𝑦  in order to ultimately find the 
general solution to (∗). 
 

First-Order Linear Differential Equations 
 

The following methodology is originally due to L. Euler and Leibniz. The 
general form of these equations is  
;W
;V
+ 𝐴𝑦 = 𝐵                                                                                              (∗)  (∗) 

where 𝐴  and 𝐵  are functions of 𝑥 , that is, 𝐴 = 𝐴(𝑥) and 𝐵 = 𝐵(𝑥) . In 
other words, the dependent variable and all of its derivatives appear in a 
linear fashion (recall that “linearity” is a property of functions, meaning 
that a function 𝑓(𝑥) is linear if and only if 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) and 
𝑓(𝑘𝑥) = 𝑘𝑓(𝑥) for any constant 𝑘). The general solution to (∗) is: 

𝑦 = 𝑒E∫(;V å𝑐 +U𝐵𝑒∫(;V 𝑑𝑥æ 
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where 𝑐 is an arbitrary constant. 
Proof: If 𝐵(𝑥) = 0, then (∗) becomes ;W

;V
+ 𝐴𝑦 = 0, and it is said to be a 

homogeneous linear differential equation, which can be solved by 
separation of variables: ;W

W
= −𝐴𝑑𝑥 ⇒ ∫ ;W

W
= −∫𝐴𝑑𝑥 + 𝑐 ⇒ 𝑙𝑛𝑦 =

−∫𝐴𝑑𝑥 + 𝑐 ⇒𝑦 = 𝑒E∫(;VB5 = 𝑒5𝑒E∫(;V = 𝑐𝑒E∫(;V , which is the 
general solution to the aforementioned homogeneous linear differential 
equation. If 𝑐 = 1, then we obtain its partial solution 𝑦" = 𝑒E∫(;V. 
If 𝐴(𝑥) and 𝐵(𝑥) are constant functions, then (∗) is solvable by separation 
of variables.  
In order to find the general solution to (∗), we consider a new unknown 
function 𝑧 of 𝑥 such that   
𝑦 = 𝑦"𝑧,                                                                                                     (1) 
where, as I have already mentioned, 𝑦" is a partial solution to ;W

;V
+ 𝐴𝑦 =

0.  (1) 
By differentiating (1) with respect to 𝑥, we obtain 
𝑦′ = 𝑦"′ 𝑧 + 𝑦"𝑧′.                                                                                        (2)  (2) 
Hence, by (1) and (2), the differential equation (∗) becomes 
𝑦"′ 𝑧 + 𝑦"𝑧′ + 𝐴𝑦"𝑧 = 𝐵 ⇔ (𝑦"′ + 𝐴𝑦")𝑧 + 𝑦"𝑧′ = 𝐵.  
But 𝑦"′ + 𝐴𝑦" = 0 , since 𝑦"  is a partial solution to ;W

;V
+ 𝐴𝑦 = 0 , and, 

therefore, since 𝑦" = 𝑒E∫(;V,  
𝑦"𝑧′ = 𝐵 ⇒ 𝑒E∫(;V𝑧′ = 𝐵 ⇒ 𝑧′ = 𝐵𝑒∫(;V ⇒ 𝑧 = ∫𝐵𝑒∫(;V𝑑𝑥 + 𝑐. 
Because 𝑦" = 𝑒E∫(;V  and 𝑧 = ∫𝐵𝑒∫(;V𝑑𝑥 + 𝑐 , equation (1) gives the 
general solution to (∗), which is  
𝑦 = 𝑒E∫(;V�𝑐 + ∫𝐵𝑒∫(;V 𝑑𝑥�.■  
A simple example is the following: The differential equation 𝑦@ − 2𝑥𝑦 =
𝑥 − 𝑥* is a linear differential equation, whose general solution is given by 
the above formula where 𝐴 = −2𝑥 and 𝐵 = 𝑥 − 𝑥*, so that  

𝑦 = 𝑒∫ #V;V å𝑐 +U(𝑥 − 𝑥*) 𝑒E∫#V;V𝑑𝑥æ = 𝑐𝑒V# +
1
2𝑥

# 

(the above formula is a general method for solving linear differential 
equations). 
Remark: If 𝑦 is the general solution to (∗), and if 𝑦" and 𝑦# are two partial 
solutions to (∗), then the ratio 

𝑦 − 𝑦"
𝑦# − 𝑦"

 

is constant. The difference between two solutions of the linear differential 
equation (i.e., of (∗)) yields a solution of the corresponding homogeneous 
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linear differential equation (i.e., of 𝑦@ + 𝐴𝑦 = 0). If 𝑦" is a partial solution 
to (∗), then the general solution to (∗) is given by 

𝑦 = 𝑐𝑒E∫(;V + 𝑦" 
(that is, the general solution of the linear differential equation is the sum of 
the general solution of the corresponding homogeneous linear differential 
equation and a partial solution of the linear differential equation). For 
instance, given the linear differential equation 
𝑦@ + VE"

V
𝑦 = −𝑥, 

we can find its general solution, by working as follows: Firstly, we shall 
find the general solution to the corresponding homogeneous linear 
differential equation, that is, to 𝑦@ + VE"

V
𝑦 = 0 , and, in particular, we 

obtain:  𝑦@ + VE"
V
𝑦 = 0 ⇒ ;W

W
= "EV

V
𝑑𝑥 ⇒ ∫ ;W

W
= ∫ ;V

V
− ∫𝑑𝑥 + 𝑐" ⇒ 𝑦 =

5V
Z5

. 
Now, we shall find a partial solution to the original linear differential 
equation, and it will be of the form 
𝑦 = 𝑐(𝑥) V

Z5
. 

Thus, 𝑦 = 𝑐(𝑥) V
Z5
⇒ 𝑦@ = 𝑐@(𝑥)𝑥𝑒EV + 𝑐(𝑥)𝑒EV − 𝑐(𝑥)𝑥𝑒EV. 

Then, by substituting 𝑦 = 5V
Z5

 and 𝑦@ = 𝑐@(𝑥)𝑥𝑒EV + 𝑐(𝑥)𝑒EV − 𝑐(𝑥)𝑥𝑒EV 
into the original linear differential equation, we obtain 
𝑐@(𝑥)𝑥𝑒EV = −𝑥 ⇒ 𝑐@(𝑥) = −𝑒V ⇒ 𝑐(𝑥) = −∫𝑒V𝑑𝑥 ⇒ 𝑐(𝑥) = −𝑒V, 
so that 𝑦 = 𝑐(𝑥) V

Z5
  yields 𝑦 = −𝑒V V

Z5
⇒ 𝑦 = −𝑥. 

Hence, the general solution to the original linear differential equation is 
the sum of 𝑦 = 5V

Z5
 and 𝑦 = −𝑥, that is, 𝑦 = 5V

Z5
− 𝑥. 

 
Linear Systems (LS), Nonlinear Systems (NLS), and 

Linearization of Nonlinear Differential Equations 
 

By a “nonlinear system,” we mean a phenomenon whose behavior can be 
described by a model that is a nonlinear differential equation. The 
characteristic properties of linear and nonlinear systems can be studied in 
relation to the following concepts and issues: 

• The principle of superposition: This principle, originally stated 
by Daniel Bernoulli (1775), consists of two properties: (i) the 
sum of any number of linearly independent partial solutions of a 
differential equation is also a solution of the given differential 
equation; and (ii) any constant multiple of a solution is also a 
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solution. This principle holds in linear systems (LS), but, 
generally, it does not hold in nonlinear systems (NLS). 

• The global property: This property characterizes the LS, but not 
the NLS; that is, in LS, the local behavior of the solutions yields 
their global behavior, whereas, in general, the global behavior of 
a NLS cannot be deduced from its local behavior. The solutions 
of NLS may not be extendible beyond a certain time or may not 
be defined for all values of time. 

• Limit cycles: Periodic phenomena of LS and NLS correspond to 
closed trajectories, called “cycles,” whose period is a finite 
number. If the cycles are isolated, in the sense that, in a 
neighborhood of them, no other cycles exist, then they are called 
“limit cycles.” Limit cycles may exist in a NLS but never in a LS. 
If a LS has a periodic solution 𝑦, then, due to the principle of 
superposition, 𝑘𝑦 is also a periodic solution for any constant 𝑘; 
therefore, no limit cycles exist in LS. On the other hand, the 
special nature of the nonlinearities of some nonlinear differential 
equations (NLDE) may lead to limit cycles. For several 
examples, see: E. C. Zeeman, “Stability of Dynamical Systems,” 
Nonlinearity, vol. 1, 1988, pp. 115–155.  

• Self-excited oscillations: Self-excited oscillations are special 
periodic phenomena corresponding to limit cycles, and, therefore, 
they may be produced in NLS, but never in LS. In particular, they 
may be produced in NLS where the nonlinearities appear in 
damping forces (i.e., forces that act to “damp,” reduce, attenuate 
the amplitude of an oscillation) and no external force is exerted. 

• Subharmonic phenomena: Subharmonic phenomena may be 
produced in NLS, but, generally, not in LS. They occur when the 
systems undergo external periodic forces. If the frequency of the 
external force is 𝜔, then the system on which the force is exerted 
may undergo periodic motions with frequency �

%
, where 𝑛 =

2,3,…, and such motions are called “subharmonic oscillations” of 
order "

%
, where 𝑛 = 2,3,… For instance, an aerodynamical model 

of subharmonic oscillations may be due to the fact that certain 
parts of an airplane may incur violent oscillations by an engine 
running with frequency much larger than the frequency of the 
oscillating parts. 

• Amplitude and frequency of periodic solutions of free linear and 
nonlinear systems: The amplitude of the periodic solutions of free 
(unforced) LS is independent of the frequency, and the frequency 
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is the same for all trajectories. By contrast, in NLS, the amplitude 
depends on the frequency, and the frequency changes from one 
trajectory to another. 

• Resonance phenomena: The resonance phenomena may occur in 
forced LS and NLS when the free frequency of the system 
becomes (almost) equal to the frequency of the external force. 
For instance, when a group of soldiers marches in step over a 
suspension bridge, the feet of the group exert a periodic force on 
the bridge; and, if the period of marching equals the natural 
period of the bridge, then resonance occurs, and the sustained 
bridge oscillations may even bring on the collapse of the bridge. 
However, the nonlinearity of a NLS can prevent resonance, even 
in the absence of damping, because, as frequency is changed, 
resonance ceases. For a detailed study of resonance phenomena, 
see: J. K. Hale and J. P. LaSalle, “Differential Equations: 
Linearity vs. Nonlinearity,” SIAM Review, vol. 5, 1963, pp. 249–
272.  

• Hysteresis phenomena: Jump discontinuities, or hysteresis 
phenomena, may occur in damped forced NLS, but not in LS. In 
particular, there are regions where the amplitude of the 
oscillations jumps discontinuously, and, in these regions, the 
oscillations are unstable. In general, “hysteresis” means a lag 
between input and output in a system upon a change in direction. 
In engineering, the problem of vibration is of great importance, 
since it refers to the oscillation or movement of objects or 
systems around an equilibrium point, and, in certain scenarios, 
excessive vibrations can give rise to several issues, ranging from 
discomfort and noise to catastrophic system failure. In particular, 
vibration problems occur when different variables, such as mass, 
elasticity, and damping, interact within a system, and, when these 
variables create a disruptive back-and-forth movement, this is a 
key sign that there is a vibration problem, specifically, the system 
is not perfectly balanced. Mathematically, the vibration problem 
can be formulated using Newton’s Second Law of Motion as 
follows: 

𝑚𝑎 = 𝐹 − 𝑏𝑣 
where 𝑚  denotes the object’s mass, 𝑎  denotes acceleration, 𝐹 
denotes the net force acting on the object, and 𝑏𝑣 accounts for the 
damping force, where 𝑏 is the damping coefficient, and 𝑣 denotes 
velocity.  
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• Combination frequencies: Hermann von Helmholtz and H. 
Poincaré were the first scientists to observe that, except for 
certain fundamental frequencies 𝜔" and 𝜔# in a NLS, there exist 
solutions of the same differential equation with frequencies 𝜔 =
𝑎𝜔" + 𝑏𝜔# , where 𝑎  and 𝑏  are integers; and these are called 
“combination frequencies” of the system, and they are 
phenomena of NLS (difficulties emanating from combination 
frequencies may be circumvented by using viscous damping in 
the system; notice that, when an oscillating body is subjected to 
viscous drag, the kinetic energy of the body is dissipated at a 
much faster rate than if the oscillating body was placed in the air, 
and viscous drag often causes the oscillating system to be 
overdamped, which results in the oscillations quickly dying down 
to zero). In fact, Hermann von Helmholtz observed that, just as 
seemingly pure, white light actually contains all the colors of the 
rainbow, clearly defined musical notes are composed of many 
different tones, and, thus, for instance, if you play the A above 
the middle C on a musical instrument, then the sound that you 
hear has a clearly defined “fundamental” pitch of 440𝐻𝑧, but the 
sound does not only contain a simple “fundamental” vibration at 
440𝐻𝑧, but also a “harmonic series” of integral multiples of this 
frequency, called “overtones” (e.g., 880𝐻𝑧, 1320𝐻𝑧, 1760𝐻𝑧, 
etc.). 

Problems of nonlinear analysis started to exist ever since the creation of 
the universe. Some of them were solved by ancient Greek mathematicians, 
but many new nonlinear problems were created, both in pure mathematics 
and in other sciences, such as biology, physics, astronomy, economics, etc. 
The distinction between linear and nonlinear analysis is not quite clear, 
because a considerable part of information about a nonlinear system can 
be extracted from a linear approximation of the corresponding nonlinear 
problem. Moreover, it is often possible to extract information about the 
solution to a linear system from a relevant nonlinear one, and this fact was 
explicitly studied by the Russian-American mathematician Victor 
Lomonosov in his research paper “Invariant Subspaces for the Family of 
Operators which Commute with a Completely Continuous Operator” 
(published in Functional Analysis and Its Applications, vol. 7, 1973, pp. 
213–214). The term “linearization” of a nonlinear differential equation 
refers to the reduction of a nonlinear differential equation to a linear 
differential equation that is either equivalent or almost equivalent to the 
given nonlinear differential equation, that is, the solution to the linear 
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differential equation may give the solution to the nonlinear differential 
equation either exactly or approximately within an acceptable error.  
 
Exact methods of linearization: Two well-known examples of exact 
linearization of nonlinear differential equations are the Bernoulli equation 
and the Riccati equation. The Bernoulli equation and the Riccati equation 
are special because they are nonlinear differential equations with known 
exact solutions, which are obtainable through linearization.  
 

i. The Bernoulli equation:  
;W
;V
+ 𝐴𝑦 = 𝐵𝑦%,                                                                          (1)  (∗) 

where 𝐴 and 𝐵 are functions of 𝑥, and 𝑛 ∈ ℝ − {0,1} (if 𝑛 = 0, 
then the equation is linear; if 𝑛 = 1, then the equation can be 
solved by separation of variables). Multiplying both sides of (1) 
by 𝑦E%, we obtain 
𝑦E% ;W

;V
+ 𝐴𝑦"E% = 𝐵.                                                                  (2)  (1) 

Let 𝑦"E% = 𝑤,                                                                             (3)  (2) 
where 𝑤 = 𝑤(𝑥). By differentiating (3) with respect to 𝑥 , we 
obtain 
(1 − 𝑛)𝑦E% ;W

;V
= ;^

;V
⇔ 𝑦E%𝑦′ = 𝑤 ′ (1 − 𝑛)⁄ .                           (4) 

Hence, (2), due to (3) and (4), yields 
^′

"E%
+ 𝐴𝑤 = 𝐵 ⇒ ;^

;V
+ (1 − 𝑛)𝐴𝑤 = (1 − 𝑛)𝐵,                      (5) 

which is a first-order linear differential equation (whose 
dependent variable is 𝑤), and it can be solved according to the 
aforementioned method of solving first-order linear differential 
equations. When we find the general solution to (5), we set 𝑤 =
𝑦"E%, according to (3), and, thus, we obtain the general solution 
to (1). 
Remark: The Bernoulli equation was originally discussed in a 
work of 1695 by Jacob Bernoulli, after whom it is named, but the 
earliest solution to this equation was obtained by Gottfried 
Leibniz, who published it in 1696.  
 

ii. The Riccati equation:  
;W
;V
+ 𝐴 + 𝐵𝑦 + 𝐶𝑦# = 0,                                                            (1)  (∗) 

where 𝐴, 𝐵, and 𝐶 are functions of 𝑥. We can find the general 
solution to the Riccati equation only if we know one of its partial 
solutions. Suppose that 𝑦 = 𝑦" is a partial solution to (1), so that  
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;W"
;V
+ 𝐴 + 𝐵𝑦" + 𝐶𝑦"# = 0.                                                         (2)  (1) 

Then, by setting 
𝑦 = 𝑦" +𝑤,                                                                                (3)  (2) 
where 𝑤 = 𝑤(𝑥), and differentiating (3) with respect to 𝑥, we 
obtain 
;W
;V
= ;W"

;V
+ ;^

;V
.                                                                             (4)  (3) 

Hence, (1), due to (3) and (4), yields 
;W"
;V
+ ;^

;V
+ 𝐴 + 𝐵(𝑦" +𝑤) + 𝐶(𝑦" +𝑤)# = 0, 

which ultimately becomes 
;W"
;V
+ 𝐴 + 𝐵𝑦" + 𝐶𝑦"# +

;^
;V
+ (𝐵 + 2𝐶𝑦")𝑤 + 𝐶𝑤# = 0. 

But, due to (2), ;W"
;V
+ 𝐴 + 𝐵𝑦" + 𝐶𝑦"# = 0 (since 𝑦"  is a partial 

solution), so that we obtain 
;^
;V
+ (𝐵 + 2𝐶𝑦")𝑤 + 𝐶𝑤# = 0, 

and, hence,  
;^
;V
+ (𝐵 + 2𝐶𝑦")𝑤 = −𝐶𝑤#,                                                    (5)                                              

which is a Bernoulli equation (where 𝑤  is the dependent 
variable), and it can be solved according to the aforementioned 
general method of solving the Bernoulli equation (in this case, we 
begin by multiplying both sides of (5) by 𝑤E# , etc.). By 
substituting the value of 𝑤  that we receive from the general 
solution to (5) into equation (3), that is, into 𝑦 = 𝑦" +𝑤 , we 
obtain the general solution to (1).  
Notice that, alternatively, we can solve the Riccati equation by 
setting 𝑦 = 𝑦" +

"
^
⇔ 𝑦@ = 𝑦"@ −

^(

^#
 (where, as above, 𝑦"  is a 

partial solution to (1), and 𝑤 = 𝑤(𝑥) ), but then the Riccati 
equation will reduce to a linear differential equation, which is 
solvable according to the aforementioned general method of 
solving linear differential equations.  
Remark: This equation is named after the Italian mathematician 
Jacopo Francesco (Count) Riccati (1676–1754), who wrote on 
philosophy, physics, and differential equations.  

 
Approximate methods of linearization: Usually, the nonlinear differential 
equations that come from applied mathematics cannot be linearized by 
exact methods, and, therefore, we search for approximate methods of 
linearization, which give approximations of particular solutions. Let us 
consider a general nonlinear differential equation in its normal form: 
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𝑥=@ = 𝑓=(𝑡, 𝑥", … , 𝑥%),                                                                                  (∗) 
where 𝑖 = 1,2, … , 𝑛, and the functions 𝑓= are such that there exists a unique 
solution of (∗) through any point 𝑥) in the region of the validity of (∗). We 
frequently write (∗) as follows: 
𝑥=@ = 𝐴𝑥 + 𝑋,                                                                                           (∗∗) 
where 𝑥=@ , 𝑥 , and 𝑋  are 𝑛 -column matrices, and 𝐴  is an 𝑛 × 𝑛 -matrix 
(either constant or time-dependent). In ( ∗∗ ), 𝑋  is the set of the 
nonlinearities of (∗), and 𝑋(𝑡, 0) ≡ 0. Then the system  
𝑥=@ = 𝐴𝑥                                                                                                  (∗∗∗) 
is the linear part of (∗); and (∗∗∗) is said to be the “first approximation” of 
(∗). It should be mentioned that not always the results of approximate 
linearization are acceptable, depending mainly on the nature of the 
problem under consideration.  
 
Differential Equations of the Form 𝒇(𝒚#) = 𝟎 where 𝒇(𝒚#) 

Is an Integral Polynomial in 𝒚# 
 

Suppose that the degree of the polynomial 𝑓(𝑦@) is 𝑛. If the roots of the 
polynomial are 𝑟", 𝑟#, … , 𝑟% , then we obtain the relations 𝑦@ = 𝑟", 𝑦@ =
𝑟#, … , 𝑦@ = 𝑟% , which, by integration, yield 𝑦 = 𝑟"𝑥 + 𝑐, 𝑦 = 𝑟#𝑥 +
𝑐,… , 𝑦 = 𝑟%𝑥 + 𝑐 , and, therefore, 𝑦 − 𝑟"𝑥 − 𝑐 = 0, 𝑦 − 𝑟#𝑥 − 𝑐 =
0,… , 𝑦 − 𝑟%𝑥 − 𝑐 = 0 .Then the general solution to the differential 
equation is 
(𝑦 − 𝑟"𝑥 − 𝑐)(𝑦 − 𝑟#𝑥 − 𝑐)… (𝑦 − 𝑟%𝑥 − 𝑐) = 0, 
which defines a family of 𝑛 parallel straight lines on the 𝑥𝑦-plane.  
For instance, the differential equation (𝑦@)* − 2(𝑦@)# − 𝑦@ + 2 = 0 is of 
the first order and the third degree. The roots of the corresponding 
algebraic equation in 𝑦@  are 𝑦@ = −1 , 𝑦@ = 1 , and 𝑦@ = 2 , or ;W

;V
= −1 , 

;W
;V
= 1, and ;W

;V
= 2, and, therefore, we have 𝑑𝑦 = −𝑑𝑥 , 𝑑𝑦 = 𝑑𝑥 , and 

𝑑𝑦 = 2𝑑𝑥, which, by integration, yield 𝑦 = −𝑥 + 𝑐, 𝑦 = 𝑥 + 𝑐, and 𝑦 =
2𝑥 + 𝑐 . Then the general solution to the given differential equation is 
(𝑦 + 𝑥 − 𝑐)(𝑦 − 𝑥 − 𝑐)(𝑦 − 2𝑥 − 𝑐) = 0. 
 
Differential Equations that Do Not Include the Unknown 

Function 
 

These differential equations are of the form 𝐹(𝑥, 𝑦@) = 0. There are two 
ways in which we can find the general solution to such a differential 
equation:  
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First way: We solve for 𝑦@, thus obtaining 𝑦@ = 𝑔(𝑥), which is solvable 
by separation of variables, and its general solution is 𝑦 = ∫𝑔(𝑥)𝑑𝑥 + 𝑐. 
Second way: We solve for 𝑥, in which case we obtain 𝑥 = 𝑓(𝑦@), and we 
set 
𝑦@ = 𝑝 ⇔ 𝑑𝑦 = 𝑝𝑑𝑥.                                                                                (1) 
Then  
𝑥 = 𝑓(𝑝),                                                                                                   (2) 
and 𝑑𝑥 = 𝑓@(𝑝)𝑑𝑝. Substituting the value of 𝑑𝑥 into (1), we obtain 𝑑𝑦 =
𝑝𝑓@(𝑝)𝑑𝑝, which, by integration, yields 
𝑦 = ∫𝑝𝑓@(𝑝)𝑑𝑝 + 𝑐.                                                                                 (3) 
The above relations (2) and (3) imply that the general solution to the given 
differential equation is obtained in terms of the parameter 𝑝 and in the 
following parametric form: 
𝑥 = 𝑓(𝑝) and 𝑦 = ∫𝑝𝑓@(𝑝)𝑑𝑝 + 𝑐. 
For instance, let us consider the differential equation 𝑥(𝑦@)# − 1 = 0 , 
which can be solved both with respect to 𝑦@ and with respect to 𝑥.  
If we solve this differential equation with respect to 𝑦@, then we have: 𝑦@ =
± "
√V

, and, by integration, we obtain 𝑦 = ±∫ "
√V
𝑑𝑥 + 𝑐 = ± ∫𝑥E

"
# 𝑑𝑥 +

𝑐 = ± V
"
#
"
#
+ 𝑐 = ±2√𝑥 + 𝑐, and, hence,  

(𝑦 − 𝑐)# = 4𝑥 
(this is the general solution to the given differential equation). 
If we solve this differential equation with respect to 𝑥, then we have: 𝑥 =
"

(W()#
, and we set 𝑦@ = 𝑝 ⇔ 𝑑𝑦 = 𝑝𝑑𝑥, so that 𝑥 = "

F#
, and 𝑑𝑥 = − #

F!
𝑑𝑝. 

Therefore, 𝑑𝑦 = 𝑝𝑑𝑥 ⇒ 𝑑𝑦 = 𝑝 Ã− #
F!
Ä 𝑑𝑝 = − #

F#
𝑑𝑝 , which, by 

integration, yields 𝑦 = −∫ #
F#
𝑑𝑝 + 𝑐 = #

F
+ 𝑐. Hence, the parametric form 

of the general solution to the given differential equation is: 

𝑥 =
1
𝑝# 

and  

𝑦 =
2
𝑝 + 𝑐 

(as I have already explained, 𝑝 is the parameter, since 𝑥 = 𝑥(𝑝)). 
In a similar fashion, we can solve differential equations of the form 
𝐹(𝑦, 𝑦@) = 0 , that is, differential equations that do not include the 
independent variable 𝑥. 
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Second-Order and Higher-Order Linear Differential 
Equations 

 
The generic second-order linear ordinary differential equation with 
constant coefficients has the form 

𝑎𝑦@@ + 𝑏𝑦@ + 𝑐𝑦 = 𝐹(𝑥) 
where 𝑎 , 𝑏 , and 𝑐  are real constants, 𝐹(𝑥)  is a given function of the 
independent variable 𝑥, and, obviously, the differentiation of the uknown 
function is symbolized as follows: 𝑦@@ ≡ ;#W

;V#
 and 𝑦@ = ;W

;V
.  

The systematic study of second-order linear ordinary differential equations 
with constant coefficients has been significantly motivated by physics. For 
instance, one physical system whose behavior is governed by a second-
order linear ordinary differential equation with constant coefficients is the 
linear mechanical oscillator shown in Figure 10-1, where we see a linear 
mechanical oscillator consisting of a mass 𝑚 attached to a rigid wall by a 
linear spring of spring stiffness 𝑐 and a damper of damping constant 𝑘, a 
time-dependent force 𝐹(𝑡) is applied to the mass 𝑚, and the displacemt of 
the mass from its rest position is represented by 𝑥(𝑡). 
 
Figure 10-1: A linear mechanical oscillator (source: Wikimedia Commons: 
Author: Lokilech; 
https://commons.wikimedia.org/wiki/File:Feder_Masse_Schwinger.svg). 
 

 
 
The behavior of the mass–spring system shown in Figure 10-1 (with an 
applied external force) is governed by the second-order linear ordinary 
differential equation with constant coefficients 

𝑚𝑥@@(𝑡) + 𝑘𝑥@(𝑡) + 𝑐𝑥(𝑡) = 𝐹(𝑡) 
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where 𝑚 denotes the mass of the particle attached to the spring, 𝑘 is a 
measure of the strength of the damper, 𝑐 represents the spring stiffness, 
𝐹(𝑡) is the applied external force, 𝑡 denotes time, 𝑥(𝑡) is the displacement 
of the mass from its rest position, the term 𝑘𝑥@(𝑡) represents the force 
exerted by the damper on the mass (and, in case of a linear damper, this 
force is proportional to the velocity 𝑥@, and it resists the motion), the term 
𝑐𝑥(𝑡) represents the force exerted by the spring on the mass (and, in case 
of a linear spring, this force is proportional to the displacement 𝑥, and it 
acts in the direction opposite to the displacement, that is, it is a “restoring 
force”), and this second-order linear ordinary differential equation 
represents Newton’s Second Law of Motion, according to which force 
equals mass times acceleration, that is, 𝑚𝑥@@(𝑡). 
 
The Homogeneous Equation: If 𝐹(𝑥) = 0, then the generic second-order 
linear ordinary differential equation with constant coefficients reduces to 
its “homogeneous” form: 
𝑎𝑦@@ + 𝑏𝑦@ + 𝑐𝑦 = 0.                                                                                (1) 
A typical solution of the homogeneous equation (1) is in the form  

𝑦 = 𝑒JV 
where 𝑟 is a constant to be determined; and, thus, 𝑦@ = 𝑟𝑒JV , and 𝑦@@ =
𝑟#𝑒JV . Hence, substituting these values of 𝑦 , 𝑦@ , and 𝑦@@  into the 
homogeneous equation (1), we obtain the corresponding “characteristic” 
(or “auxiliary”) equation: 
𝑎𝑟#𝑒JV + 𝑏𝑟𝑒JV + 𝑐𝑒JV = 0 ⇒ 𝑒JV(𝑎𝑟# + 𝑏𝑟 + 𝑐) = 0 ⇒ 𝑎𝑟# + 𝑏𝑟 +
𝑐 = 0. 
In this way, we have transformed the given ordinary differential equation 
into the “characteristic polynomial” 
𝑟# + 𝑏𝑟 + 𝑐 = 0, 
which is a quadratic equation in the unknown 𝑟, and then we have to solve 
for 𝑟, using the quadratic formula  

𝑟 = E0±t0#EA15
#1

. 
Therefore, we have to consider three cases: 
Firstly, if the discriminant 𝑏# − 4𝑎𝑐 > 0, then the quadratic equation has 
two distinct real roots, say 𝑟" and 𝑟#, and, in this case, by the principle of 
superposition, the general solution to the homogeneous equation (1) is  

𝑦 = 𝑐"𝑒J"V + 𝑐#𝑒J#V 
for any value of the two constants 𝑐" and 𝑐# (and all we have to do is to 
substitute 𝑟"  and 𝑟#  into this formula; and, when we have to solve an 
initial-value problem or a boundary-value problem, we have to solve for 𝑐" 
and 𝑐#). 
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Secondly, if the discriminant 𝑏# − 4𝑎𝑐 = 0, then the quadratic equation 
has a repeated real root, say 𝑟, and, in this case, the general solution to the 
homogeneous equation (1) is 

𝑦 = 𝑐"𝑒JV + 𝑐#𝑥𝑒JV 
for any value of the two constants 𝑐"  and 𝑐#  (the second exponential is 
multiplied by 𝑥 because in this way it represents a second independent 
solution).  
Thirdly, if the discriminant 𝑏# − 4𝑎𝑐 < 0, then the quadratic equation has 
two complex (conjugate) roots, say 𝑟" = 𝑎 + 𝑏𝑖 and 𝑟# = 𝑎 − 𝑏𝑖, and then 
the general solution to the homogeneous equation (1) is  

𝑦 = 𝑒1V[𝑐"𝑐𝑜𝑠(𝑏𝑥) + 𝑐#𝑠𝑖𝑛(𝑏𝑥)] 
for any value of the two constants 𝑐" and 𝑐#. Notice that, due to the special 
nature of 𝑟" and 𝑟#, and due to the fact that  

𝑒1B0= = 𝑒1(𝑐𝑜𝑠𝑏 + 𝑖𝑠𝑖𝑛𝑏) 
(by the definition of the complex exponential and Euler’s formula), in this 
case, we have: 

𝑦 = 𝑐"𝑒J"V + 𝑐#𝑒J#V ⇒ 𝑦 = 𝑒1V[𝑐"𝑐𝑜𝑠(𝑏𝑥) + 𝑐#𝑠𝑖𝑛(𝑏𝑥)]	
(for (different) arbitrary constants 𝑐" and 𝑐#). 
For instance, let us consider “simple harmonic motion”: Let us consider a 
spring whose upper end is securely fastened (of natural, that is, 
unstretched, length 𝑙)), and suppose that we attach to it an object of mass 
𝑚, so that the addition of the mass 𝑚 stretches the spring to length 𝑙. This 
static elongation of the spring is the result of two forces, namely: the force 
of gravity (i.e., 𝐹: = 𝑚𝑔), acting downward, and the spring force (𝐹p ), 
acting upward. The model of simple harmonic motion is based on the 
following assumptions: (i) All motion is along a vertical line through the 
center of gravity of the object, and the object is treated as a point mass. (ii) 
There is no damping force due to the medium in which the mass is moving 
(e.g., we ignore air resistance). (iii) No other forces (except for the ones 
already mentioned) are applied to the mass. According to Hooke’s Law, if 
a spring is stretched (or compressed) 𝑥 units from its natural (equilibrium) 
length, then it exerts a force that is proportional to 𝑥 , so that 
𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔	𝑓𝑜𝑟𝑐𝑒 = −𝑘𝑥 (where 𝑘 is a positive constant, and 𝑥 = 𝑥(𝑡) is 
displacement); and, therefore, by substituting this equation into Newton’s 
Second Law of Motion (force equals mass times acceleration: 𝐹%ZY =
𝑚 ;#V

;Y#
), and, ignoring any external resisting forces, we obtain the following 

second-order linear differential equation (which describes “simple 
harmonic motion”): −𝑘𝑥 = 𝑚 ;#V

;Y#
⇔ ;#V

;Y#
+ <

6
𝑥 = 0 , whose typical 

solution is 𝑥 = 𝑒JY, and, hence, we have: 
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𝑟#𝑒JY +
𝑘
𝑚𝑒JY = 0 ⇒ 𝑒JY å𝑟# +

𝑘
𝑚æ = 0 ⇒ 𝑟# +

𝑘
𝑚 = 0 ⇒ 𝑟 = ±$−

𝑘
𝑚

= ±𝑖$
𝑘
𝑚 

and, for simplicity, we set 𝜆 = 0<
6

. Hence, the two values of 𝑟 are 𝑟 =

±𝑖𝜆 , which means that the two solutions (for 𝑥 = 𝑥(𝑡)) are 𝑒B=MY  and 
𝑒E=MY, which are two functions that satisfy the differential equation ;

#V
;Y#

+
<
6
𝑥 = 0. However, according to the principle of superposition, the most 

general solution, which describes all the solutions to this differential 
equation is a linear combination of these two solutions, namely: 𝑥(𝑡) =
𝑐"𝑒B=MY + 𝑐#𝑒E=MY, for any value of the two constants 𝑐" and 𝑐#. By Euler’s 
formula, we obtain 

𝑒B=MY = 𝑐𝑜𝑠(𝜆𝑡) + 𝑖𝑠𝑖𝑛(𝜆𝑡) 
and 

𝑒E=MY = 𝑐𝑜𝑠(−𝜆𝑡) + 𝑖𝑠𝑖𝑛(−𝜆𝑡) = 𝑐𝑜𝑠(𝜆𝑡) − 𝑖𝑠𝑖𝑛(𝜆𝑡) 
(given that 𝑐𝑜𝑠𝑖𝑛𝑒 is even, and 𝑠𝑖𝑛𝑒 is odd). Therefore, our solution 𝑥(𝑡) 
can be written as follows: 

𝑥(𝑡) = 𝑐"[𝑐𝑜𝑠(𝜆𝑡) + 𝑖𝑠𝑖𝑛(𝜆𝑡)] + 𝑐#[𝑐𝑜𝑠(𝜆𝑡) − 𝑖𝑠𝑖𝑛(𝜆𝑡)] ⇒ 𝑥(𝑡)
= (𝑐" + 𝑐#)𝑐𝑜𝑠(𝜆𝑡) + 𝑖(𝑐" − 𝑐#)𝑠𝑖𝑛(𝜆𝑡) 

where, since 𝑐" and 𝑐# are constants, we set 𝑐" + 𝑐# = 𝐴 and 𝑖(𝑐" − 𝑐#) =
𝐵 for some new constants 𝐴 and 𝐵, thus obtaining 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡) + 𝐵𝑠𝑖𝑛(𝜆𝑡) 
(and this is the general solution in terms of real functions). Notice that, in 
SI units, displacements are measured in meters (𝑚 ), and forces are 
measured in neutons (𝑁), and, therefore, the spring constant 𝑘 is measured 
in newotns per meter. 
In the aforementioned model of simple harmonic motion, we assumed that 
the only forces involved were gravity and the spring force. However, in 
order to account for such things as friction in the spring and air restinance, 
we must assume that there is a damping force (i.e., a force that tends to 
slow the motion of the given object, which we still treat as a point mass), 
and this damping force can be thought of as the resultant of all other 
external forces acting on the given object (the magnitude of the damping 
force is proportional to the velocity of the particle). Therefore, we have to 
add a term 𝛿 ;V

;Y
, where 𝛿 is the damping constant, so that we come up with 
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a new homogeneous equation, which describes (free) damped vibrations, 
namely:  

𝑑#𝑥
𝑑𝑡# +

𝛿
𝑚
𝑑𝑥
𝑑𝑡 +

𝑘
𝑚𝑥 = 0 

(and we can solve this homogeneous equation according to the 
aforementioned method). Given that the motion of this point mass is 
determined by the inherent forces of the spring–mass system and the 
natural forces acting on the system, the vibrations are called “free 
vibrations.” Things change dramatically if we assume that the point mass 
is also subject to an external periodic force 𝐹)𝑠𝑖𝑛𝜑𝑡, which is due to the 
motion of the object to which the upper end of the spring is attached, so 
that, in this case, the mass undergoes “forced vibrations,” which are 
described by the differential equation 

𝑑#𝑥
𝑑𝑡# +

𝛿
𝑚
𝑑𝑥
𝑑𝑡 +

𝑘
𝑚𝑥 =

𝐹)𝑠𝑖𝑛𝜑𝑡
𝑚  

(where 𝐹)𝑠𝑖𝑛𝜑𝑡 ≠ 0 ), and, obviously, this differential equation is not 
homogeneous; this is a non-homogeneous second-order linear differential 
equation.  
 
The Non-homogeneous Equation (forced motions): When we are dealing 
with non-homogeneous second-order linear differential equations, that is, 
with differential equations of the form 
𝑦@@ + 𝑎"𝑦@ + 𝑎#𝑦 = 𝐹(𝑥) where 𝐹(𝑥) ≠ 0,                                             (2) 
the general solution to (2) is given by the formula 

𝑦(𝑥) = 𝑦F(𝑥) + 𝑦5(𝑥) 
where 𝑦F(𝑥)  is a partial solution to the non-homogeneous differential 
equation (2), and 𝑦5(𝑥)  is the general solution to the corresponding 
homogeneous differential equation, that is, to 𝑦@@ + 𝑎"𝑦@ + 𝑎#𝑦 = 0 
(notice that, in physics, 𝐹(𝑥)  in (2) represents the forcing function). 
Obviously, 𝑦5(𝑥) can be found by applying the aforementioned method of 
solving homogeneous second-order linear ordinary differential equations. 
However, 𝑦F(𝑥) can be found by considering 𝐹(𝑥) and making the proper 
algebraic tasks, since the choice for the partial solution should match the 
structure of the right-hand side of the non-homogeneous differential 
equation. In particular, in order to determine the form of the partial 
solution 𝑦F(𝑥), we distinguish the following cases: 
Case 1: If 𝐹(𝑥) has the form 𝑏𝑒1V, then 𝑦F(𝑥) = 𝐴𝑒1V. Notice that 𝑦F(𝑥) 
contains the same exponential as 𝐹(𝑥), but 𝐴 is unknown and must be 
determined such that the given ordinary differential equation is fulfilled.  
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Case 2: If 𝐹(𝑥) has the form 𝑎𝑥% + (𝑙𝑜𝑤𝑒𝑟	𝑜𝑟𝑑𝑒𝑟	𝑝𝑜𝑤𝑒𝑟𝑠	𝑜𝑓	𝑥), then 
𝑦F(𝑥) = 𝑐%𝑥% + 𝑐%E"𝑥%E" +⋯+ 𝑐) . Notice that 𝑦F(𝑥)  is a complete 
integral polynomial in 𝑥 whose degree is equal to the degree of 𝐹(𝑥), and 
its coefficients must be determined such that the given ordinary 
differential equation is fulfilled.  
Case 3: If 𝐹(𝑥) has the form 𝑝𝑐𝑜𝑠𝑎𝑥 or 𝑞𝑠𝑖𝑛𝑎𝑥, then 𝑦F(𝑥) = 𝐴𝑐𝑜𝑠𝑎𝑥 +
𝐵𝑠𝑖𝑛𝑎𝑥; and the coefficients 𝐴 and 𝐵 must be determined such that the 
given ordinary differential equation is fulfilled. Notice that the most 
important form of forcing in engineering is the harmonic forcing, where 
𝐹(𝑥) has the form 𝑝𝑐𝑜𝑠𝑎𝑥 or 𝑞𝑠𝑖𝑛𝑎𝑥.  
The aforementioned methods can be generalized to solve corresponding 
𝑛th-order linear differential equations. 
 
Example: Let us find the general solution to the differential equation 
𝑦@@ − 𝑦 = 𝑥# + 𝑥 + 1.                                                                               (1) 
The general solution to this differential equation is of the form 𝑦(𝑥) =
𝑦F(𝑥) + 𝑦5(𝑥) where 𝑦5(𝑥) is the general solution to the corresponding 
homogeneous differential equation, that is, to 𝑦@@ − 𝑦 = 0. According to 
the above method of solving homogeneous second-order linear differential 
equations, in order to find 𝑦5(𝑥), we solve the corresponding characteristic 
equation, which can be found by setting 𝑦 = 𝑒JV and 𝑦@@ = 𝑟#𝑒JV, so that 
𝑦@@ − 𝑦 = 0 ⇒ 𝑟#𝑒JV − 𝑒JV = 0 ⇒ 𝑒JV(𝑟# − 1) = 0 . The roots of 𝑟# −
1 = 0 are 𝑟" = 1 and 𝑟# = −1, and, therefore, 
𝑦5(𝑥) = 𝑐"𝑒V + 𝑐#𝑒EV.                                                                              (2) 
In order to find a partial solution 𝑦F(𝑥) to (1), we set 
𝑦 = 𝐴𝑥# + 𝐵𝑥 + 𝐶,                                                                                   (3) 
that is, a complete integral polynomial in 𝑥 whose degree is equal to the 
degree of 𝐹(𝑥) = 𝑥# + 𝑥 + 1. Now, we must determine the coefficients 𝐴, 
𝐵, and 𝐶 in order for the given differential equation to be fulfilled, and we 
can do this as follows: 
By differentiating (3) twice with respect to 𝑥, we obtain 
𝑦@ = 2𝐴𝑥 + 𝐵 and 𝑦@@ = 2𝐴.                                                                    (4) 
Due to (3) and (4), the differential equation (1) can be written as follows: 

2𝐴 − 𝐴𝑥# − 𝐵𝑥 − 𝐶 = 𝑥# + 𝑥 + 1 
⇔ −𝐴𝑥# − 𝐵𝑥 + 2𝐴 − 𝐶 = 𝑥# + 𝑥 + 1.                                                 (5) 
We want both sides of the equation (5) to be identically equal to each 
other, and, therefore, the coefficients of the corresponding 𝑥’s must be 
equal to each other, namely: −𝐴 = 1 ⇔ 𝐴 = −1 , −𝐵 = 1 ⇔ 𝐵 = −1 , 
and 2𝐴 − 𝐶 = 1 ⇔ 𝐶 = −3. Substituting these values of 𝐴, 𝐵, and 𝐶 into 
(3), we obtain a partial solution to (1), specifically: 



 

 

412 

 𝑦F(𝑥) = −𝑥# − 𝑥 − 3. 
Hence, the general solution to the differential equation (1) is 
𝑦F(𝑥) + 𝑦5(𝑥) = −𝑥# − 𝑥 − 3 + 𝑐"𝑒V + 𝑐#𝑒EV. 
 

Systems of Differential Equations 
 

By the term “system of differential equations,” we refer to two or more 
simultaneous differential equations that contain an independent variable 𝑥, 
the dependent variables 𝑦, 𝑧, …, as well as the derivatives of the dependent 
variables 𝑦, 𝑧, … with respect to the independent variable 𝑥. The order of a 
system of differential equations is the sum of the orders of the highest-
order derivatives that appear in the equations of the given system. For 
instance, the order of the system 

{ 𝑦
@@@ + 𝑧@ + 𝑥 = 0

𝑧@@ + 𝑦@ + 3𝑥 = 0Ï, 

where the order of the highest-order derivative in the first equation is 3, 
and the order of the highest-order derivative in the second equation is 2, is 
3 + 2 = 5.  
The systems of differential equations with constant coefficients where the 
number of equations is equal to the number of dependent variables are 
usually solved by means of differentiation and term deletions, so that we 
ultimately come up with one differential equation. For instance, consider 
the following system: 

T
;W
;V
− 3𝑦 + 𝑧 = 0

;`
;V
− 4𝑦 + 𝑧 = 0

ø.                                                                                  (1) 

We differentiate the first equation of the system (1) with respect to 𝑥, so 
that we obtain 
;#W
;V#

− 3 ;W
;V
+ ;`

;V
= 0.                                                                                  (2) 

Combining (1) with (2), so that we obtain a system of three equations in 
three unknowns, we can use standard algebraic techniques for solving 
systems of equations to delete 𝑧, and, therefore, we obtain 
;#W
;V#

− 2 ;W
;V
+ 𝑦 = 0.                                                                                   (3) 

The differential equation (3) is homogeneous, and its general solution is 
 𝑦 = 𝑒V(𝑐" + 𝑐#𝑥).                                                                                    (4) 
Finally, the value of 𝑦 that we found in (4) must be substituted into the 
first equation of the system (1) to obtain 
[𝑒V(𝑐" + 𝑐#𝑥)]@ − 3[𝑒V(𝑐" + 𝑐#𝑥)] + 𝑧 = 0 ⇒ 𝑧 = 𝑒V(2𝑐" − 𝑐# + 2𝑐#𝑥). 
Therefore, the solution to the system (1) is 
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𝑦 = 𝑒V(𝑐" + 𝑐#𝑥) and 𝑧 = 𝑒V(2𝑐" − 𝑐# + 2𝑐#𝑥). 
 

Some Applications of Differential Equations in 
Mathematical Modeling 

 
In this section, we shall consider a few examples of applications of 
differential equations in physics, biology, neuroscience, cognitive 
psychology, strategic studies, and economics.  
 

Mechanics 
 

As aforementioned, Newton’s Second Law of Motion, which is the 
“backbone” of mechanics, states that, if an object of mass 𝑚 is moving 
with acceleration 𝑎 and being acted upon with force 𝐹, then  
𝐹 = 𝑚𝑎. 
This is actually a differential equation, because 

𝑎 =
𝑑𝑣
𝑑𝑡 =

𝑑#𝑠
𝑑𝑡# 

where 𝑣 = 𝑣(𝑡) denotes the velocity of the object under consideration, and 
𝑠 = 𝑠(𝑡) denotes the position function of the given object, at any time 𝑡. 
Hence, Newton’s Second Law of Motion can be written as a differential 
equation in terms of either the velocity, 𝑣, or the position, 𝑠, of the object 
under consideration as follows: 

𝑚
𝑑𝑣
𝑑𝑡 = 𝐹 

and 

𝑚
𝑑#𝑠
𝑑𝑡# = 𝐹 

where 𝐹, the force acting on the particle, need not be constant, but it may 
vary with the position 𝑠 or the velocity ;p

;Y
 of the particle. 

 
Electricity 

 
Let us consider a simple series electric circuit, that is, an RLC circuit, 
which has the following components: a resistor 𝑅 (implementing electrical 
resistance, thus reducing current flow, adjusting signal levels, dividing 
voltages, etc.), an inductor 𝐿  (slowing down surges or spikes by 
temporarily storing energy in an electro-magnetic field and then releasing 
it back into the circuit), and a Capacitor 𝐶 (storing and releasing electricity 
into a circuit by distributing charged particles on (generally two) plates to 
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create a potential difference). Moreover, this circuit has a source of 
voltage (something like a battery) 𝑉, as shown, for instance, in Figure 10-
2. Here, 𝑅 , 𝐿 , and 𝐶  are constants (independent of time), and we are 
interested in the current 𝐼(𝑡) across the circuit, which is a function of time 
𝑡 . In the corresponding differential-equation model, time 𝑡  will be the 
independent variable. We can also have 𝑄(𝑡), which is the charge on the 
capacitor, and then 𝐼 = ;N

;Y
. By Kirchhoff’s Law, the total voltage around 

the circuit is equal to zero (since a circuit loop is a closed conducting path, 
and, therefore, no energy is lost), so that the voltage 𝑉(𝑡) from the battery 
is equal to the voltage 𝑉[ across the resistor plus the voltage 𝑉� across the 
inductor plus the voltage 𝑉P on the capacitor: 

𝑉(𝑡) = 𝑉[ + 𝑉� + 𝑉P 
where:  
by Ohm’s Law, the voltage 𝑉[ across the resistor is given by  

𝑉[ = 𝑅 ∙ 𝐼(𝑡) 
(this is the relationship between voltage, current, and resistance); the 
voltage 𝑉P on the capacitor is given by  

𝑉P =
1
𝐶 𝑄

(𝑡) 
(where 𝐶  is the capacitance of the capacitor, that is, the ability of the 
capacitor to store charge in it); and, by Faraday’s Law, the voltage 𝑉� 
across the inductor is given by  

𝑉� = 𝐿
𝑑𝐼
𝑑𝑡 

(Faraday’s Law says that a changing magnetic flux through a circuit will 
induce an electromagnetic flux in the circuit, and the induced 
electromagnetic flux can act like a battery and affect the flow of charge, 
that is, current, in the circuit). Furthermore, since 𝐼 = ;N

;Y
, the 

aforementioned equations yield the following differential equation in 
terms of 𝑄 = 𝑄(𝑡) (i.e., charge): 

𝑉(𝑡) = 𝐿
𝑑#𝑄
𝑑𝑡# + 𝑅

𝑑𝑄
𝑑𝑡 +

1
𝐶 𝑄 

(which is a non-homogeneous second-order linear differential equation 
with constant coefficients, which appears in electric circuits, 𝑉(𝑡) ≠ 0).  
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Figure 10-2: RLC series circuit (soure: Wikimedia Commons; Author: 
Omegatron; 
https://commons.wikimedia.org/wiki/File:RLC_series_circuit.png). 
 

 
 
 

Demography 
 

In the 1790s, the English economist Thomas Malthus assumed that the rate 
at which the population of a country grows at a certain time is proportional 
to the total population of the country at that time. Hence, on the basis of 
this assumption, we can develop the following model of population 
growth: If 𝑝(𝑡)  denotes the total population at time 𝑡 , then Malthus’s 
assumption can be mathematically expressed in terms of the following 
differential equation: 

𝑑𝑝(𝑡)
𝑑𝑡 = 𝑘𝑝(𝑡) 

where 𝑘 is the growth constant or the decay constant, as appropriate, and 
𝑝(𝑡)) = 𝑝) is the initial condition (initial population). If 𝑘 > 0, then the 
population grows, and, if 𝑘 < 0 , then the population will shrink. This 
differential equation is linear, and its solution is  

𝑝(𝑡) = 𝑝)𝑒<Y 
where 𝑝) denotes the initial population. If we modify this model in order 
to allow the growth rate to vary linearly with time, then the model 
becomes 

𝑑𝑝(𝑡)
𝑑𝑡 = 𝑘(𝑡)𝑝(𝑡) 
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where 𝑘(𝑡) = 𝑎𝑡 + 𝑏  (for constants 𝑎  and 𝑏 ), 𝑝(𝑡)) = 𝑝)  is the initial 
condition (initial population), and this linear differential equation can be 
solved separation of variables.  

 
Epidemiology 

 
Let us consider the spread of a disease through a population. Suppose that 
we have a number of people, say 𝑁, who are infected with a disease. We 
want to know how 𝑁 will change in time. Hence, 𝑁 is a function of 𝑡, 
which denotes time. Each of the 𝑁  people has a certain probability to 
spread the disease to other people during some period of time. Let us 
quantify infectiousness by using a constant 𝑘, so that the rate of change of 
the number of infected people with respect to time equals this constant 𝑘 
times the number of people who are already infected. In general, the rate 
of change of a function with respect to time is the derivative of that 
function with respect to time. Therefore, we obtain the following 
differential equation: 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑘 ∙ 𝑁(𝑡) ⇔

𝑑𝑁(𝑡)
𝑑𝑡 − 𝑘 ∙ 𝑁(𝑡) = 0 

which yields 
𝑁(𝑡) = 𝑁)𝑒<Y 

where 𝑁) is the number of the infected people at the initial time (𝑡 = 0), 
and the probability of infecting someone appears in the exponent (𝑘𝑡). 
Thus, we understand why infectious diseases begin by speading 
exponentially (since the rate of growth of the infected population is 
proportional to the number of people who are already infected). When a 
disease begins to spread, the constant 𝑘 in the aforementioned exponent is 

𝑘 =
𝑅) − 1
𝜏  

where 𝜏 is the time an infected person remains infectious, and 𝑅) denotes 
the average number of people someone infects.  
 
Interspecific Competition: The Lotka–Volterra Equations 
 
The problem of the growth of two species competing for the same 
resources has signigant applications in biology, ecology, and economics. 
Consider two mixed populations of species that are mutually 
interdependent and compete for the same resources. Let 𝑁" and 𝑁# denote 
the number of individuals of species one and of species two, respectively. 
Both 𝑁"  and 𝑁#  are functions of time 𝑡 . Then we obtain the following 
“logistic equations” for these two species: 
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𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑔𝑟𝑜𝑤𝑡ℎ	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	1:	
𝑑𝑁"
𝑑𝑡 = 𝑎"𝑁" å1 −

𝑁"
𝑀"
æ 

 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑔𝑟𝑜𝑤𝑡ℎ	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	2:	
𝑑𝑁#
𝑑𝑡 = 𝑎#𝑁# å1 −

𝑁#
𝑀#
æ 

which are uncoupled equations (i.e., we study the population growth of 
each species without accounting for the presence of another species), and 
𝑁" → 𝑀"  and 𝑁# → 𝑀# , where the factor 𝑀  denotes the corresponding 
“carrying capacity,” or largest sustainable population (the value of 𝑀is 
determined by available resources and by each individual’s resource 
demand, so that the logistic equation has intra-specific competition built 
into it, since there is also competition between the members of the same 
species).  
However, we have to model the competition between these two 
populations (i.e., inter-specific competition). If 𝑁" is much smaller than 
𝑀", and if 𝑁# is much smaller than 𝑀#, then resources are plentiful, and 
these two populations, 𝑁" and 𝑁#, grow exponentially with growth rates 
𝑎" and 𝑎#, respectively. If species one and species two compete, then the 
growth of species one reduces resources available to species two, and vice 
versa. Because we do not know the exact impact species one and species 
two have on each other, we introduce two additional parameters in order to 
model interspecific competition. In particular, let 𝑞"#  and 𝑞#"  be 
dimensionless parameters (constants) that respectively model the 
consumption of species one’s resources by species two, and vice versa (for 
instance, if both species eat exactly the same food, but species two 
consumes twice as much as species one, then 𝑞"# = 2 and 𝑞#" = 0.5); that 
is, 𝑞"#  represents the effect of species two on species one, and 𝑞#" 
represents the effect of species one on species two. Then we can modify 
and couple the two aforementioned logistic equations as follows: 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑔𝑟𝑜𝑤𝑡ℎ	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	1	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	2: 
𝑑𝑁"
𝑑𝑡 = 𝑎"𝑁" å1 −

𝑁" + 𝑞"#𝑁#
𝑀"

æ 

 
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑔𝑟𝑜𝑤𝑡ℎ	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	2	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	1:	

𝑑𝑁#
𝑑𝑡 = 𝑎#𝑁# å1 −

𝑁#+𝑞#"𝑁"
𝑀#

æ 

(the outcome of competition, according to the Lotka–Volterra model, is 
ultimately determined by carrying capacity, that is, the 𝑀 parameter, and 
by the competition coefficient, that is, the 𝑞 parameter). As time increases, 
the solution to this model (system of differential equations), which starts at 
(𝑁"∗, 𝑁#∗), approaches a point (𝑁"_ , 𝑁#_), so that one of the following cases 
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holds: (i) the point (𝑁"_ , 𝑁#_) lies in the fully positive quadrant of the 𝑥, 𝑦-
plane, so that both 𝑁"_ and 𝑁#_ are positive, which means that the species 
co-exist; (ii) the point (𝑁"_ , 𝑁#_) = (0,0), which indicates extinction of 
both species; or (iii) one of 𝑁"_ and 𝑁#_ may be zero and the other positive, 
indicating a situation of competitive exclusion.   
 

Differentiation and Growth of Cells 
 
The minimal constituent matter elements of organic matter (such as DNA) 
are subject to differentiations, which underpin the actualization and the 
manifestation of the structural program of an organic being. In fact, due to 
their differentiation, the cells of an organic being underpin its organic 
constitution, which determines the corresponding organic being’s unity 
and cohesion (namely, the attraction of molecules for other molecules of 
the same kind). Furthermore, it is important to mention that eukaryotes 
(that is, organisms whose cells have a nucleus enclosed within a nuclear 
envelope), such as the human being, have two types of DNA: the DNA of 
the cells (namely, the agent of the genetic information of the cells) and the 
mitochondrial DNA (namely, the DNA located in mitochondria, which are 
double membrane-bound organelles supplying cellular energy and 
controlling the cell cycle and the cell growth; mitochondrial proteins—that 
is, proteins transcribed from mitochondrial DNA—vary depending on the 
tissue and the species). 
For a cell of mass 𝑚, its growth rate may be proportional to 𝑚, and then 
the model of the growth of a simple cell is given by the following 
differential equation: 

𝑑𝑚
𝑑𝑡 = 𝑘𝑚 ⇒ 𝑚 = 𝑚)𝑒<Y 

where 𝑚) denotes the initial condition (initial mass), and, usually, some 
restriction, like 𝑚 < 𝑚∗, is assumed (that is, it is usually assumed that the 
cell undergoes division once mass 𝑚∗ is reached rather than continuing to 
grow).  
Moreover, we can assume that the growth rate of a cell is proportional to 
the rate at which it can absorb nutrient and, thus, proportional to its surface 
area, specifically, to the two-third power of its mass, thus obtaining the 
differential equation 

𝑑𝑚
𝑑𝑡 = 𝑘𝑚

#
! 

where the 2 3⁄ -scaling surface law was proposed in 1919 by the American 
biologists James Arthur Harris and Francis Gano Benedict, who conducted 
biometric studies of basal metabolism. According to the 2 3⁄ -scaling 
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surface law, the basal metabolism of animals differing in size is nearly 
proportional to their respective body surfaces, and, as organisms increase 
in size, their volume and, therefore, their mass increase at a much faster 
rate than their surface area. In particular, the 2 3⁄ -scaling surface law is 
based on the assumption that metabolic rates scale to avoid heat 
exhaustion (bodies lose heat passively via their surface, but they produce 
heat metabolically throughout their mass). In the 1930s, the Swiss 
biologist Max Kleiber argued that a 3 4⁄ -power scaling (instead of the 
Harris–Benedict surface law’s 2 3⁄ -power scaling) describes more 
accurately the relationship between an animal’s metabolic rate and its 
mass (symbolically, if 𝐵 is an animal’s metabolic rate, and if 𝑀 is this 
animal’s mass, then, according to Kleiber’s law, 𝐵 ≈ 𝑀* A⁄ ). 
 

Neuroscience: 
The Standard Leaky Integrate-and-Fire (LIF) Model 

 
The brain (the central nervous system) contains nerve cells that are highly 
specialized in transmitting messages. Each nerve cell, called a neuron, 
consists of the soma (i.e., the central body of the cell), the (neur)axon, and 
the dendrites. At the end of the neural tube, there is a special structure 
called a synapse, through which the neurons communicate with each other. 
When a message created in one neuron is about to be transmitted to the 
next, the first neuron releases specialized chemicals called 
neurotransmitters. The released neurotransmitters are taken up by specially 
shaped regions, called receptors, on the cell membrane of the next neuron 
involved in the particular synapse. 
Neurons send signals along an axon to a dendrite through junctions called 
synapses. The standard Leaky Integrate-and-Fire (LIF) model is a point 
neuron model that helps us to represent and study the dynamics of the 
neuron, and it is given by the following differential equation: 

𝑉@(𝑡) ≡
𝑑𝑉(𝑡)
𝑑𝑡 =

1
𝐶 ç𝐼Z

(𝑡) −
1
𝑅
(𝑉(𝑡) − 𝐸�)è 

with 𝑉(𝑡) ← 𝑉J , 𝑖𝑓	𝑉(𝑡) > 𝛩 
where: 
𝑉(𝑡) denotes membrane potential (i.e., the difference in electric potential 
between the interior and the exterior of a biological cell; in other words, 
the difference in the energy required for electric charges to move from the 
internal to the exterior cellular environments and vice versa, so that, for 
instance, the resting membrane potential of a neuron is approximately 
−70	𝑚𝑖𝑙𝑙𝑖𝑣𝑜𝑙𝑡𝑠, meaning that the inside of the neuron is approximately 
70	𝑚𝑖𝑙𝑙𝑖𝑣𝑜𝑙𝑡𝑠 less than the outside); 
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𝐶 denotes membrane capacitance (parameter) and is proportional to the 
cell surface area; 
𝑅 denotes membrane resistance (parameter) and is a function of open ion 
channels (the greater the number of open channels, the lower the 
membrane resistance); 
𝐸�  denotes resting (membrane) potential (parameter) and is the electric 
potential difference across the cell membrane when the cell is in a non-
excited state; 
𝐼Z denotes trans-membrane current (an excitatory synaptic input initiates a 
current flow across the membrane and into the neuron, and this current 
consists of an ionic flow of positive ions (e.g., sodium ions 𝑁𝑎B ) in 
addition to capacitive currents, and it is by convention a negative trans-
membrane current; this changes the membrane potential at the location of 
the synaptic input, initiating axial currents, that is, currents inside the 
neuron); 
𝑉J  denotes reset membrane potential (transmission of a signal within a 
neuron (from dendrite to axon terminal) is carried by a brief reversal of the 
resting membrane potential called an “action potential,” and, when 
neurotransmitter molecules bind to receptors located on a neuron’s 
dendrites, ion channels open, so that, at excitatory synapses, this opening 
allows positive ions to enter the neuron and results in “depolarization” of 
the membrane, that is, a decrease in the difference in voltage between the 
inside and the outside of the neuron; a stimulus from a sensory cell or 
another neuron depolarizes the target neuron to its threshold potential 
(e.g., −55𝑚𝑉 ), and 𝑁𝑎B  channels in the axon hillock open, allowing 
positive ions to enter the cell, and, once depolarization is complete, the 
cell must now “reset” its membrane voltage back to the resting potential 
by closing the 𝑁𝑎B  channels); 
𝛩 denotes firing threshold (i.e., the level that a depolarization must reach 
for an action potential to occur, and, in most neurons, the threshold is 
around −55𝑚𝑉  to −65𝑚𝑉 ; if the neuron does not reach this critical 
threshold level, then no action potential will fire); 
𝑡 denotes time. 
It is worth mentioning that the combination of differential equations with 
neural networks (computer systems modeled on the human brain and 
nervous system) gives rise to Neural Differential Equations (NDE), which 
empower Artificial Intelligence systems to synthesize time-evolving data 
in an effective way. By a “neural differential equation,” we mean a 
differential equation with neural network vector field, and, thus, its generic 
form is the following: 
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𝑑𝑦(𝑡)
𝑑𝑡 = 𝑓r�𝑡, 𝑦(𝑡)� 
𝑤𝑖𝑡ℎ	𝑦(0) = 𝑦) 

where the subscript 𝜃 represents some vector of learnt parameters, so that 
𝑓r:ℝ ×ℝ; → ℝ;  represents a standard neural network (for a systematic 
study of these issues, see: R. Rico-Martínez et al., “Discrete-vs. 
Continuous-Time Nonlinear Signal Processing of Cu Electrodissolution 
Data,” Chemical Engineering Communications, vol. 118, 1992, pp. 25–
48). 
 

A Mathematical Approach to Cognitive Psychology:  
The Weber–Fechner Law 

 
In general, “mathematical psychology” is a branch of psychology that is 
based on mathematical modeling of perceptual, thought, cognitive, and 
motor processes, and it tries to formulate scientific laws that relate 
quantifiable strimulus characteristics with quantifiable behavior. 
Psychological experiments conducted by the German physicist, 
philosopher, and experimental psychologist Gustav Theodor Fechner and 
the German physician Ernst Heinrich Weber (who is considered one of the 
founders of experimental psychology) suggest that the minimum change 
that we can detect in a stimulus’ magnitude (the just perceptible 
difference) varies in such a way that the fractional change is a constant, 
and, in particular, the intensity of our sensation increases as the logarithm 
of an increase in the physical magnitude of the stimulus. Weber 
demonstrated that, if 𝑆 is the physical magnitude of the stimulus, then we 
shall just perceive the change to 𝑠 + 𝛥𝑠 where bp

a
= 𝑘, a constant. 

According to Fechner, this constant 𝑘 represents a standard increase in the 
psychological magnitude of the stimulus, 𝐼. Therefore,  

𝛥𝐼 =
𝛥𝑆
𝑆  

or  
𝛥𝑆
𝛥𝐼 = 𝑆∗ 

(in a discrimination experiement, we are interested in measuring 𝛥𝐼 as a 
function of 𝐼, that is, we want to find the discrimination threshold 𝛥𝐼 such 
that a stimulus with intensity 𝐼 + 𝛥𝐼 is just discriminable from a stimulus 
of intensity 𝐼). Treating 𝛥𝐼 and 𝛥𝑆 as infinitesimals, we realize that 𝑆 is 
related to 𝐼 through the differential equation  
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𝑑𝑆
𝑑𝐼 = 𝑘𝑆 

where 𝑘 is a constant of proportionality. The aforementioned differential 
equation (by separation of variables) yields  

𝐼 =
1
𝑘 𝑙𝑛𝑆 + 𝑐 

where 𝑐 is a constant (this result means that the subjective sensation is 
proportional to the logarithm of the intensity of the corresponding 
stimulus; for instance, perceived loudness or brightness is proportional to 
the logarithm of the actual intensity measured by means of an accurate 
technical instrument). In fact, this is the reason why the intensity of sounds 
(decibels), the brightness of stars (magnitudes), and many other similar 
quantities are measured on logarithmic scales. 
 

Strategic Studies and Warfare Problems:  
The Lanchester–Deitchman Models 

 
In the scholarly discipline of International Relations, the term “strategy” is 
used in order to relate military means and political ends, in both war and 
piece. When we study ancient history, “strategy” means a commander’s 
battle plan and, generally, the “art of war” (a term usually associated with 
the Chinese strategist and intellectual Sun Tzu); in the eighteenth and the 
nineteenth centuries, “strategy” evolved into a country’s whole disposition 
for war, both in peacetime and during periods of conflict; in the second 
half of the twentieth century, “strategy” and “foreign policy” were usually 
treated as two concepts and two practical activities inseparable from each 
other, if not synonymous (at least among the industrial nations); and, by 
the beginning of the twenty-first century, “strategy” explicitly included an 
international actor’s disposition for economic and technological war. 
In warfare problems, the calculation of a force ratio may be achieved by 
simple rules or may include complex assumptions and subjective 
judgments. For the quantitative study of a force ratio, the following three 
variables are difficult to handle: (i) the disparity in number and lethality of 
weapons between similar organizations; (ii) the variations in concepts of 
combat support; and (iii) the concentration of forces.  
In this section, we shall study the warfare modeling approach of the 
English polymath and engineer Frederick W. Lanchester and the guerilla 
and the mixed conventional-guerilla combat models developed by S. J. 
Deitchman, who followed the methodology of F. W. Lanchester.  
Let 𝑥(𝑡)  and 𝑦(𝑡)  denote respective strengths of the forces at time 𝑡 , 
where 𝑡 is measured in days from the start of the combat. We shall identify 
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the strengths with the numbers of combatants. We shall consider the ideal 
case where 𝑥(𝑡) and 𝑦(𝑡) are differentiable functions of time. Even though 
we may not have a specific formula for 𝑥(𝑡) as a function of time, we may 
have sufficient information about the operational loss rate (OLR) of the 𝑥-
force (i.e., the loss rate due to inevitable diseases, desertions, and other 
non-combat mishaps), the combat loss rate (CLR), due to encounters with 
the 𝑦-force, and the reinforcement rate (RR). Hence, 
;V(Y)
;Y

= 𝑂𝐿𝑅 + 𝐶𝐿𝑅 + 𝑅𝑅, 
and a similar equation applies to the 𝑦-force.  
Lanchester assumed that the loss rate of a force is directly proportional to 
the enemy force strength. The following three Lanchester-type models are 
of great significance; 𝑥(𝑡) and 𝑦(𝑡) denote the strengths of the opposing 
forces at time 𝑡, and 𝑡 denotes time from the start of the combat (you may 
add reinforcement rates 𝑃(𝑡) and 𝑄(𝑡) per day if relevant). 
 
Model I: Conventional Combat (CONCOM; “aimed fire”): 

m
𝑥@ ≡

𝑑𝑥(𝑡)
𝑑𝑡 = −𝐴𝑦(𝑡), 𝑥(0) = 𝑥)

𝑦@ ≡
𝑑𝑦(𝑡)
𝑑𝑡 = −𝐵𝑥(𝑡), 𝑦(0) = 𝑦)

 

where the coefficients are non-negative loss rate constants: 𝐴 denotes the 
fighting effectiveness of 𝑦, and 𝐵 denotes the fighting effectiveness of 𝑥. 
In general, we assume that the “fighting effectiveness” is proportional to a 
power of  

𝑇 − 𝑥(0)
𝑥(0)  

where 𝑇 denotes the total number of troops at time 𝑡 = 0, 𝑥(0) denotes the 
total number of fighting troops at time 𝑡 = 0, and, therefore, 𝑇 − 𝑥(0) 
denotes the total number of support troops at time 𝑡 = 0 (a similar formula 
applies to the 𝑦-force). Solving the above system of differential equations 
gives 

𝑦@

𝑥@ =
−𝐵𝑥
−𝐴𝑦 =

𝐵
𝐴
𝑥
𝑦 

which, by the chain rule, yields 
𝑦@

𝑥@ =
;W
;Y
;V
;Y

=
𝑑𝑦
𝑑𝑥 ⇒

𝑑𝑦
𝑑𝑥 =

𝐵
𝐴
𝑥
𝑦 

so that (given that we have a separable equation, meaning that we can 
separate variables and integrate each side) we obtain Lanchester’s Square 
Law: 
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𝐴𝑦𝑑𝑦 = 𝐵𝑥𝑑𝑥 ⇒ 𝐴U𝑦𝑑𝑦 = 𝐵U𝑥𝑑𝑥 ⇒ 𝐴
𝑦#

2 + 𝐶" = 𝐵
𝑥#

2 + 𝐶#
⇒ 𝐴𝑦# − 𝐵𝑥# ≡ 𝐶 

where 𝐶  is a constant, 𝐴𝑦#  is the fighting strength of 𝑦, and 𝐵𝑥#  is the 
fighting strength of 𝑥 . Then 𝑥  wins if 𝐶 < 0 , 𝑦  wins if 𝐶 > 0 , and a 

stalemate (equilibrium) occurs if 𝐶 = 0 ⇔ 𝐴𝑦# = 𝐵𝑥# ⇔ ÃW
V
Ä
#
= L

(
 

(notice that we can use definite integrals, too, in which case we integrate 𝑦 
over [𝑦), 𝑦], and we integrate 𝑥	over [𝑥), 𝑥]). 
 
Model II: Guerilla Combat (GUERCOM): 
 

m
𝑥@ ≡

𝑑𝑥(𝑡)
𝑑𝑡 = −𝐴𝑥(𝑡)𝑦(𝑡)

𝑦@ ≡
𝑑𝑦(𝑡)
𝑑𝑡 = −𝐵𝑥(𝑡)𝑦(𝑡)

 

and we work in the same way as above to obtain the analogue of 
Lanchester’s Square Law for a guerilla combat. Hence, we have: 

𝑦@

𝑥@ =
−𝐵𝑥(𝑡)𝑦(𝑡)
−𝐴𝑥(𝑡)𝑦(𝑡) ⇒

𝑦@

𝑥@ =
𝐵
𝐴 

so that 
𝑦@

𝑥@ =
;W
;Y
;V
;Y

=
𝑑𝑦
𝑑𝑥 ⇒

𝑑𝑦
𝑑𝑥 =

𝐵
𝐴 ⇒ 𝐴𝑑𝑦 = 𝐵𝑑𝑥

⇒ 𝐴U𝑑𝑦

= 𝐵U𝑑𝑥 ⇒ 𝐴𝑦 + 𝐶" = 𝐵𝑥 + 𝐶# ⇒ 𝐴𝑦 − 𝐵𝑥 ≡ 𝐶 

where 𝐶 is a constant. Thus, a stalemate (equilibrium) occurs if 𝐶 = 0 ⇔
𝐴𝑦 = 𝐵𝑥 ⇔ W

V
= L

(
.  

When each side is visible to the other, and every fighter on each side can 
fire on any opponent, the loss rate on one side is proportional to the 
number of opponents firing, that is, 𝑥@ = −𝐴𝑦(𝑡) and 𝑦@ = −𝐵𝑥(𝑡), and 
this leads to the quadratic “square law” for “equality of fighting strength” 
(i.e., the condition under which neither side wins), namely, 𝐴𝑦# = 𝐵𝑥#. 
However, when each side is invisible to the other (since guerillas, or 
“insurgents,” strike at a time and place of their own choosing and then 
disappear), and each fires into the area that is believed to be occupied by 
the other, the loss rate on one side is proportional to the number of fighters 
on the other and to the number of fighters occupying the area under fire, 
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so that 𝑥@ = −𝐴𝑥(𝑡)𝑦(𝑡)  and 𝑦@ = −𝐵𝑥(𝑡)𝑦(𝑡) , and this leads to the 
“linear law” for equilibrium (i.e., equality of fighting strength), namely, 
𝐴𝑦 = 𝐵𝑥. 
Moreover, Lanchester’s differential equations are the basis for the 
application of the slightly more complex Deitchman’s law of mixed 
combat, which enables the simulation of the combat dynamics of 
qualtitatively different opponents 𝑥  and 𝑦 , such as the warfare of two 
adversaries in guerilla and conventional combat: this problem can be 
solved by a combination of quadratic and linear laws.  
 
Model III: Mixed Guerilla-Conventional Combat (e.g., Vietnam War): 

m
𝑥@ ≡

𝑑𝑥(𝑡)
𝑑𝑡 = −𝐴𝑥(𝑡)𝑦(𝑡)

𝑦@ ≡
𝑑𝑦(𝑡)
𝑑𝑡 = −𝐵𝑥(𝑡)

 

where 𝑦 is the conventional force (out in the open), and 𝑥 is the guerilla 
force (hard to find); and we work in the same way as above to obtain the 
analogue of Lanchester’s Square Law for a mixed guerilla-conventional 
combat. Hence, we have:  

𝑦@

𝑥@ =
−𝐵𝑥(𝑡)

−𝐴𝑥(𝑡)𝑦(𝑡) ⇒
𝑦@

𝑥@ =
𝐵

𝐴𝑦(𝑡) 

so that 
𝑦@

𝑥@ =
;W
;Y
;V
;Y

=
𝑑𝑦
𝑑𝑥 ⇒

𝑑𝑦
𝑑𝑥 =

𝐵
𝐴𝑦(𝑡) ⇒ 𝐴U𝑦𝑑𝑦 = 𝐵U𝑑𝑥 ⇒ 𝐴

𝑦#

2 + 𝐶"

= 𝐵𝑥 + 𝐶# ⇒ 𝐴𝑦# − 2𝐵𝑥 = 𝐶 
where 𝐶 is a constant. Therefore, 𝑦 wins if 𝐶 > 0, 𝑥 wins if 𝐶 < 0, and a 
stalemate (equilibrium) occurs if 𝐶 = 0 ⇔ 𝐴𝑦# = 2𝐵𝑥. In the history of 
war, this type of combat is also known under the terms 
“counterinsurgency” and “counter-revolutionary” operations, and its 
history has been thoroughly studied by Joseph MacKay in his book The 
Counterinsurgent Imagination (Cambridge: Cambridge University Press, 
2023), and, in this type of war, information asymmetry is of paramount 
importance in determining the outcome of war.  
 

Arms Race Models: 
Richardson’s Methodology 

 
One manifestation of tension between nations is the existence of an arms 
race. In the context of an arms race, each nation responds, in some fashion, 
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to any increase in the military capabilities of the opposing nation. The 
pioneer in mathematical theorizing about arms races was the English 
mathematician, physicist, and psychologist Lewis Fry Richardson (1881–
1953). In developing his model of arms races, Richardson relied on three 
basic assumptions: (i) In an armaments race between two countries, each 
country attempts to increase its armaments proportionately to the size of 
the armaments of the other. (ii) The burden of armaments upon the 
economy of the country imposes a restraint upon further expenditures, and 
this restraint is proportional to the size of the existing force. (iii) A nation 
would procure arms, guided either by ambition, grievances, hostility, or 
the need to maintain internal order, even if no other nation posed a threat. 
The aforementioned three assumptions yield the following pair of linear 
differential equations, which summarize a two-nation arms race: 
𝑀(
@ = 𝑘𝑀L − 𝑎𝑀( + 𝑔                                                                              (1) 

𝑀L
@ = 𝑙𝑀( − 𝑏𝑀L + ℎ                                                                               (2) 

where: 𝑀(
@  and 𝑀L

@  denote the rates of change in the arms stocks (or 
military budgets) of nations 𝐴  and 𝐵 , represented by 𝑀(  and 𝑀L , 
respectively; 𝑘 and 𝑙 are “response” coefficients; 𝑘 (resp. 𝑙) indicates the 
influence of 𝐵’s (resp. 𝐴’s) total arms stock on the increase in 𝐴’s (resp. 
𝐵’s) arms, and this influence is assumed to be positive, meaning that the 
higher the level of 𝐵’s (resp. 𝐴’s) weapons stocks the greater the increase 
in 𝐴’s (resp. 𝐵’s) weapons stocks will be; the coefficients 𝑎  and 𝑏  are 
“fatigue” factors indicating the damping effects on the arms race of the 
economic burden of maintaining the present level of armaments, and this 
effect is expressed as a proportion (𝑎, 𝑏)  of the present arms stocks 
(𝑀(, 𝑀L) ; and, finally, the constants 𝑔  and ℎ  denote “grievance” and 
“minimal security,” summarizing the contribution to increased armaments 
of basic hostility between the opposing nations as well as the influence of 
the need to maintain internal order. 
Given the above definitions, the differential equation (1) means that the 
change in 𝐴’s level of armaments (i.e., 𝑀(

@ ) is equal to a certain proportion 
(𝑘) of 𝐵’s arms stocks (i.e., 𝑀L) minus a certain amount due to economic 
constraints (𝑎𝑀() plus an amount reflecting grievances and hostility; and a 
similar interpretation holds for the differential equation (2). 
Richardson wanted to determine whether the arms race would reach an 
equilibrium, and, if so, if this equilibrium would be stable. In an arms race 
model, an equilibrium is a point at which neither side has any reason to 
further increase or decrease its stock of arms. In terms of the differential 
equations (1) and (2), an equilibrium occurs when both derivatives are 
equal to zero, that is, when 
𝑀(
@ = 𝑀L

@ = 0,                                                                                           (3) 
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and the simultaneous equations (1) and (2) can then be solved to find the 
equilibrium point. An equilibrium point is said to be stable if and only if 
any movements away from the equilibrium (for whatever reason) are 
followed by movements back to the equilibrium. Therefore, an arms race 
reaches a stable equilibrium if neither side has an incentive to icrease its 
arms stock, and, should there be a movement away from the equilibrium, 
the equilibrium is soon recovered. Mathematically, in this arms race 
model, the equilibrium point is stable if and only if 
𝑘𝑙 < 𝑎𝑏,                                                                                                     (4) 
that is, if and only if the product of the response coefficients is less than 
the product of the fatigue coefficients (the political interpretation of 
condition (4) is that the nations’ collective fatigue must overwhelm their 
joint defense competition). 
Notice that, since the differential equations (1) and (2) are linear, they can 
be represented by a pair of straight lines whose intersection will be the 
equilibrium point, satisfying condition (3). The stability condition (4) will 
be satisfied whenever the slope of 𝑀L

@ = 0 is less than the slope of 𝑀(
@ =

0. 
 

Elementary Ballistics 
 

Ballistics (i.e., the field of mechanics concerned with the launching, flight 
behavior, and impact effects of projectiles) was put in a rigorous 
mathematical context by Isaac Newton, Johann Bernoulli, and Euler. The 
main problem of exterior ballistics is to determine the trajectory of a 
projectile launched from a cannon with a given angle and a given velocity. 
The differential equation of motion involves the gravity 𝑔, the velocity 𝑣 
of the projectile, the tangent inclination 𝜃  of the projectile, and the air 
resistance 𝐹(𝑣), which is an unknown function of 𝑣; namely: 

𝑔𝑑(𝑣𝑐𝑜𝑠𝜃) = 𝑣𝐹(𝑣)𝑑𝜃 
(if 𝐹(𝑣) = 0, that is, if we ignore air resistance, then we obtain a parabolic 
trajectory; but the actual trajectory is calculated for a given non-zero 
𝐹(𝑣)). 
If we ignore air resistance, then the distance travelled by a bullet is given 
by the formula   

𝑥 = 𝑣)$
2ℎ
𝑔  

where 𝑣) is the initial velocity of the bullet, ℎ is the height from which the 
bullet is fired, and 𝑔 is the acceleration due to gravity. If this formula 
incorporates drag (or resistance), then it becomes 
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𝑥 = 𝑣)𝑡 −
𝐶𝜌𝐴𝑣#𝑡#

2𝑚  
where 𝐶 is the drag coefficient of the bullet (a dimensionless quantity that 
quantifies the drag of the bullet in its environment, and, understandably, 
the shape of an object has a very significant effect on the amount of drag), 
𝜌 is the air density, 𝐴 is the area of the bullet, 𝑡 is the time of flight, and 𝑚 
is the mass of the bullet.  
Remark: The “drag force” of an object as it moves through a fluid is given 
by 

𝐹; =
1
2𝜌𝑣

#𝐶𝐴 ⇔ 𝐶 =
2𝐹;
𝜌𝑣#𝐴 

where 𝐹;  is the drag force (measured in 𝑛𝑒𝑤𝑡𝑜𝑛𝑠 ), 𝜌  denotes density 
(𝑘𝑔 𝑚*⁄ ), 𝑣 denotes velocity (𝑚 𝑠𝑒𝑐⁄ ), 𝐶 denotes the drag coefficient, and 
𝐴 denotes the frontal cross-sectional area (𝑚#). 
 

Business Cycles and Economic Growth 
 

By the term “Gross Domestic Product,” we mean the total monetary value 
of all final goods and services produced (and sold on the market) within a 
country during a period of time (typically one year). The formula for 
calculating Gross Domestic Product (GDP) is the following: 
𝐺𝐷𝑃 = 𝑝𝑟𝑖𝑣𝑎𝑡𝑒	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝑔𝑟𝑜𝑠𝑠	𝑝𝑟𝑖𝑣𝑎𝑡𝑒	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

+ 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡	𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
+ 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡	𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔 + (𝑒𝑥𝑝𝑜𝑟𝑡𝑠 − 𝑖𝑚𝑝𝑜𝑟𝑡𝑠) 

and the term “gross” indicates that products are counted regardless of their 
subsequent use (a product can be used for consumption, for investment, or 
to replace an asset). Nominal GDP uses current prices in its measure. Real 
GDP is an inflation-adjusted measure of the total monetary value of all 
final goods and services produced (and sold on the market) within a 
country during a period of time (typically one year): 

𝑅𝑒𝑎𝑙	𝐺𝐷𝑃 =
𝑁𝑜𝑚𝑖𝑛𝑎𝑙	𝐺𝐷𝑃
𝐺𝐷𝑃	𝐷𝑒𝑓𝑙𝑎𝑡𝑜𝑟 

(for instance, if an economy’s prices have increased by 1% since the base 
year that is used in order to calculate the Real GDP, then the GDP Deflator 
is equal to 1.01). If 𝑌(𝑡) is the current state of GDP, then ;d(Y)

;Y
 is the rate 

of change of 𝑌(𝑡) with respect to time 𝑡 (i.e., the “growth rate”). 
The Harrod–Domar model was developed independently by the English 
economist Sir Roy Harrod and the Russian-American economist Evsey 
Domar in order to analyze business cycles, and it was used in order to 
explain an economy’s growth rate through savings and capital 
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productivity. Growth is measured in terms of GDP, and, according to the 
Harrod–Domar model, savings (denoted by 𝑆) lead to investment (denoted 
by 𝐼), so that 𝑆 = 𝐼, investment leads to changes in capital stock (denoted 
by 𝛥𝐾), so that 𝐼 = 𝛥𝐾, and the capital-output ratio is constant, so that the 
ratio �

d
= 𝑐  is constant, and then ;�

;d
= 𝑐  (meaning that the marginal 

product of capital is constant and equal to the average product of capital). 
Hence, this model postulates that the output growth rate is given by the 
differential equation 

1
𝑌
𝑑𝑌(𝑡)
𝑑𝑡 = 𝑠𝑐 − 𝛿 

where 𝑠  denotes the savings rate, 𝛿  denotes the rate of depreciation of 
capital stock, and 𝑐 is the aforementioned constant (marginal product of 
capital). The solution 

𝑌(𝑡) = 𝑌)𝑒(p5EQ)Y 
demonstrates that increasing investment through savings and productivity 
boosts economic growth.  
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Nicolas Laos’s Photographs with Other 
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With my mathematics mentor Professor Themistocles M. Rassias (former 
Chairman of the Department of Mathematics at the University of La 
Verne’s Athens Campus and Professor at the National Technical 
University of Athens). Professor Th. M. Rassias has received several 
awards, and he is an active member of an array of journals in mathematical 
analysis and optimization. His work extends over several fields of 
mathematical analysis, and he has published numerous research papers and 
research books on nonlinear functional analysis, functional equations, 
approximation theory, analysis on manifolds, calculus of variations, 
inequalities, and metric geometry. Professor Th. M. Rassias’s research 
work is known in the field of mathematical analysis with the terms 
“Hyers–Ulam–Rassias stability (of functional equations)” and “Cauchy–
Rassias stability,” and in geometry with the term “Aleksandrov–Rassias 
problem (for isometric mappings).” Moreover, Professor Th. M. Rassias 
has conducted pioneering research in the Morse theory of critical points 
and in the study of Plateau’s problem (i.e., the problem of determining the 
surfaces of minimum area spanned in a given curve or subject to other 
boundary conditions), modifying Marston Morse’s critical point theory in 
order to solve Plateau’s problem.  
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With Professor Svetoslav Jordanov Bilchev (former Chairman of the 
Department of Algebra and Geometry at the “Angel Kanchev” University 
of Ruse), at whose invitation, I addressed the Fifth International 
Conference on Differential Equations and Applications held in Ruse, 
Bulgaria, 24–29 August 1995. Professor S. J. Bilchev (1946–2010) 
received several awards, and his research interests included 
geometry/differential geometry, differential equations, inequalities, game 
theory, and mathematical models in economics. I cooperated with 
Professor S. J. Bilchev in the fields of differential equations and topology, 
and some results of our joint work have been published by the Union of 
Bulgarian Mathematicians and have been presented at mathematical 
conferences in Ruse and Kazanlak.  
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With Professor Stepan Tersian (faculty member of the Department of 
Mathematics at the “Angel Kanchev” University of Ruse and member of 
the Institute of Mathematics and Informatics at the Bulgarian Academy of 
Sciences). Professor S. Tersian and Professor S. J. Bilchev were the 
editors of the Proceedings of the Fifth International Conference on 
Differential Equations and Applications held in Ruse, Bulgaria, 24–29 
August 1995, published by the “Angel Kanchev” University of Ruse and 
the Union of Bulgarian Mathematicians. The aforementioned volume of 
proceedings includes my research paper “A Comparative Study of Linear 
and Nonlinear Differential Equations with Applications.”  
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With Professor Stojan Chernev (faculty member of the Center of Applied 
Mathematics and Informatics at the “Angel Kanchev” University of Ruse). 
At the University of Ruse, I had the opportunity to investigate various 
problems by means of dynamical systems, that is, expressions of the form  

𝑑
𝑑𝑡 𝑥⃗ = 𝑓�𝑥⃗, 𝑡, 𝑢3⃗ , 𝛽⃗� 

where: 𝑡 denotes time; the vector 𝑥 represents the state of the system, and 
it consists of the minimal set of variables (𝑥", 𝑥#, 𝑥*, …) that are needed in 
order to describe the system under consideration; the vector field 𝑓, called 
the “dynamics,” is a set of functions (𝑓", 𝑓#, 𝑓*, … ) that describe the 
dynamics of the corresponding states of the system (so that the time 
derivative of 𝑥"  will be given by the first-row equation 𝑓" , the time 
derivative of 𝑥#  will be given by the second-row equation 𝑓# , etc.); the 
vector 𝑢3⃗  denotes all the variables over which we have active control (i.e., 
variables that we can manipulate in order to change the behavior of the 
system); and the vector 𝛽 denotes the system’s parameters over which we 
do not explicitly have control, but which are important in order to 
understand the corresponding dynamical system (and big changes in the 𝛽 
parameters may give rise to big changes in the system’s behavior, called 
“bifurcations,” meaning that curves may branch, or “bifurcate,” at a 
critical point of the corresponding function, so that two or more values of 
𝑦 may be possible for a single value of 𝑥).  
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From right to left, with: Professor Ruslan Mitkov (Research Professor at 
the Institute of Mathematics of the Bulgarian Academy of Sciences), 
Professor Myron Grammatikopoulos (Professor of Mathematics at the 
University of Ioannina, Greece, and Visiting Professor of Mathematics at 
the “Angel Kanchev” University of Ruse, Bulgaria), Professor Emiliya 
Velikova (Professor of Mathematics at the “Angel Kanchev” University of 
Ruse), and Ms R. Gatzova (Secretary, Center of Applied Mathematics and 
Informatics at the “Angel Kanchev” University of Ruse). 
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With the President of the University of La Verne, California, Dr. Stephen 
C. Morgan (first on the left) and other senior board members of the 
University of La Verne, 1996. During my studies at the University of La 
Verne, while majoring in Mathematics, I also conducted interdisciplinary 
studies, which underpinned my subsequent further studies and work in the 
fields of interdisciplinary mathematics and epistemology. During my 
studies at the University of La Verne, while majoring in Mathematics, I 
also conducted interdisciplinary studies, which underpinned my 
subsequent further studies and work in the fields of interdisciplinary 
mathematics and epistemology. 
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With my philosophy mentor Professor Giuliano Di Bernardo, who held the 
Chair of Philosophy of Science and Logic at the Faculty of Sociology of 
the Università degli Studi di Trento from 1979 until 2010, and he is a 
member of the Académie Internationale de Philosophie des Sciences. 
Apart from the field of academic philosophy, my cooperation with 
Professor Giuliano Di Bernardo includes work in the context of the 
Dignity Order, an international private exclusive membership association 
of which Professor Giuliano Di Bernardo is the Founder and Grand 
Master, with the goal of promoting the dignity of humanity. Prof. Di 
Bernardo personally inducted me into the Dignity Order and bestowed 
upon me the titles of a Knight and a Grand Prior of the Dignity Order.   
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Sardinia, Italy, 2023; a convocation of the Knights and the Dames of 
Dignity in Orosei: Based on, and in line with, the teachings and honors 
that I have received from Professor Giuliano Di Bernardo in the context of 
the Dignity Order (on the left), and using Freemasonry as an instrument 
and a symbolic technology for accomplishing my projects (totally 
detached from the profound degeneration that mainstream contemporary 
Freemasonries have suffered), I manage a unique and exclusive, 
autonomous Masonic association of literati (on the right) in order to 
operate as a guild of rigorously educated men and women who share and 
serve concrete epistemological, moral, aesthetic, and ideological values, 
principles, and visions, as well as in order to preserve and promote the 
concept and the value of the Homo universalis and to operate as a 
custodian of sophisticated and complex knowledge. My initiative to create 
a new, genuinely philosophically informed, intellectually significant, and 
historically relevant Freemasonry from literati for literati is based on my 
argument that contemplation must be rigorous and combined with action 
and on my attempt to articulate a creative synthesis between various 
aspects of Plato’s political theory, modern philosophy, and cybernetics. 
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With Dr. Spyros Kiartzis, electrical engineer and business economist, 
Director of Alternative Energy Sources and New Technologies for the 
Hellenic Petroleum Group (HELLENiQ ENERGY Holdings S.A.), at an 
event that I organized in December 2023 in order to present some results 
of my scholarly endeavors. 
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Presenting some results of my research work regarding epistemology and 
mathematical modeling in the social sciences in the Ceremonial Hall of the 
Rectorate of the National and Kapodistrian University of Athens (“Ioannis 
Drakopoulos” amphitheater), in May 2022; with Dr. Stavros Mavroudeas 
(Ph.D./Birkbeck College, University of London), Professor of Political 
Economy at the Department of Social Policy of Panteion University in 
Athens, Greece (on my right). Professor Stavros Mavroudeas’s areas of 
expertise include Marxist political economy, macroeconomics, and growth 
theory.  
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I present part of my research work and social action as well as my 
initiative to create a new Freemasonry that is scholarly rigorous, 
historically responsible, and politically aware and active, according to my 
training and work in the Dignity Order, at a press conference in 
Thessaloniki, Greece, 2023: 
https://www.thessnews.gr/thessaloniki/mathimata-tektonikis-filosofias-o-
nikolaos-laos-ypografei-ena-endiaferon-vivlio/ 
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Presenting my work in the scholarly discipline of epistemology based on 
Giuliano Di Bernardo’s thought and publications, in the Ceremonial Hall 
of the Greek Society of Writers, in Athens, in 2023; with Dr. Ioannis 
Katselidis, Lecturer of History of Economic Theory at the National and 
Kapodistrian University of Athens and at the Athens University of 
Economics and Business (on my right). The major focus of my philosophy 
is structuralism. Structuralism does not imply that a structural argument 
(e.g., a theorem) should dictate anything to reality, but it implies that, due 
to a valid structural argument, we have to expect that the empirical 
morphology will take a particular form, and, whenever reality does not 
comply with a structural argument, it simply makes the situation more 
thought-provoking and intellectually challenging.  
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In  the Ceremonial Hall of the Greek Society of Writers, in Athens, in 
2023, having on my left the lawyer and criminologist Mrs. Christina Ch. 
Florou (member of the Athens Bar Association), the biologist Dr. 
Vasileios Balis (Academic Director of the Aegean College’s Thessaloniki 
Campus and associate of the Center for Regenerative Medicine of the 
Aristotle University of Thessaloniki), and the business consultant and 
biochemist Dr. Stamatis Tournis (Managing Partner and Principal 
Consultant of the Sigma Business Network, expert in the full spectrum of 
operations research and risk management). An epistemology roundtable 
focused on the Greek edition of Professor Giuliano Di Bernardo’s book 
The Epistemological Foundation of Sociology.  
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Between the distinguished Greek political journalist and analyst Mr. 
Spyros Sourmelidis (on the left) and the Greek publisher and philologist 
Mr. Agisilaos Kalamaras (on the right), Athens 2023. In that event, I 
explained that my methodology and my mindset, in general, are inspired 
by cybernetics, which cultivates an inter-disciplinary approach to 
knowledge. As the renowned British polymath, cybernetics expert, 
management consultant, and university professor Stafford Beer (1926–
2002) has aptly pointed out, all worthwhile thinking is underpinned by 
syntheses of different fields of study. Cybernetics is an integral part of my 
thought and of my arguments in favor of modernity. Whereas informatics 
is a branch of engineering and applied mathematics that deals with the 
study of computing and computational systems, cybernetics is a strongly 
interdisciplinary field that deals with the study of systems and control, 
communication, as well as information processing in living organisms and 
machines. Thus, cybernetics is focused on the application of principles 
from mathematics, engineering, biology, neuroscience, and social sciences 
in order to understand structures and explain the behavior of complex 
systems and in order to develop models for the control and regulation of 
the systems under study, whereas computer science is focused on the 
design, the development, and the use of software and hardware systems, 
including their underlying principles, technologies, and methodologies.  
 


