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“These lectures combine logical precision and intuition, and they provide a
firm foundation in basic principles of pure and applied mathematics, as
well as in mathematical philosophy.”

—Dr. Giuliano Di Bernardo, Professor Emeritus of Philosophy of Science
and Logic at the Universita degli Studi di Trento, Member of the
Académie Internationale de Philosophie des Sciences (Brussels), and
Founder and Grand Master of the Dignity Order.
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Preface

The word “mathematics” comes from the Greek word “manthanein,”
which means “to learn.” Mathematics is mainly about forming ways to see
problems in order to solve them by combining logical rigor, imagination,
and intuition. Furthermore, mathematics is a peculiar sense that enables us
to perceive realities that would otherwise be inaccessible to us. In fact,
mathematics is our sense for patterns, relations, and logical connections.
Mathematics, in its essence, is not so much about calculating as about
understanding, and, thus, it is a way of knowing, searching for truth,
thinking, and developing technology.

In general, “truth”—the pursuit of which remains at the heart of scientific
endeavor—can be defined as a set of relations that determine if, and the
extent to which, the representation of reality within consciousness (that is,
the knowledge of reality) is in concordance with the presence of reality
itself (that is, with the nature of reality).

The development of mathematical intuition depends on learning the basic
concepts (thus, creating a powerful intellectual toolbox), using our
intellectual toolbox in order to solve problems, and thinking creatively
(rather than simply memorizing mathematical tools).

I have written and presented these lectures in order to address the
following audiences:

1. Mathematics students: Those who study mathematics can
profitably use my present lectures as a self-contained,
conceptual and methodic guide and compendium of pure and
applied mathematics and as a supplement to their standard
textbooks in the courses of algebra, linear algebra, geometry
(including classical Euclidean geometry, analytic geometry,
non-Euclidean  geometries, and metric  geometry),
infinitesimal calculus (single-variable, multivariable, and
vector calculus), differential equations, and real analysis.

il. Natural-science and social-science students: 1 have written
this series of lectures in order to enable one to understand the
significance of mathematical modeling (including analytic
and statistical methods) both in the context of the natural
sciences and in the context of the social sciences. Therefore,
this series of lectures can be useful for both natural-science
and social-science students, helping them to better
understand the importance of mathematics in their discipline
and the mathematics courses included in their curriculum.



ii. Philosophy students: This series of lectures contains a
systematic study of mathematical philosophy, philosophy of
science, and the methodology of mathematics.

iv. Any person who would like to enhance his/her ability to
understand science in general, to get a better understanding
of mathematics, and to fill cognitive gaps that he/she may
have in mathematics and philosophy of science.

Regarding my competence in mathematics, I would like to acknowledge
the importance of the mathematical education and scientific guidance that
I received from the following professors during my studies at the
University of La Verne: the renowned research mathematician Professor
Themistocles M. Rassias (Ph.D./University of California, Berkeley, former
Chairman of the Department of Mathematics at the University of La
Verne’s Athens Campus and Professor at the National Technical
University of Athens) taught me Calculus I, IT & III, Advanced Calculus,
Linear Algebra, Differential Equations, and Number Theory, and he
supervised my research work in the foundations of mathematical analysis
and differential geometry (a part of the research work and the dissertation
that I completed at the University of La Verne under the supervision of
Professor Themistocles M. Rassias was published in 1998 as the volume
no. 24 of the scientifically advanced Series in Pure Mathematics of the
World Scientific Publishing Company); the highly experienced applied
mathematician Professor Christos Koutsogeorgis (Ph.D./City University of
New York) taught me Discrete Mathematics, Abstract Algebra, and
Probability Theory with mathematical statistics; and the distinguished IT
Professor Chamberlain Foes (Ph.D./Portland State University) taught me
PASCAL (programming language) and introduced me to mathematical
informatics and management information systems.

Moreover, my cooperation with the prominent philosopher Dr. Giuliano
Di Bernardo, who held the Chair of Philosophy of Science and Logic at
the Faculty of Sociology of the University of Trento from 1979 until 2010,
has helped me to explore several aspects of epistemology. Epistemology is
the branch of philosophy that makes knowledge itself the subject matter of
inquiry, and, therefore, every conscientious scholar has to be
epistemologically sensitive and informed. Furthermore, epistemology is
intimately related to ontology, also known as metaphysics, which
investigates the nature of existence itself as well as the degree of existence
of the phenomena that appear to us (and epistemology enables us to
distinguish between theorems about models and theorems about reality;
this distinction is very important in applied science, where models must be
not only logically valid but also empirically validated).



Regarding my interdisciplinary studies and research work, I would like to
acknowledge the contribution of the following professors to my education
during my studies at the University of La Verne (1992-96): the historian
Professor Vassilios Christides (Ph.D./Princeton University) taught me a
comprehensive set of courses on the history of world civilization; the
historian Professor Paul Angelides (Ph.D./Ohio State University) taught
me the courses “U.S. Intellectual History” and “Development of American
Democracy”; the political scientist Professor Blanca Ananiadis
(Ph.D./University of Essex) taught me European politics and political
institutions; and the sociologist Professor Gerasimos Makris (Ph.D./LSE)
taught me Sociology. My studies in the history of civilization in general
and in the history of science in particular have enabled me to articulate a
typology of cultures, and, in this context, I have to mention that my
approach to cultural issues, including science, is founded on certain
aspects of classical philosophy and of what we call “modernity.”

My gratitude extends to the following scholars: the political scientist Dr.
Hazel Smith (Professor of International Security at Cranfield University,
UK, and Fellow of the Royal Society of Arts, London) and the economist
and epistemologist Dr. Michael Nicholson (Professor of International
Relations at the University of Sussex), who supervised my research work
in the epistemology and the mathematical modeling of International
Relations and Political Economy during 1997-99 at the University of
Kent’s London Centre of International Relations; as well as my colleagues
at the Faculty of Philosophy of the Theological Academy of Saint Andrew
(Academia Teologica de San Andrés), Veracruz, Mexico, where I
completed a series of Ph.D. courses (specifically, Methodology of
Philosophical Investigation I & II, Theology and Philosophy I-IV,
Selected Topics in Christian Philosophy I-IV, Seminar on Investigation in
Christian Philosophy -1V, and Interpretation of Philosophical Texts I &
II), and the Dean of that Theological Academy, Metropolitan Dr. Daniel
de Jesus Ruiz Flores of Mexico and All Latin America of the Ukrainian
Orthodox Church (Iglesia Ortodoxa Ucraniana en México) helped me to
explore and appreciate the interdisciplinary nature of the scholarly
disciplines of theology and philosophy, and he signed my Doctoral Degree
in Christian Philosophy.

In fact, I have systematically investigated theology and philosophy in
order to investigate and analyze the meaning of reality, the dynamicity and
the levels of the intentionality of human consciousness, and the general
process of idealization. Moreover, my studies in theology and philosophy
have helped me to study and understand the intellectual history of
humanity and to study science in general and mathematics in particular
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within the context of the history of world civilization. The central theme of
theology and philosophy is condensed in the meaning of the Greek word
“logos,” which means both language and thought, and refers to both the
efficient cause and the final cause of the beings and the things that exist in
the world. Indeed, ancient Greek and Roman scholars used the term
“logos™ in order to refer to the creative Nature, to the Norm of conduct,
and to the Rule of discourse, and, gradually, the study of these three
fundamental dimensions of reality was specialized in the context of
particular scientific disciplines.

In the eleventh century C.E., the first “university” in the world was
founded by an organized guild of students (studiorum) in Bologna. In fact,
the founders of the University of Bologna created the word “uni-versity,”
and they invented an institution called “university” in order to give an
adequate account of the “uni-verse,” and, since the universe comes in
many aspects, they thought that the study of each aspect of the universe
requires the creation of a corresponding scholarly discipline. In fact, those
students, acting as a mutual aid society, hired scholars to teach them
liberal arts (grammar, logic, rhetoric, geometry, arithmetic, astronomy, and
music), law, theology, and ars dictaminis (the composition of official
letters and other epistolary documents). Thus, in the context of the “uni-
versity,” which reflects and gives an adequate account of the “uni-verse,”
each scholarly discipline informs and is informed by every other scholarly
discipline, and this synthetic approach to knowledge underpins the
classical ideal of education.

In this presentation of my lectures, I study and delineate the following
topics: Mathematical Philosophy; Mathematical Logic; the Structure of
Number Sets and the Theory of Real Numbers, Arithmetic and Axiomatic
Number Theory, and Algebra (including the study of Sequences and
Series); Matrices and Applications in Input-Output Analysis and Linear
Programming; Probability and Statistics; Classical Euclidean Geometry,
Analytic Geometry, and Trigonometry; Vectors, Vector Spaces, Normed
Vector Spaces, and Metric Spaces; basic principles of non-Euclidean
Geometries and Metric Geometry; Infinitesimal Calculus and basic
Topology (Functions, Limits, Continuity, Topological Structures,
Homeomorphisms,  Differentiation, and  Integration, including
Multivariable Calculus and Vector Calculus); Complex Numbers and
Complex Analysis; basic principles of Ordinary Differential Equations; as
well as mathematical methods and mathematical modeling in the natural
sciences (including physics, engineering, biology, and neuroscience) and
in the social sciences (including economics, management, strategic
studies, and warfare problems). The option of, firstly, presenting algebra,
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geometry, and mathematical analysis in a new, creative, and synthetic way
(emphasizing a methodical and thorough conceptual study of the subject-
matter) and, secondly, combining different branches of pure and applied
mathematics as well as philosophy into one self-contained course gave rise
to a unique, innovative project.

I originally wrote and presented these lectures during the academic year
2022-23 in the context of a Laboratory of Interdisciplinary Mathematics
and Epistemology (for both scholars and professional technocrats) that I
organized inspired by, and in honor of, my philosophy mentor Professor
Giuliano Di Bernardo and with the support of an international private
Masonic Lodge of literati that I have created and manage on the basis of
the teachings and honors that I have received from Professor Giuliano Di
Bernardo in the context of the Dignity Order (which is a private exclusive
membership association for the defense of the dignity of humanity, and it
was founded by Professor Giuliano Di Bernardo in 2012 under Austrian
Law). As an independent scholar and consultant, with several informal
international scholarly affiliations, I have the opportunity to consider and
study various mathematical and methodological-epistemological problems
as well as other analytical issues in the context of many projects in the
fields of physics, engineering, biology, economics, management, social
policy, and strategic studies. Furthermore, my inspiration for writing these
lectures was enhanced by the legacy of the Royal Society of Arts
(London), which approved my Fellowship in December 2023 (my
Fellowship No. being 8289155), as well as by my experience as an
instructor at the University of Indianapolis (Athens Campus, Greece,
2012-13), where I taught epistemological and methodological issues to
students of International Relations, and as an analyst in financial-services,
construction, IT, and shipping companies.

A Few Preliminary Thoughts

It is due to the intentionality, or the referentiality, of consciousness, or, in
other words, due to the fact that consciousness is the consciousness of its
contents, that the contents of consciousness become experiences for it. In
fact, as the Austrian-German philosopher and mathematician Edmund
Husserl (1859-1938) has taught, consciousness not only treats the
presence of experiences within itself in a critical way, but also causes their
presence, as it is implied by the term “intentionality.” Intentionality is not
only the ability to refer to something, but also the ability to cause
something. Given that, as the French philosopher Henri Bergson (1859—
1941) has taught, intentionality consists of both the ability to refer and the
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ability to cause, we realize that the term “intentionality” expresses the
dynamism of consciousness; and the dynamism of consciousness
manifests itself in the manner in which consciousness intervenes in the
reality of the world and restructures it.

Furthermore, regarding the creativity of human consciousness, it should be
mentioned that the American neuroscientist Benjamin Libet and his
collaborators clarified an aspect of free will through their discovery that
humans consciously decide to act before they even think about making the
decision to act. In his book Mind Time, Libet maintains that free will is not
only an expression of the brain’s conscious activity, but it begins earlier in
the unconscious mind, and it has a power of veto over whether or not the
action takes place.

The evolutionary history of humanity is defined by the increase in brain
size, as the latter made possible the rise of consciousness, both in its
primitive form and in its higher order. Higher order consciousness, in turn,
made possible the birth of language and intentionality or purposefulness.
Consciousness is essentially linked to intentionality, through which human
beings can access external reality and enter into relationships with each
other. Undoubtedly, there are conscious states that are not intentional, and
there are intentional states that are not part of our consciousness.
Nevertheless, the connection between consciousness and intentionality
plays a crucial role in understanding human beings and history.
Intentionality can operate according to a hierarchy of relations ranging
from a minimum to a maximum. The levels of this hierarchy of relations
are called “orders of intentionality,” in the terminology of the prominent
British cognitive anthropologist Robin Dunbar (University of Oxford). In
his book The Human Story, Dunbar has analyzed the development of the
different orders of intentionality. Specifically, bacteria and certain insects
have zeroth-order intentionality, while brain-equipped organisms are
conscious of their mental states. For instance, brain-equipped organisms
know when they are in danger or hungry. Therefore, brain-equipped
organisms have first-order intentionality. First-order intentionality means
that a being is self-aware, consciously referring to itself. However, there
are also types of higher-order intentionality. Intentionality can be directed
towards the beliefs of other people—we say that it is second-order
intentionality. In other words, in the terminology of Robin Dunbar, we can
distinguish the orders of intentionality as follows: most vertebrates can
recall their mental states, at least in an elementary way, that is, by knowing
that they know. Organisms that know that they know have first-order
intentionality. Organisms that, moreover, know that someone else knows
something have second-order intentionality. Organisms that, in addition,
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know that someone else knows that someone else knows something have
third-order intentionality. As the number of subjects in the intentionality
sequence increases, so does the number of hierarchical orders. This
sequence can reflexively be extended indefinitely, but, in the context of
their everyday life, most people rarely reach intentionality of an order
higher than fourth, and they can very hardly rise to the fifth order—that is,
to the following type of reasoning: “Theodore knows that Christina
believes that George thinks that Nicolas supposes that Natasha intends to
do something.” Fourth-order intentionality is required, at a minimum, for
the development of literature that goes beyond mere narrative, because, for
example, an author wants his/her readers to believe that literary hero A
thinks that literary hero B intends to do something. The same level of
minimum skills is required for the development of science, since doing a
scientific task requires asking whether the world could exist otherwise and
going beyond the level of sensory experience, and then asking someone
else to do the same.

As Robin Dunbar argues in his book How Religion Evolved and Why It
Endures, the invention of religion by the species Homo is one of the
earliest and most impressive manifestations of humanity’s ascent to very
high levels of intentionality, and, indeed, religion represents an extremely
advanced and complex expression of humanity’s creative capacity. In fact,
the ability to conceive religion is an exclusive privilege of the human
species. No other biological species living on Earth can formulate
anything even remotely resembling religion. Since humans are a product
of evolution, we must carefully investigate the factors that may have
favored the emergence of our religious impulse.

In order to explain religion as a social activity and as a social institution,
we need at least fourth-order (perhaps even fifth-order) intentionality, so
that we can handle syllogisms of the following type: “John supposes (1)
that Mary believes (2) that John believes (3) that there is a divine being
intending (4) to influence people’s future (because this divine being
understands people’s desires (5)).” Until people can interact and form a
community on the basis of fourth-order (or even fifth-order) intentionality,
we cannot yet speak of a fully developed religion, but only of religious
beliefs. The existence of a common belief—that is, the fact that there are
things that mean the same to everyone—is the keystone of religion. Hence,
a true communion of words, a sharing of words as a basic characteristic of
any genuine dialogue, is a major underpinning of religion.

Based on the point that, in order to understand religion, one needs a well-
formed language and at least fourth-order intentionality (while the
creation of a religion requires at least fifth-order intentionality), we can
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determine when religion made its first appearance in the evolutionary
history of hominids. Specifically, in view of the foregoing, we can argue
that the first appearance of religion in the evolutionary history of hominids
coincided with the time of the first appearance of language. Fifth-order
intentionality, associated with Homo sapiens, manifested itself much later,
when fifth-order intentionality in conjunction with a well-formed language
equipped with advanced grammar and advanced syntax expressed religion
as both a social institution and a metaphysical system.

Darwin’s theory of evolution favors everything that can help the species to
survive. As Giuliano Di Bernardo argues in his book The Epistemological
Foundation of Sociology (Amazon, 2021), the evolutionary advantages
that the human species has derived from religion are social cohesion,
social control, creative imagination (especially regarding the conception of
a better world), and creative management of existential anxiety. To
achieve these goals, religion uses powerful means, such as belief in
immortality, metaphysics, mysticism, and rituals.

However, in the context of the ancient Greek civilization, in the Aegean,
certain Greek intellectuals became aware of and highlighted the fact that
the human mind can discern and differentiate itself from the surrounding
body of nature and can discern similarities in a multiplicity of events,
abstract these from their settings, generalize them, and deduce therefrom
other relationships consistent with further experience. “Abstraction”
means getting rid of what we consider unnecessary details (so that, after
getting rid of unnecessary details, things that were different because of
unnecessary details become identical), and, therefore, we have a non-
trivial concept of “identity,” on the basis of which we study the
“sameness” of certain things, or we look at certain things as if they were
the same. “Composition” means that we combine certain abstract objects
into bigger abstract objects, so that, when we have to deal with complex
problems, we need to be able to divide (“analyze”) the bigger problem into
smaller problems, solve them separately, and then combine the solutions
together. These concepts underpin “operational structuralism,” which, in
turn, underpins the development of modern mathematics (by the term
“operation,” we mean a rule according to which we can combine any two
elements of a given system). The origin of “operational structuralism” can
be traced back to ancient Greek philosophy. In the context of modern
science and philosophy, the scholar that put operational structuralism
within a rigorous mathematical-logical setting was René Descartes, the
acknowledged founder of modern analytic geometry and of modern
philosophy.
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Philosophy and the scientific method were invented by the ancient Greek
civilization. Initially, philosophy was developed within the context of the
ancient Greek mystery cult of Orphism, but, gradually, it achieved its
structural autonomy from religion; and a philosophical approach to
religion (that is, a reflection on religion, which is something different from
religion) gave rise to theology. Hence, with the invention of philosophy,
the ancient Greek civilization created a method that enables humanity to
rise to the highest levels of intentionality without having to resort to
religion, as well as to secure for the human beings the evolutionary
advantages offered by religion without being dependent on religion. In the
context of philosophy, we study truth itself, what we can know, what
makes an argument rational, valid, or fallacious, the reality of being, the
relationship between consciousness and the world, moral criteria, and the
interplay between different scholarly disciplines in the most abstract and
most rigorous way possible. Thus, the invention of philosophy by the
ancient Greek civilization made the ancient Greek civilization capable of
becoming the inventor of science, too. For instance, the mathematical and
philosophical problems suggested and studied by Aristotle, Plato, Zeno,
and Pythagoras inspired and guided the mathematical works of Eudoxus,
Archimedes, Apollonius of Perga, and Nicolas d’Oresme, who were
leading pioneers of infinitesimal calculus, and, in turn, the latters’
achievements inspired and guided the mathematical works of Torricelli,
Cavalieri, Galileo, Kepler, Valerio, and Stevin, who made decisive
contributions to the development of infinitesimal calculus and its
applications, and, in turn, the latters’ works inspired and guided Barrow
and Fermat, who developed infinitesimal calculus even further and set the
stage for the systematic and rigorous formulation of infinitesimal calculus
by Newton and Leibniz. For a systematic study of the importance of
ancient Greek thought for the development of science and philosophy, I
strongly recommend the books written and edited by the British classical
scholar, educationalist, and academic administrator Sir Richard
Livingstone (1880-1960).

Based on the principles of abstraction and syllogism, mathematicians
study the quantitative and the qualitative relations and the forms of a space
(structured set), identify various connections in the processes that take
place in reality, and they formulate them in the form of logical sentences
written in symbols. The heuristic role of mathematics, that is, the
articulation of new results, which then acquire empirical significance and
confirmation or a new interpretation, is based on the correct representation
of reality by mathematical models.
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A “model” is intended as a carefully and methodically simplified analogue
of real-world phenomena and situations, and its deductive structure helps
scientists to explore the consequences of alternative assumptions. Given
that scientific modeling aims to explain how things are and why things are
the way they are, as well as to analyze and evaluate alternative
assumptions, it contrasts, for instance, with the use of basic statistical
methods solely to summarize empirical data. Furthermore, one can
experiment with the model (by changing the assumptions) when it would
be epistemologically, technically, and/or morally impossible and/or too
risky to experiment with the real world.

In general, we should be aware that, usually, the object of scientific
investigation is not an object of the real world but an ideal image of it. For
instance, physics introduces many idealized objects to use in the
idealization of physics problems; such as the following: (i) “Particle”: this
term refers to a fundamental and universal physical object, and, when
physicists use this concept, they ignore the geometric dimensions of an
object in comparison with the characteristic distances of the corresponding
problem. (ii) “Rigid body”: in this idealized object, all possible strains are
ignored. (iii) “Elastic body”: in this idealized object, the remnant strain is
ignored. (iv) “Inelastic body”: this idealized object is incapable of
sustaining deformation without permanent change in size or shape, and, in
this case, clastic deformation is ignored. Moreover, physics introduces
idealized physical processes, too; such as the isochoric, isobaric,
isothermal, and adiabatic processes. Similarly, in microeconomics and
econometrics, the “model” of a real economic phenomenon reflects the
essentials, allows only for the most important interrelations and
interactions, and considers idealized actors rather than real actors. In
particular, the mainstream of economic theory does not deal with real
businesses or interests, or real markets, but it deals with theoretically
representative firms, abstract markets, and generalities like the interest rate
and the flow of money, and, therefore, it predicts general (rather than
individual) behavior, and, more specifically, it predicts what the
consequences of different kinds of behavior will be under certain
hypotheses.

Scientific explanation is based on the fact that real objects and phenomena
themselves are so complicated and interrelated that their study and
quantitative investigation with due account for all aspects, interrelations,
and interactions would lead to insurmountable mathematical difficulties.
Therefore, a reasonable level of idealization of concrete problems
characterizes every meaningful task in the context of applied science. If
applied scientists did not idealize their problems, then they could not solve
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a single concrete problem in full. The simplifying assumptions vary from
problem to problem, but a common feature of every scientific idealization
consists of the methodical identification of non-essential, secondary
interrelations and interactions and the decision to ignore them. Hence, a
question of criteria arises. When, in what conditions, can an interrelation
or interaction be characterized as non-essential and ignored, and when
not? The answer depends on the method used in analyzing the solution to a
problem and on the estimate method. However, two ways of idealization
are most commonly used in applied science: the introduction of idealized
objects (or idealized actors) and the decision to ignore non-essential
interactions and processes (once we have clearly identified them as such).
In the context of my work in mathematical modeling, I have been using
two categories of mathematical models: one category of mathematical
models depends on the Italian physicist and engineer Galileo’s method
(consisting of intuition or resolution, demonstration, and experiment), and
the other category of mathematical models depends on General System
Theory (originally due to the Austrian biologist Ludwig von Bertalanfty).
Applied firstly to celestial mechanics, Galileo’s method is characterized by
a mechanistic conception, according to which formal rules (“reasons”
cause behavior (in an automatic way), and it is ideally suited for the study
of classical physics. In fact, the estimation of a physical phenomenon
consists of finding the fundamental law governing the phenomenon and,
subsequently, numerically calculating the order of magnitude of the
respective physical quantity. However, applied firstly in biology and,
subsequently, in certain aspects of modern physics and ecological studies,
as well as in behavioral and social sciences (where formal rules
(“reasons”) do not necessarily cause behavior), the “working attitude” of
General System Theory is that of the “open system,” delineated by Ludwig
von Bertalanffy in his book General System Theory (originally published
in 1968).

The closed system, reflecting the model of thought of classical physics, is
axiomatic in a way that the object of scientific research is separated from
the outer environment, and the outcome results from the initial conditions.
From this perspective, scientific research is concerned with the analysis of
the characteristics and the quantities of the elemental components, which
are held in isolation for the purpose of study. Moreover, it is based on an
additive methodology that underpins the deduction of the meaning of the
whole from a specific corpus of knowledge of the character of its
elementary parts. Thus, it is characterized by “reductionism.” Thinking
according to this model (the “machine model”) has introduced both useful
and misleading insights in the study of human systems. For instance, the
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“machine model” provides a rigorous reference system (specifically, a
platform equipped with a ruler and a clock, enabling us to determine the
position of the bodies under consideration and the course of time) as well
as powerful analytical methods, but the actions of living things, in general,
do not fit the conceptual models of classical physics.

On the other hand, General System Theory endorses and absorbs the
clarity of thought and the rigor that characterize the “machine model,” but
it is based on the empirically verified fact that living beings and their
organizations are not collections of isolated and uniform units, the sum of
which accounts for a total phenomenon. Even though there is a structural
continuity between inorganic matter and organic matter, life—by
transforming inorganic matter into organic matter—implies an important
differentiation in matter. Some characteristic differences between
inorganic matter and organic matter are the following: Firstly, inorganic
matter is governed by inertia, whereas organically structured living beings
sense things, react to external stimuli, and move on their own. Secondly,
inorganic matter reacts according to the laws of mechanics, but the
reactions of organically structured living beings manifest peculiar
qualitative features that are not strictly analogous to the stimuli that cause
reaction, and they depend on organic relations that govern each living
being according to its structural program. Thirdly, according to the
Standard Model of particle physics, the minimal constituent matter
elements of inorganic bodies are uniform—that is, subatomic particles are
identical (so that no exchange of two identical particles, such as electrons,
can lead to a new microscopic state)—but the minimal constituent matter
elements of organic matter (such as DNA) are subject to differentiations,
which underpin the actualization and the manifestation of the structural
program of an organic being. Fourthly, inorganic bodies are connected
with each other under specific conditions in order to form chemical
compounds, which are always characterized by the same quantitative data
(e.g., Antoine Laurent Lavoisier’s “law of conservation of matter,” Louis
Proust’s “law of constant composition,” and John Dalton’s “law of
multiple proportions”), but organically structured living beings exchange
some of their constituent elements with some of their environment’s
constituent elements in the context of a dynamical process that is called
assimilation. Fifthly, inorganic bodies exist in definite and fixed
quantities, but organically structured living beings (specifically, “parents”)
create new living beings (specifically, “offspring”) similar to them in the
context of the reproductive process. Sixthly, with few exceptions (such as
radioactive nuclides, or nuclear species which are unstable structures that
decay to form other nuclides by emitting particles and electromagnetic
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radiation), inorganic bodies are incapable of self-transformation, but
organically structured living beings follow life cycles (namely,
developmental stages that occur during an organism’s lifetime).

The phenomena of the living world must be modeled as open systems, in
which the “components” are sets of organized actions that are maintained
by exchanges in the environment, and the issue of teleology (normative
action) must be explicitly addressed in the models of human systems.
Therefore, the postulates that refer to the dynamism of an open system and
the rules that relate means to ends must explicitly find their place in any
meaningful study of the social sciences. For this reason, deontic logic,
approximation theory, stochastic processes, and a dynamical approach to
structural analysis play an important role in the modeling of human
systems.

The Meaning of a “Conceptual Study”

Mathematics plays a very important role in the world (and this is easily
and thoroughly understood in applied mathematics); and, therefore, the
student of mathematics must be properly instructed to understand the true
nature of mathematics. The understanding of the true nature of
mathematics is a key underpinning of the progress of civilization. As
Euclid has taught, the true nature of mathematics is inextricably linked to
deductive reasoning: from various hypotheses (often related to the
perception of the world), we logically proceed to proofs.

However, hypothetico-deductive systems, especially when we rise to very
high levels of abstraction, give rise to paradoxes, that is, contradictions of
understanding, contradictions of logic, contradictions of semantics, and
contradictions of thinking. Paradoxes have played an important role in the
development of mathematics and logic. Some well-known mathematical
paradoxes are the following: Zeno’s paradox, Eubulides’s heap (“sorites”)
paradox, Epimenides’s “liar paradox,” Hilbert’s “Grand Hotel” paradox,
Russell’s paradox, etc.

In the context of hypothetico-deductive systems, we have to accept
axiomatic truths, and, simultaneously, we have to be ready to concede that
various problems stem from these axiomatic truths. On the one hand, we
have to accept the existence of mathematical truths, and, on the other
hand, we have to concede that mathematical truths give rise to paradoxes
and comprehension problems. A way out of this uncomfortable situation
was offered by the great philosopher and logician Ludwig Wittgenstein,
who explained this uncomfortable situation, especially regarding the
capacity of our evidentiary tools. Specifically, Wittgenstein maintains that
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the limits of our language together with our perceptual skills determine the
limits of our thinking, since they construct the image (intellectual
representation) of the world that we can perceive. As we rise to higher and
higher levels of abstraction, we must be prepared to confront paradoxes.
Moreover, another great philosopher and logician, Kurt Godel, proved
that, in the world, there exist propositions whose truth is valid but
unprovable by (i.e., within the context of) the formal mathematical
framework that we have established. In other words, as I shall explain in
Chapter 1, Godel proved that, in a formal mathematical framework, there
exist mathematical propositions that are necessarily true and
simultaneously unprovable by means of the tools provided by the given
formal mathematical framework (and, therefore, they urge us to expand
our conceptual and mathematical toolbox). Gdodel has mathematically
proved that a completely formalized system of arithmetic (like a machine)
is either inconsistent (leading to a contradiction) or incomplete (lacking in
its axiomatic foundations). Absolute, mechanistic rigor is impossible.
Conceptual knowledge (which is a formally constructed and linguistically
expressed kind of knowledge), far from contradicting or excluding
intuitive knowledge (which is a way of knowing that is more direct,
immediate, and expressing a felt sense of things), is in a relationship of
mutual complementarity with intuition, specifically, rational intuition (to
which I shall refer in the Introduction). Conceptual knowledge is a
necessary underpinning of rational intuition, and rational intuition, in turn,
provides the mental readiness of the knowing subject to recognize and
accept a truth that lies before him/her. This creative synthesis between
conceptual knowledge and rational intuition underpins the ancient Greek
notion of “epopteia,” which means having seen an object in a
comprehensive way (“global vision). Moreover, as the philosopher
Michael Dummett has pointedly argued, “intuition is not a special source
of ineffable insight: it is the womb of articulated understanding”
(Dummett, Truth and Other Enigmas, p. 214).

The value and the utility of mathematics do not derive from the “beauty”
of mathematical formalism or from the complexity of mathematical
abstractions, but from the fact that mathematics helps us to articulate
representations of reality, which are useful in order to understand and/or
restructure reality according to the intentionality of consciousness. |
endorse the argument of the great French mathematician René Thom
(1923-2002) that “what justifies the ‘essential’ character of a
mathematical theory is its ability to provide us with a representation of
reality”; and the possibility of abstracting mathematical entities from
concrete situations derives from the fact that mathematics provides us with
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a model of the “real” (Thom, Mathématiques essentielles, pp. 2-3).
Moreover, René Thom has brilliantly explained the term “real,” which is
the object of mathematical modeling, by arguing that, by the term “real,”
he means “both aspects of the reality of the external world—whether it is
given to us by the immediate perception of the world around us, or by a
mediated construction such as scientific vision” (ibid).

Thus, Thom’s understanding of mathematics is not focused on formalism,
but on a broad perspective of motion, form, and change of form, where
“form” is interpreted according to Aristotle’s hylozoism. According to
formalism, mathematics is a game of symbols, bringing with it no more
commitment to an ontology of objects or properties than chess or ludo,
whereas, from the perspective of Aristotle’s philosophy, mathematics is a
body of propositions representing an abstract sector of reality. According
to Aristotle’s hylozoism, every being is composed, in an indissociable
way, of matter and form, and matter is a substratum awaiting and needing
to receive a form in order to become a substance, the substance of being.
When Aristotle says that a being exists with regard to its substance, he
refers to the “material” of which a being is composed, namely, to the
“material cause” of a being. The ‘“substantive” mode of being is
complemented by form (i.e., by the “formal” mode of being), which is due
to species. In his Metaphysics, Aristotle replaced the Platonic term “idea”
with the concept of species. Form is a mode of being that is assumed by
substance, and, due to its form, a being is even more sharply differentiated
from every other being.

According to Thom, in the context of Aristotle’s hylozoism, the notion of
a bounded open set can exist as the substratum of being, whereas the
notion of an unbounded open set cannot (Thom, “Les intuitions
topologiques primordiales de [D’aristotélisme,” p. 396). Furthermore,
following Aristotle’s hylozoism, Thom maintains that, in mathematical
modeling, the ideal of quantitative accuracy in description must always be
pursued in conjunction with the ideal of qualitative accuracy in
explanation. The ideal of qualitative accuracy in explanation refers to the
elucidation of structure, that is, of the coherent link between the substance
and the form of the phenomenon under study. In particular, Thom has
considered the following case: Let us suppose that the experimental study
of a phenomenon @ gives an empirical graph g whose equation is y =
g(x), and that a researcher attempting to explain @ has available two
theories, say 6, and 8,. In Figure 0-1, we see the empirical graph y =
g(x) of the phenomenon @, the graph y = g,(x) of theory 6;, and the
graph y = g,(x) of theory 8,. Neither the graph y = g, (x) nor the graph
y = g,(x) fits the graph y = g(x) well. As shown in Figure 0-1, the
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graph y = g,(x) fits better quantitatively, in the sense that, over the
interval considered, [|g — g;|dx is smaller than [|g — g,|dx. On the
other hand, Figure 0-1 clearly shows that the graph y = g,(x) fits better
qualitatively, in the sense that it has the same shape and appearance as y =
g(x) (e.g., more specifically, in terms of monotonicity and curvature).
Hence, René Thom argues that, in this situation, the researcher should
retain 6, rather than 6; “even at the expense of a greater quantitative
error,” because “ 8,, which gives rise to a graph of the same appearance as
the experimental result, must be a better clue to the underlying
mechanisms of @ than the quantitatively more exact 6; ” (Thom,
Structural Stability and Morphogenesis, p. 4).

Figure 0-1: Quantitative and qualitative aspects of modeling.
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In view of the foregoing, there is a strong interplay between philosophy,
logic, and mathematics; and mathematical education must include a deep
understanding of mathematical concepts, the methodology of mathematics,
and epistemology in general. The importance of the interaction between
mathematical education and philosophical education becomes even clearer
in the context of interdisciplinary mathematics.

The present series of my lectures on pure and applied mathematics and
epistemology expresses my efforts to educate various groups of people in
mathematical thinking and epistemology, starting from the basics.
Moreover, these lectures aim to equip every aspiring person with a self-
contained reference work for self-study in the fields of mathematics and
epistemology.
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I have taken great care in typing these lectures, which express my love for
these subjects and my method of teaching in these fields. For any
remaining typing errors in these lecture notes, I am wholly responsible,
and I would deeply appreciate if they are brought to my notice by the
readers.

Nicolas Laos
December 2023
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Introduction:
Mathematical Philosophy

Every scientific activity is based on consciousness, thinking, perception,
memory, judgment, imagination, volition, emotion, attention, as well as
intuition.

Consciousness can be construed as an existential state that allows one to
develop the functions that are necessary in order to know both one’s
existential environment as well as the events that take place around oneself
and within oneself. Thinking is based on symbols, which represent various
objects and events, and it is a complex mental faculty characterized by the
creation and the manipulation of symbols, their meanings, and their mutual
relations. Perception is a process whereby a living organism organizes and
interprets sensory-sensuous data by relating them to the results of previous
experiences. In other words, perception is not static, but a developing
attribute of living organisms; it is active in the sense that it affects the raw
material of scattered and crude sensory-sensuous data in order to organize
and interpret them; and it is completed with the reconstruction of the
present (present sensory-sensuous data) by means of the past (data
originating from previous experiences). Therefore, perception is intimately
related to memory and judgment. Judgment is one’s ability to compare and
contrast ideas or events, to perceive their relations with other ideas or
events, and to extract correct conclusions through comparison and
contrast. Memory is one’s ability to preserve the past within oneself—or,
equivalently, the function whereby one retains and accordingly mobilizes
preexisting impressions. Imagination is a mental faculty that enables one
to form mental images, representations, that do not (directly) derive from
the senses. Imagination is not subject to the principle of reality, as the
latter is formed by the established institutions. Imagination develops
because consciousness cannot conceive the absolute being in an objective
way. Volition, or will, is one’s ability to make decisions and implement
them kinetically. Emotion or affect is the mental faculty that determines
one’s mood. Attention is a mental faculty that focuses conscious functions
on particular stimuli in a selective way, and it operates as a link between
perception and consciousness. Intuition means that consciousness
conceives a truth (that is, it formulates a judgment about the reality of an
object) according to a process of conscious processing that starts from a
minimum empirical or logical datum and rises to a whole abstract system
with which consciousness realizes that it is connected or to which
consciousness realizes that it belongs (rational intuition, in particular, is
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intimately related to a type of subconscious thinking). In his Republic,
Plato tries to define intuition as a fundamental capacity of human reason to
comprehend the nature of the object of consciousness, and, in his works
Meno and Phaedo, Plato understands intuition as the awareness of
knowledge that previously existed in a dormant form within the mind.
Moreover, David Hume, in his book entitled A Treatise of Human Nature,
explains intuition as the power of the mind to recognize relationships
(relations of time, place, and causation) without requiring further
examination.

In general, philosophers are preoccupied with methodic and systematic
investigations of the problems that originate from the reference of
consciousness to the world and to itself. In other words, philosophers are
preoccupied with the problems that originate from humanity’s attempt to
articulate a qualitative interpretation of the integration of the
consciousness of existence into the reality of the world. The
aforementioned problems pertain to the world itself, to consciousness, and
to the relation between consciousness and the world.

It goes without saying that scientists are also preoccupied with similar
problems. However, there are two important differences between
philosophy and science. Firstly, from the perspective of science, it suffices
to find and formulate relations and laws (generalizations) that, under
certain conditions and to some extent, can interpret the objects of scientific
research. Philosophy, on the other hand, moves beyond these findings and
formulations in order to evaluate the objects of philosophical research and,
ultimately, to articulate a general method and a general criterion for the
explanation of every object of philosophical research. Whereas sciences
consist of images and explanations of these images, philosophies are
formulated by referring to wholes and by inducing wholes from parts.
Hence, for instance, a philosopher will ask what is “scientific” about
science, or what is the true meaning of science? Therefore, philosophy and
science differ from each other with regard to the level of generality that
characterizes their endeavors, and philosophy is a reflection on science.
Secondly, as the French philosopher Pierre Hadot pointed out in his book
Philosophy As a Way of Life, unlike the various scientific disciplines,
philosophy is not merely a science, but it is a “way of life.” More
specifically, philosophy implies a conscious being’s free and deliberate
decision to seek truth for the sake of knowledge itself, since a philosopher
is aware that knowledge is inextricably linked to the existential freedom
and the ontological integration and completion of the human being.
Furthermore, as I have already explained, philosophy is a reflection on
science.
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Knowledge

By the term “knowledge,” we mean: (i) the mental action through which
an object is recognized as an object of consciousness; (ii) the mental action
through which consciousness conceives the substance of its object; (iii) the
object whose image or idea is contained in consciousness; and (iv) that
conscious content which is identified with the substance of the object of
knowledge. Therefore, the term “knowledge” can be construed as a firm
consideration of an object as something that corresponds to reality.
Logical knowledge, in particular, is a form of knowledge that derives from
the rational faculty of consciousness, and it is characterized by
indisputable and logically grounded truths (i.e., judgments about the
reality of things). Rationality means the use of logical knowledge to attain
goals. Logic is a theory of correct reasoning. Any relation between
concepts is formulated by means of propositions. According to Aristotle’s
Organon, the “backbone” of any science is a set of propositions, so that,
starting from the very primitive principles and causes, one can proceed to
learn the rest. Aristotle’s logic is focused on the notion of deduction
(syllogism), which was defined by Aristotle, in the first book of his work
entitled Prior Analytics, as follows: “A deduction is speech (logos) in
which, certain things having been supposed, something different from
those supposed results of necessity because of their being so”; each of the
things “supposed” is a premise of the argument, and what “results of
necessity” is the conclusion.

By the term “concept,” we mean the set of all predicates of a thing (or of a
set of conspecific things) that express the substance of the given thing (or
of the given set of conspecific things). In the scholarly discipline of logic,
the “intension” of a concept is the set of all predicates of the given
concept, or the set of all those elements due to which and by means of
which the given concept can be known and distinguished from every other
concept. In other words, the intension of a concept is its formal definition.
For instance, the properties of the three angles and the three sides of a
geometric figure constitute the intension of the concept of a triangle.
Moreover, in the scholarly discipline of logic, “extension” indicates a
concept’s range of applicability by naming the particular objects that it
denotes. In other words, the extension of a concept encompasses all those
things to which the given concept refers. For instance, the extension of the
concept of a tree consists of all particular trees; the extension of the
concept of a human being consists of all particular humans, etc.
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By the term “genus” (plural: “genera”), we mean a concept whose
extension includes other concepts, known as “species” or “kinds,” which
fall within it. In other words, “genera” are concepts with an extension
bigger than that of other concepts, whereas “species” or “kinds” are
concepts with an extension smaller than that of other concepts. For
instance, the concept of a geometric figure is a genus with regard to the
concept of a triangle, whereas the concept of a triangle, which appertains
to the concept of a geometric figure, is a kind with regard to the concept of
a geometric figure.

Through the process of “abstraction,” we decrease the intension of
concepts and increase their extension. Thus, due to abstraction, the
concept of a human being can be gradually generalized into the following
concepts: “vertebrate,” “mammal,” “animal,” “living being,” and “being”;
“being” is the most general concept, in the sense that its intension is
minimum and its extension is maximum. “Being,” to which every other
concept is reducible, cannot be further analyzed into other concepts.
Concepts of such general type, which are not susceptible to further
analysis into simpler concepts, and to which other concepts are reducible,
are called “categories.” Aristotle, in his book Categories, attempted to
enumerate the most general species, or kinds, into which beings in the
world are divided. In particular, in Categories (1b25), Aristotle lists the
following as the ten highest categories of things “said without any
combination”: “substance” (for instance, man, horse), “quantity” (for
instance, four-foot, five-foot), “quality” (for instance, white, grammatical),
“relation” (for instance, double, half), “place” (for instance, in the
Lyceum, in the market-place), “date” (for instance, yesterday, last year),
“posture” (for instance, is lying, is sitting), “state” (for instance, has shoes
on, has armor on), “action” (for instance, cutting, burning), and “passion”
(for instance, being cut, being burned).

No material object or system of objects—nor any connection or interaction
that exists between them in material reality—is the direct object of
mathematical study. In order for mathematical tools to be used to study the
processes, the phenomena, and the individual objects that exist in reality, it
is necessary to construct the corresponding mathematical models. By the
term “mathematical model,” we mean a system of mathematical relations
that symbolically describes the processes or the phenomena under study.
For the construction of mathematical models, a variety of mathematical
tools are used—such as: equations (algebraic, differential, and integral
ones), graphs, matrices and determinants, relations of mathematical logic,
geometric constructions, etc. In fact, the basic type of mathematical
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activity, the fundamental problem of mathematics, is the construction, the
study, and the application of mathematical models.

No model can represent all the properties and all the relations of the
original object. In other words, a model is a simplification, an approximate
representation of the original object, and, therefore, an abstraction, but,
simultaneously, a model highlights and describes an important pattern of
the properties and the relations of the original object. The dialectical
process of the knowledge of reality consists of two tasks: firstly, the
replacement of existing models by others, which yield a more complete
representation of the properties of the original object; and, secondly, the
combined application of various models.

Mathematical Modeling

As I have already mentioned, mathematics is concerned with the
construction of such models of objects (namely, of things, processes, and
phenomena) that reflect the corresponding objects’ quantitative and/or
qualitative attributes as well as their spatial and structural peculiarities. For
instance, geometry is the scientific study of the quantitative and the
qualitative properties of spatial forms and relations (the criteria for
equality of triangles provide instances of qualitative geometric knowledge,
and the computation of lengths, areas, and volumes exemplifies
quantitative geometric knowledge).

The constituent elements of a model are symbols and signs. Symbols are
forms that express commonly accepted intentions and actions, and they
can be organized into particular systems that are called codes, and the
elements of such a code are called signs. In the context of mathematical
modeling, the character of these signs can vary, since these signs can be
schematic images (namely, shapes, drawings, and graphs), collections of
numerical symbols, and elements of artificial or natural languages.
Furthermore, symbols are subject to transformations according to specific
symbol transformation rules. The symbols and their transformations are
definitely interpreted in terms of the original objects. The combinations of
symbols used and their transformations are dictated and determined by the
properties of the original objects and by the relations selected and included
in the corresponding model.

Mathematical models—which, with the help of the human senses, are
directly extracted from material objects—usually express the primary
simplest abstractions of a quantitative and spatial character, such as, for
instance, enumeration, dimensions, form, position in space, etc. If a human
being relies only on the sense organs, then he/she cannot achieve deep
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knowledge of anything. Nature, acting on the sense organs, can only
produce in humans a limited set of sensations, impressions—namely, that
type of knowledge which we call “empirical.”

The accumulation of empirical data constitutes the basis of generalizations
and abstractions. The formulation of generalizations and abstractions
provides the intellectual setting in which the application of mathematical
tools becomes possible and meaningful. In the course of the historical
development of mathematics, the construction of models of increasingly
complex systems has been achieved, including systems that consist of
multiple abstractions. With regard to its theoretical essence, mathematics
can be construed as a science of modeling; and, therefore, both the reality
of the world and the reality of consciousness are fundamental to
mathematics.

According to such renowned mathematicians and logicians as Jacques
Hadamard, Andrey Tikhonov, René Thom, Hermann Weyl, Ljubomir
Iliev, Andrey Kolmogorov, and Leonid Kantorovich, the order of
operations involved in the construction of mathematical models can be
summarized as follows:

1. Determining and formulating the problem as clearly as possible.

2. Identification of the variable quantities that determine the process
under study or are chosen for the study of the given problem.

3. Definition of the relations between these variables and the
parameters on which the state of the process under study depends.

4. Formulation of a hypothesis (or hypotheses) about the nature of
the conditions under study.

5. Construction of the model so that its properties coincide with the
initially defined ones.

6. Conducting experimental tests.

7. Checking the hypothesis accepted for the construction of the
model, and evaluating it according to the outcome of
experimental tests.

8. Acceptance, rejection, or modification of the hypothesis on the
basis of repeated experimental tests and conclusions.

In addition, regarding mathematical modeling, it should be mentioned that
the value of mathematical modeling is not only based on quantitative
accuracy but also on qualitative accuracy. By the “qualitative accuracy” of
a mathematical model, I mean its ability to explain the characteristics of
the structure of the phenomenon under study.

The symbolic language of mathematics is equipped with rules for handling
concepts. In addition, the logical construction of mathematical models is
rigorously determined in the context of, and my means of, a hypothetico-
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deductive system. In a “hypothetico-deductive” (or “axiomatic”) system,
there are two requirements that must be met in order that we agree that a
proof is correct: (i) acceptance of certain statements, called “axioms,”
without proof, on the basis of their intrinsic merit, or because they are
regarded as self-evident; and (ii) agreement on how and when one
statement “follows logically” from another, that is, agreement on certain
rules of reasoning. Inextricably linked to the aforementioned two
requirements is the requirement that every person who applies
hypothetico-deductive reasoning in a particular discourse understands the
meaning of the words and the symbols that are used in that discourse. The
more consistent and the more complete a hypothetico-deductive system is,
the more its imposition is safeguarded. By the term “consistency,” we
mean that the axioms of a hypothetico-deductive system neither contain
nor produce contradictions. By the term “completeness,” we mean that the
truth value of any proposition that belongs to a hypothetico-deductive
system can be determined within the given hypothetico-deductive system
(that is, according to the terms and the rules of the given hypothetico-
deductive system). All these are philosophical questions.

In general, there is a close affinity between mathematics and philosophy.
Mathematics, like philosophy, is created by consciousness. Mathematics
provides a model of knowledge of a particular kind, and, in fact,
philosophers have highlighted the particular nature of mathematical
knowledge and have argued that all knowledge could possibly aspire to the
particular nature of mathematical knowledge. According to the German
mathematician and philosopher Friedrich Ludwig Gottlob Frege, unlike
other kinds of knowledge, mathematical knowledge is characterized by
rigor and objectivity, because mathematics is constituted as a logical
system.

The Nature and the Structure of Mathematical Knowledge

Firstly, we have to consider mathematical Platonism, because Plato
articulated a systematic philosophy founded on the principle of
reasonableness in thought, rather than empirical rules, and he articulated a
systematic theory of being (“ontology”). In fact, every philosophical
activity is fundamentally concerned with the study of being. In the context
of philosophy, the term “being” is almost always construed as a self-
sufficient reality that is sustained either by being a closed system or by
being an open system.

According to mathematical Platonism, numbers are forms, specifically,
abstract, objectively existing objects. This thesis seems to be corroborated
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by the fact that numbers are not intrinsic characteristics of objects, but
they are applicable to objects, and they seem to be the contents of
objective truths, irrespective of any contingency and any particular object
of the sensible world. From this perspective, numbers are objects
themselves. In particular, according to mathematical Platonism, numbers
are a peculiar kind of objects, since they exist objectively, but they cannot
be grasped by the senses, they are not part of the material space-time, and
they are not subject to the laws of material space-time. Far from negating
the thesis that numbers are objects, the fact that numbers are not subject to
the spatio-temporal structure of our sensible world corroborates the
Platonic thesis that the world of forms is the reality par excellence, which
underpins the logical constitution of our sensible world, which, in Platonic
parlance, can be regarded as a “shadow” of the world of forms. This
reasoning underpins the Platonic argument that, whereas the knowledge
that is provided by the senses is subject to revision, the knowledge that is
provided by forms, such as numbers, is incorrigible; and, therefore, reason
(“logos”), which consists of thought and language, is superior to the
senses. This is how mathematical Platonism explains the peculiar
characteristics of the mathematical truth—namely, the certainty, the
structural stability, and the necessity of the mathematical truth. From
Plato’s perspective, “truth” implies the concordance between a being or
thing and its idea (the respective beingly being, or eternal and archetypal
form), so that a being or thing is true if, and to the extent that, it is in
concordance with its idea.

Mathematical Platonism is a variety of dualistic realism. In philosophy, the
term “realism” refers to a philosophical model that is based on objectively
existing objects, thus giving primacy to a consciousness-independent
world, as opposed to “idealism,” which gives primacy to the reality of
consciousness. According to philosophical realism, the fact that experience
furnishes consciousness with images—even unrelated to each other—of a
reality that seems to lie outside the dominion of consciousness implies that
the reality of the world is the cause of the particular images of the world
that are present within consciousness. From the realist perspective, the
principle of causality points us in the direction of the claim that the
autonomous existence of reality is naturally and logically necessary. Even
though the aforementioned reasoning is sound, dualistic realism, with its
doubling of the world, leads to contradictions and logical gaps, especially
regarding the existence of, and the relationship between, the world of
forms and the world of “shadows,” namely, their sensible images.

Aristotle attempted to overcome the contradictions and the logical gaps of
Plato’s dualistic realism by reformulating dualistic realism in a way that
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bridges the gap between the world of forms and the human mind. In
particular, Aristotelianism highlights the structural mode of being.

The cohesive bond between substance and form is the structure of a being.
The deepest reality of a being is its substance, while the external aspect
and the existential otherness of that reality are the form of the given
being—namely, an element that animates the given being—and these two
elements (modes of being) concur with each other in the context of the
structural mode of being. From the perspective of structuralism, Platonic
realism corresponds to the ante rem structuralism (“before the thing”), in
the sense that, according to Platonism, the ideational structure of mental
life is a real but transcendent principle vis-a-vis the mind itself and the
sensible world, and philosophical consciousness tries to partake and
progress in the world of forms, while Aristotelian realism corresponds to
the in re structuralism (“in the thing”), in the sense that, according to
Aristotelianism, structures are held to exist inasmuch as they are
exemplified by some concrete system, and the mind itself, not the world of
forms, is a real and transcendent principle vis-a-vis the sensible world, and
it conceives forms as abstractions. According to Plato’s dualistic realism,
forms are objectively existing objects, of which the objects of the sensible
world are images, or ‘“shadows.” According to Aristotle’s dualistic
realism, forms are mental abstractions, the objects of the sensible world
are material exemplifications of forms, forms are conceived by the mind,
and the mind, rather than the world of forms itself, is transcendent to the
sensible world. For this reason, Aristotle argued that the mind is the
“entelechy”—that is, the program of actualization—of the body, generally,
of the human organism.

According to mathematical Aristotelianism, mathematics refers to truths of
the sensible world, in the sense that, even though numbers are not sensible
things, they are properties of sensible things—specifically, abstract entities
which can be predicated of sensible things. In other words, numbers are
not objects themselves, they do not exist independently of objects, but they
are features of objects, and they exist within objects. For instance, when
we see ten people, the number ten is a property of the given collection of
people that we see.

In the context of mathematical Aristotelianism, numbers are not self-
subsistent forms, objects, but still numbers are properties of other things in
an objective way. In general, according to Aristotle and according to
Thomas Aquinas’s variety of Aristotelianism (in the context of medieval
scholasticism), consciousness is a passive mirror of reality, and truth refers
to an objective correspondence between thinking consciousness and its
object. But Descartes reversed the aforementioned relation between the
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intellect and its object, arguing that understanding (or intellection) is the
basic reality, and that understanding is activated by conceiving itself;
hence, Descartes’s famous dictum: “cogito ergo sum,” meaning “I think
therefore I am.” By assigning this active role to consciousness, Descartes
emerged as the rigorous initiator and founder of modern philosophy.
Gradually, modern philosophy gave rise to a new general model, which is
known as idealism. According to modern philosophical terminology, there
are two general models whereby philosophers interpret the world: one
gives primacy to the reality of the world, and it is known as philosophical
realism, whereas the other gives primacy to the reality of consciousness,
and it is known as philosophical idealism. According to idealism, the
nature of consciousness is not totally different from or opposite to the
nature of extra-conscious reality. The idealists’ way of thinking can be
summarized as follows: if the nature of reality was totally different from
the nature of consciousness, then the human being would be unable to
know reality. Thus, ultimately, idealism construes and studies the world
not as something reflected in consciousness, but as an extension and a
projection of consciousness outside itself and as part of consciousness.

In the nineteenth century, the German mathematician and philosopher
Friedrich Ludwig Gottlob Frege departed from the traditional realist
philosophy of mathematics, and, in contrast to mathematical
Aristotelianism, he argued that, even though mathematical knowledge is
objective, numbers are not objective, consciousness-independent
properties of other things. According to Frege, any number n can be used
in order to count any n-membered set, but the formulation of a claim
concerning which number belongs to a set is determined by the way in
which mathematical consciousness conceptualizes that set. For instance,
consider the Tarot. The Tarot consists of 78 cards. Moreover, it has two
distinct parts: the Major Arcana, consisting of 22 cards without suits, and
the Minor Arcana, consisting of 56 cards divided into 4 suits of 14 cards
each. Depending on whether we are thinking in terms of Tarot cards in
general, or in terms of the Major Arcana Tarot cards, or in terms of the
Minor Arcana Tarot cards, or in terms of the suits of the Minor Arcana
Tarot cards, different numbers will belong to that particular set of cards.
Hence, we have to decide if that particular set has the property 78, or the
property 22, or the property 56, or the property 4. Similarly, a pair of shoes
is one pair of shoes, but it consists of two shoes, and, therefore, we have to
decide which number belongs to this physical object: the number one or
the number two. Thus, according to Frege, numbers are not objective
properties of objects, but objects acquire numbers as properties according
to the ways in which consciousness thinks of the corresponding objects.
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Frege’s argument about the active role of consciousness in mathematical
creation—especially in light of Kant’s philosophy—may lead one to the
conclusion that we have to do away with mathematical objectivity
completely. Before explaining the way in which Frege prevented
mathematical philosophy from sinking into arbitrary idealism, it is
important to summarize Kant’s theses.

Immanuel Kant—who wrote the seminal book Critique of Pure Reason
(1781/1787) and is one of the paradigmatic representatives of the
European Enlightenment—formulated a theory of mathematical
philosophy that is focused on the following question: given that
mathematical knowledge is necessarily, intrinsically true, and,
simultaneously, it is applicable to the sensible world—since the sensible
world seems to conform to the laws of arithmetic, which transcend the
sensible world—how is it possible to know something about the world that
is necessarily true, or, in other words, how can we have knowledge of the
world independently of recourse to experience? In order to tackle this
question, Kant distinguished between two kinds of sentences: analytically
true sentences and synthetically true sentences.

An analytically true sentence is necessarily true on purely logical
grounds—that is, solely in virtue of its meaning—and, in reality, it
elucidates meanings already implicit in the subject. For instance, the
sentence ‘“Pediatricians are medical doctors who specialize in the medical
care of infants, children, adolescents, and young adults” is an analytic
statement, because it is true by definition. By contrast, the sentence
“Pediatricians are rich” is not necessarily true; since it is not part of the
definition of a pediatrician that a pediatrician is rich, but it is part of the
definition of a pediatrician that a pediatrician is a medical doctor who
specializes in the medical care of infants, children, adolescents, and young
adults. The sentence “Pediatricians are rich” is a synthetic statement.

The distinction between analytic and synthetic statements is based on
whether we are dealing with one concept or two concepts. If you say that
“Pediatricians are rich,” you are making a synthesis of two unrelated
concepts—namely, the concept of being a medical doctor specialized in
pediatrics and the concept of being rich. By contrast, if you say that
“Pediatricians are medical doctors who specialize in the medical care of
infants, children, adolescents, and young adults,” you are not synthesizing
two unrelated concepts, but you are analyzing a feature of one concept—
namely, the concept of being a pediatrician.

Furthermore, Kant made another important epistemological distinction in
order to clarify the manner in which we know things to be true—
specifically, he distinguished between a priori philosophical methods and
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a posteriori philosophical methods. The major attribute of the a priori
methods is that they are based on primitive hypotheses usually intuitively
conceived and axiomatically accepted, which deductively give rise to
series of syllogisms, which, in turn, lead to ultimate conclusions, which
are related to the preceding propositions in a logically rigorous way. For
instance, we know that “pediatricians are medical doctors who specialize
in the medical care of infants, children, adolescents, and young adults” a
priori, that is, prior to any testing and any surveying. On the other hand, a
posteriori philosophical methods are based on empirical research. For
instance, the truth value of the statement that “pediatricians are rich” can
only be determined a posteriori, that is, on the basis of doing some
empirical research.

In view of the aforementioned Kantian epistemological distinctions,
analytic statements are a priori, and synthetic statements are a posteriori.
But mathematical knowledge exhibits the following peculiar feature: it is
necessarily true, and, therefore, a priori, but, simultaneously, it is true of
the world, and, therefore, synthetic. In fact, Kant observed the following
peculiarity of mathematical knowledge: it is synthetic a priori. In other
words, according to Kant, mathematical propositions, such as “1 + 2 =
3,” are synthetic statements, abstractions from the sensing of objects, and,
yet, they are a priori, in the sense that we do not need to do any
experiments in order to verify them. Thus, Kant came up with the
following question: how can we know things that are synthetic a priori? In
order to answer this question, he developed a whole system of metaphysics
that he called transcendental idealism and expounded in his Critique of
Pure Reason.

Kant’s metaphysical system is founded on the thesis that we do not know,
and cannot know, the essence of things, the things-in-themselves, which
he called “noumena”—meaning objects or events that exist independently
of human sense and/or perception—but we can only know things as they
appear to consciousness, which are called “phenomena.” In Kant’s
philosophy, a phenomenon is a faded, dissolved declaration of the
corresponding noumenon, the manner in which the corresponding
noumenon (thing-in-itself) appears to an observer. According to Kant,
phenomena have been put through a kind of mental filter, which is the way
in which consciousness perceives the world, and mathematics is that kind
of mental filter. In particular, Kant maintains that geometry is the spatial
form through which consciousness perceives the world, and arithmetic—
specifically, the one-dimensional sequence of numbers—is the temporal
form through which consciousness perceives the world. Hence, according
to Kant, we do not receive mathematics from the system of space-time
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itself, but we use mathematics, our spatio-temporal intuitions and
intellectual “glasses,” in order to understand and organize the world, and
this is the reason why mathematics is a priori. Geometry is the way in
which we organize space, and arithmetic is the way in which we organize
time, and, when we combine geometry with arithmetic, we obtain the
intellectual framework of the spatio-temporal world that we experience,
which is relevant and meaningful because there is a structural continuity
between the reality of the world and the reality of consciousness.

In his Transcendental Aesthetic, Kant refers to the followers of Newton’s
position as the “mathematical investigators” of nature, who contend that
space and time “subsist” on their own; and he refers to the followers of
Leibniz’s position as the “metaphysicians of nature,” who think that space
and time “inhere” in objects and their relations. At the ontological level,
Kant’s position is that space and time do not exist independently of human
experience, but they are “forms of intuition” (i.e., conditions of perception
imposed by human consciousness). In this way, he managed to reconcile
Newton’s and Leibniz’s arguments: he agrees with Newton that space is
an irrefutable reality for objects in experience (i.e., for the elements of the
phenomenal world, which are the objects of scientific inquiry), but he also
agrees with Leibniz that space is not an irrefutable reality in terms of
things-in-themselves. At the epistemological level, unlike David Hume,
Kant argues that the axioms of Euclidean geometry are not self-evident or
true in any logically necessary way. For Kant, the axioms of Euclidean
geometry are logically synthetic, that is, they may be denied without
contradiction, and, therefore, consistent non-Euclidean geometries are
possible (as Lobachevski, Bolyai, and Riemann actually accomplished).
However, Kant argues that the axioms of Euclidean geometry are known a
priori, specifically, they depend on our intuition of space, that is, space as
we can imaginatively visualize it.

After the publication of Kant’s philosophical works, numerous attempts
have been made to articulate methods of philosophical research that
synthesize idealism and positivism, or that at least combine aspects of
idealism and positivism with each other. Kant has correctly highlighted
and elucidated the active role of consciousness in cognition, and the
distinction between cognition and the object of cognition. The distinction
between cognition and the object of cognition plays a central role in the
so-called analytic philosophy. However, analytic philosophy may lead to
an impasse, because it urges one to repeat the distinction between
cognition and the object of cognition ad infinitum (forever). Inherent in
analytic philosophy is the risk of using Kantian philosophy in an abortive
way, in the sense that the attempt to define the presuppositions of the
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presuppositions of philosophy can continue ad infinitum, annihilating
epistemology. To mitigate this risk, Kant resorted to a formalist view of
idealism: Kant’s Critique is characterized by formal idealism, in the sense
that it maintains that the form of objects is due to consciousness, but not
their matter. Furthermore, following Wittgenstein, and in order to avoid
the excesses of analytic philosophy, particularly, scepticism, I would say
that, at some point, a mature philosophical-scientific mind must make a
final, epistemologically responsible decision, instead of transforming
philosophy into a meaningless “language game.” Wittgenstein has
compared the sceptic with someone who looks for an object in a room and
acts as follows: he opens a drawer and sees that it is not there; he closes
the drawer, waits, and then he opens it again to see whether by chance the
object is there; and he continues in this way, that is, he obsessively opens
and closes a drawer looking for something that is not there. According to
Wittgenstein, sceptical doubt is not true doubt, but an obsession, because
true doubt, somehow, comes to an end. Regarding the reality of the
external world, I should mention that the very fact that the object of
cognition, the world, exhibits a kind of resistance to cognition (and, thus,
consciousness has to try hard in order to know the world and impose the
intentionality of consciousness on the word) implies that—even though,
under certain conditions, the world is submissive to the intentionality of
consciousness—the world is not merely a projection and an extension of
consciousness.

The way in which Frege attempted to do justice to the objectivity of
mathematics and to the reality of the world was logicism, which, as I
mentioned earlier, brings together logic and arithmetic. Logicism resorts to
Plato’s philosophical realism regarding the objectivity of mathematics, but
logicism differs from classical Platonism in two ways. Firstly, in contrast
to classical Greeks, Frege and logicism in general regard arithmetic, rather
than geometry, as the foundational branch of mathematics, because of the
following two reasons: in the seventeenth century, Descartes’s analytic
geometry, adapting Viete’s algebra to the study of geometric loci, showed
that algebra can be used in order to model geometric objects in a
systematic and rigorous way, thus establishing a correspondence between
geometric curves and algebraic equations; and, in the nineteenth century,
Nikolai Ivanovich Lobachevski, Janos Bolyai, and Bernhard Riemann
invented rigorous and consistent alternatives to Euclidean geometry.
Hence, for Frege and the logicists in general, the central problem in
mathematical philosophy is to understand the meaning of a number. In
particular, logicists endow arithmetic with the objectivity that
characterizes Platonic forms, but they do so in an indirect way—through
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logic—trying, in a sense, to achieve a creative synthesis between Kant’s
transcendental idealism and Plato’s philosophical realism. The role that
logic plays in the “school” of logicism is the second issue with regard to
which logicism differs from classical Platonism. In particular, Frege
thought that we can do justice to mathematical Platonism, according to
which arithmetic is about things that are forms, if we show that
mathematics—particularly, arithmetic—is reducible to logic, and if we
take a Platonic view of logic; hence, the name of this “school” of
mathematical philosophy is logicism.

Frege fused logic and arithmetic by formulating a theory of numbers that
is based on the concept of a class of objects and on structural linguistics.
Hence, Frege synthesized Aristotle’s work on logic and language with
Plato’s theory of forms. In particular, Frege thought as follows: Let us
consider a variable x, meaning that x is either a symbol representing an
unspecified term of a theory, or a basic object of a theory that is
manipulated without referring to its possible intuitive interpretation. Thus,
given a class of sentences that have the same form, we can capture their
common form by replacing their specific subjects with a variable x. For
instance, given sentences such as “Plato is a philosopher,” “Aristotle is a
philosopher,” “Kant is a philosopher,” “Frege is a philosopher,” etc.,
which have the same form, we can replace the name of the subject with a
variable x, thus formulating the sentence “x is a philosopher,” which
captures the common form of the aforementioned sentences. In this way,
we obtain a class: all the things that can satisfy the sentence “x is a
philosopher,” whenever we replace x with a name, belong to the class of
philosophers. Hence, Plato, Aristotle, Kant, Frege, and any other person
whom we could substitute for x are members of the class of philosophers.
According to Frege’s terminology, whereas propositions are declarative
statements that are either true or false, such as the statement “Plato is a
philosopher,” a statement that contains a variable x and expresses a
proposition as soon as a value is assigned to x is a propositional function,
such as the statement “x is a philosopher.” In other words, propositions
and propositional functions differ from each other by the fact that
propositional functions are ambiguous, in the sense that a propositional
function contains a variable whose value is unassigned. A class is the
extension of a propositional function; for instance, the collection of all
philosophers constitutes the extension of the propositional function “x is a
philosopher,” and it is a class. Frege used the so defined concept of a class
in order to refer to numbers and study the foundations of arithmetic.
According to Frege, numbers are classes. In his seminal book Basic Laws
of Arithmetic (1893, 1903), Frege explained that any number n can be



39

used in order to count any n-membered class. For instance, the number
two can be thought of as the class of all two-membered things, namely, as
the class of all pairs, independently of the nature of the objects that
constitute each pair. Similarly, the number three can be thought of as the
class of all triplets, namely, as the class of all those things which have
three members; the number four can be thought of as the class of all
quadruples, namely, as the class of all those things which have four
members, etc. Collect all those things which have n members, and that,
according to Frege, is the number n. Notice that this way of defining
numbers is substantively different from the thesis that a number is a
property of a collection of objects, because, according to Frege’s
conception of numbers, a number is a particular kind of object, it is a class.
Frege built a whole system of logic on the aforementioned concept of a
class.

In order to define the concept of a natural number, in particular, Frege
defined, for every two-place relation R, the concept “x is an ancestor of y
in the R-series,” and this new relation is known as the “ancestor relation
on R.” The underlying idea can be easily grasped if we interpret Frege’s
two-place relation R as “x is the father of y in the R series.” For instance,
if a is the father of b, b is the father of ¢, and c is the father of d, then
Frege’s definition of “x is an ancestor of y in the fatherhood-series”
ensures that a is an ancestor of b, ¢, and d, that b is an ancestor of ¢ and
d, and that c is an ancestor of d. More generally, given a series of facts of
the form aRb, bRc, and cRd, Frege showed that we can define a relation
R* as “y follows x in the R-series.” Thus, Frege formulated a rigorous
definition of “precedes,” and he concluded that a “natural number” is any
number of the predecessor-series beginning with 0.

Scientific Creation and the Methodology of Mathematics

As I mentioned in the Preface, by the term “truth,” I mean the set of those
presuppositions which constitute the conditions under which the
representation of reality within consciousness (i.e., the knowledge of the
real) is consistent with the presence of reality (i.e., with the nature of the
real).

By the second half of the twentieth century, the borders between the
“schools” of logicism (which maintains that mathematical entities can be
defined in the language of symbolic logic and implies a logical approach
to truth), intuitionism (which maintains that mathematical entities are
mental constructs and implies a constructivist approach to truth), and
formalism (which maintains that mathematical entities, irrespective of any



40

question about their essence, can be studied as terms of a formal language
modulo the equivalence relation of “provable equality”) became blurred,
and none of the aforementioned three “schools” of mathematical
philosophy existed separately from the others. Thus, from the middle of
the twentieth century onward, mathematicians became preoccupied with
new, broader epistemological debates, which, in fact, have prevailed in
every scientific discipline (both in the natural sciences and in the social
sciences), and they center around the following two issues: (i) the
difference between “truth as a discovery” and “truth as an invention”; and
(i1) the determination of the degrees of truth and the difference between
“correctness” and “fallacy.”

The French epistemologist Gaston Bachelard, in his books Le nouvel
esprit scientifique (1934) and La formation de [’esprit scientifique (1938),
pointed out that science is a mental process that aims to create concepts
that contribute to an ever closer approach to reality. The phases through
which consciousness passes in the context of scientific creation are the
following: firstly, an intuitive general conception of its object; secondly,
an analytic distinction of the individual elements that make up the given
object, and, during this phase, a rigorous evaluation of those elements
takes place; and, thirdly, a synthesis of the aforementioned elements,
leading to the final interpretation of the scientific object in its entirety.
According to Bachelard, the “scientific object” is constructed by the
scientific consciousness, and, therefore, rather than being seen in terms of
dualism and opposition, empiricism and rationalism complement each
other in the context of scientific creation; and both a priori methods (or
reason) and a posteriori methods (or dialectic) are parts of scientific
research.

In light of my claim that a synthesis between philosophical realism and
idealism is required in order to formulate a proper ontology, reality is not
merely an object whose various individual manifestations are grasped in a
static way by a scientist’s consciousness. On the contrary, reality is an end
towards which a scientist’s consciousness is directed in a dynamical way
and with the aim of annihilating the distance between consciousness and
reality. This process results in the objectification of a scientific theory
generated by this very process, and this objectification is the essence of
scientific creation. Therefore, science, including mathematics, is both an
“invention” (referring to a conscious process of planning and producing
something in order to meet a specific reason) and a “discovery” (referring
to the provision of observational evidence and to the development of an
initial understanding of some phenomenon usually pertaining to natural
occurrences).
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In the context of scientific creation, deduction, induction, and analogy are
the methods by which a scientist’s consciousness works, depending on the
nature of the scientific object in question. In its essence, deduction differs
from analysis, because analysis is merely concerned with the components
of a unity, whereas deduction, being based on a set of axioms, expresses a
deeper causal relationship between the derived result and its reference
term(s). Moreover, in its essence, induction differs from synthesis, because
synthesis is an essential way of transcending certain partial data which a
scientist’s consciousness initially takes into account together with the very
pattern sought to be realized through synthesis, whereas induction is a
formal variety of transcendence in the context of which consciousness
moves, through generalizations, from a series of levels representing partial
data to a level of unified consideration of the similarities exhibited by
those partial data. Analogy is a mental process consisting of the transition
from some partial data to some other partial data (by means of the
identification of similarities or differences), and, although it does not
provide conclusive evidence, it reinforces the element of inventiveness.
Deduction is particularly applicable to mathematics, which presupposes
the existence of an ideal reality that is differentiated according to the
axioms that underpin it. However, the ideal reality of mathematics can be
viewed in a unified way thanks to synthetic processes that allow each
individual aspect of mathematical reality to be autonomously valid in a
particular field, while at the same time being related to the other aspects of
mathematical reality. When the terms of a mathematical equation are
given a meaning that refers to empirical data, we move from pure
mathematics to applied mathematics. Induction is particularly applicable
to experimental (and, generally, applied) science, which presupposes the
existence of a sensible reality that appears in the form of individual
experiences. Consciousness transcends these experiences by integrating
them into a larger hypothetical reality, which is based on a model created
by consciousness, and consciousness aims to confirm this model through
empirical tests.

In view of the arguments that I have already put forward, truth is neither a
pure essence nor a pure relation (or “correspondence”)—it is a dynamical
and rational contemplation of the world and of consciousness, as
consciousness integrates and reintegrates itself into the world. Therefore,
truth should be construed neither as a discovery alone nor as an invention
alone, but as the outcome of the contact and the interaction between
consciousness and the reality of the world. The integration of
consciousness into the world is both a volitional act and an existential
necessity. However, when conscious beings integrate themselves into the
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world, they do not only accept the reality of the world as a substantive
presence, but they also attempt to understand and interpret the reality of
the world. Even when consciousness cannot enter into and partake in the
reality of a particular aspect of the world or of a particular situation,
consciousness can create a pertinent concept. Hence, theoretical constructs
play a necessary and major role in science. Moreover, Kant has
masterfully proved that scientific laws are neither connatural to reality nor
innate in it, but they are kinds of relations (specifically, hypothetico-
deductive systems) through which consciousness understands and
interprets reality. During the process of scientific explanation, the
consciousness of a scientist creates new, more complete systems of
relations (namely, hypothetico-deductive systems) in order to improve
one’s understanding and interpretation of reality, thus replacing older,
scientifically degenerating systems of relations with new ones, which have
a broader and deeper explanatory domain.

In the context of the relations between the classical logical values “true”
and “false” (or “untrue”), we must distinguish the “false” not only from
the “true” but also from the “erroneous,” the “absurd,” the “irrational,” and
the “fallacious.” The term “erroneous” means a structural and automatic
lapse in reasoning that cannot be corrected. The term “absurd” also means
a definite error, but, although not amenable to correction itself, it may
constitute a criterion for correcting a series of syllogisms in which we
deliberately place it when we use it as an instrument of reference,
especially in the context of the form of argument that is called reductio ad
absurdum (where we try to establish a claim by showing that the opposite
scenario would lead to absurdity or contradiction). The term “irrational”
means the conclusion of a series of syllogisms that are not logically
connected to each other, and the intellectually pathological nature of each
proposition to which the irrational is reduced has a perverse effect on the
entire series of syllogisms that results in (converges to) the irrational.
However, understanding the concept of the fallacious in the context of
logic is somewhat more complex. The difference between the “fallacious”
and the “false” can be understood if we have previously understood the
difference between the “correct” and the “true.” The “false” is the exact
opposite of the “correct,” but the contrast between the “true” and the
“fallacious” is neither absolute nor insurmountable. The “fallacious” is an
approximation of the “true,” in the sense that it lacks the element of
correctness but approaches the “true,” tends to the “true.” The “correct” is
the unique conclusion of the generally understood “true,” and it
encompasses the “fallacious,” which is a deviation from the “correct” but
is subject to correction. Fallacy means intellectual wavering with a



43

demand for truth, whereas correctness means the precise targeting of the
truth. A fallacy prepares the consciousness to reach a truth, and the
conception of truth as correctness refers to the culmination of the effort to
reach a truth in an absolutely accurate manner.

The concept of truth as correctness was introduced at the beginning of the
twentieth century by the French mathematician Jacques Hadamard.! In
particular, if the equations and the data of a real system (i.e., of a physical
or a social problem mathematically expressed) are such that (i) the model
has a solution corresponding to the data, (ii) the solution is unique, and
(iii) the solution is continuously dependent on the data (meaning that a
small error in the data yields a small error in the estimation of the
solution), then the solution is said to satisfy these three “Hadamard’s
restrictions,” and then the equations of the model and the data give a well-
posed problem. Given the well-posed problem that corresponds to a real
system, we have to find its solution. Because of the third Hadamard’s
restriction (which is known as “stability”), we can use the “approximation
principle” as a heuristic device. Hence, given the well-posed problem P,
we search for an appropriate approximation P, of the problem P such that
the solution S,,, containing the index n, of B, can be determined. Then the
solution S of P is the limit of S,, as n tends to infinity, symbolically, S =
lim,_S,. However, as the Soviet mathematician M. M. Lavrentiev, who
was a prominent member of the Soviet Academy of Sciences (Siberian
Department), argues in his book Some Improperly Posed Problems of
Mathematical Physics, many real problems of mathematical physics give
rise to problems that are not well-posed in the sense of Hadamard
(principally, they fail to satisfy the condition of stability); and another
prominent Soviet mathematician, Andrey N. Tikhonov, developed a
method of regularization of “improperly posed” (or “ill-posed”) problems,
and this method is known as the “Tikhonov regularization.” In fact, if a
problem is not well-posed in the sense of Hadamard, then it needs to be
reformulated for numerical treatment, and, typically, this involves
including additional assumptions, such as appropriate continuity and
differentiability properties of the mathematical expression of the
corresponding well-posed problem. According to Tikhonov, a well-posed
problem can be defined as follows: Let X and Y be some complete metric
spaces, and let Af be a function whose domain is X and whose range is Y.
Consider the equation

Af =g. (M

! The concept of truth as correctness is intimately related to the concept of well-
posedness.
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We call the problem for the solution of (1) “well-posed according to
Tikhonov” if the following conditions are fulfilled: (i) It is a priori known
that the solution f exists for some class of data and belongs to some given
closed set M < X, symbolically, f € M. (ii) The solution is unique in a
class of functions belonging to M. (iii) Arbitrarily small changes of the
right-hand side g that do not carry the solution f out of M correspond to
arbitrarily small changes in the solution f. If we denote by M, the image
of M after the application to the space X of the operator 4, then the third
Tikhonov’s requirement can be restated as follows: the solution of the
equation (1) depends continuously on the right-hand side g on the set M.
In other words, Tikhonov changed Hadamard’s notion of correctness by
showing that an improperly posed problem can become well-posed by
introducing a sufficiently “strong” norm in the data space Y or a
sufficiently “weak” one in the space X. The mathematical concepts used in
this definition will be completely clarified later in this book.

Revisiting ontology, and in view of the arguments that I have already put
forward, we conclude that the structure governing the constitution of
objective reality cannot be understood as opposed to the structure
governing that kind of existence which we call consciousness and which is
linked to objective reality. The structure of physical universe, the structure
of biological universe, and the structure of mental universe (the universe
of consciousness) are not “one,” but are unified, and the structural
continuity between the physical, the biological, and the mental is
manifested in the energy field, as Pierre Teilhard de Chardin has pointed
out, and its center of reference is consciousness. Hence, because of the
presence of consciousness in the world, and because of the potential
submissiveness of the world to the intentionality of consciousness, the
fundamental ontology of the world involves two sets of considerations that
work in tandem and are summarized in the following table:

Table 0-1: The two sets of considerations that are intrinsic to the fundamental
ontology of the world.

Reality of the world Reality of consciousness
Reality as immediacy Reality as mediacy (mentally
mediated)
Non-intentional action Intentional action
Experience Abstract thinking

Reality as a set of constraints

Reality as a set of opportunities
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Based on the aforementioned arguments, I have articulated a model of
human creativity and historical becoming, and I have called it the
“dialectic of rational dynamicity.” The dialectic of rational dynamicity, as
a method for the operation of consciousness and as a model of the
operation of reality in general, consists of the following five stages:

Stage I: Vision and Teleology. Consciousness forms a clear intellectual
image of an existential state that it wants to achieve, and it is clearly
oriented towards that intellectual image. Thus, in this stage, consciousness
determines the teleology of its action, and, by extension, it gives meaning
to the beings and the things that exist in the world. As Edmund Husserl
has pointed out, every intentional act has, as part of its formation, a
correlative “meaning” (implying “thought,” or “what is thought about”),
which is the object of the act.

Stage II: Strategy. In general, “strategy” refers to the orientation of a
conscious being in the long term, within its environment. Consciousness
makes the strategic decision to act upon the reality of the world and upon
itself in accordance with its teleology—that is, in order to bring about
intended changes.

Stage III: Planning. Consciousness articulates a plan: a method of
deliberate, self-conscious activity, involving the consideration of outcomes
before choosing among alternatives. The primary functions of planning are
the following: (i) optimization (namely, improving efficiency of
outcomes); (ii) balancing the agent’s teleology (which is aimed at
restructuring reality) and the goal of maintaining the continuity of
existence (namely, offsetting systemic failures); (iii) widening the range of
decision-making (namely, enhancing the consciousness of choice); and
(iv) organizing and enriching codes and networks of communication.

Stage 1V: Control. Consciousness continuously tries to maintain control
over its action (and its consequences) in two ways: firstly, by intensifying
its action (its intervention in the reality of the world and in itself)
whenever its action is unreasonably sub-optimal (i.e., whenever it can
improve its existential conditions even more, according to its strategic
plan); secondly, by counterbalancing its original action (specifically, by
reversing its original action and by following alternative paths of action)
whenever the “negative externalities” of its original action, the costs of its
original action (for the world in general and for itself in particular), tend to
exceed a critical value that represents the maximum existential risks that
consciousness is determined to undertake in order to continue acting in the
same way. Additionally, it should be mentioned that the term “dialectic,”
in general, implies a transition from one state to another without the total
elimination of the previous state, in the sense that the previous state leaves
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its traces in the new one. Therefore, according to the dialectic of rational
dynamicity, an agent of change does not bring about a totally new state,
which would be uncontrolled by the agent of change. In general, change
cannot go beyond certain limits without running the risk of systemic
collapse. For this reason, the dialectic of rational dynamicity highlights the
importance of preventing uncontrolled systemic turbulence and of
continuously maintaining control over the consequences of our actions.
Stage V: Development. Consciousness seeks to ensure and enhance its
capabilities and to create favorable conditions for the continuation of its
action in the future. However, consciousness realizes that the achievement
of its ultimate goals is a work in progress. Thus, consciousness seeks to
restructure the world according to the intentionality of consciousness—
without, however, jeopardizing the possibility of future interventions in
the reality of the world.
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Chapter 1
Mathematical Logic

By the term “deductive system,” we mean a calculus endowed with an
interpretation of its terms. In logic, a “calculus” is a collection of symbols
equipped with a set of rules for their manipulation. When a calculus is
equipped with an “interpretation” of its terms, that is, with a set of rules
that makes its terms meaningful, it becomes a deductive system. A
deductive system is called “pure” if the rules of the interpretation are
sufficient to establish the truth or the falsity of its constituent statements.
The statements of a pure deductive system are called “L-determinate,”
where L stands for the relevant formal language (the truth value of an L-
determinate statement is determined in L by an interpretation of the
symbols in L). For instance, logic (the science of correct reasoning) is a
pure deductive system. Therefore, truths derived from pure deductive
systems are based on reason alone, and they are certain because they can
never be empirically refuted. If a statement cannot be assigned a truth
value only according to the rules of interpretation in the relevant deductive
system, then it is called “non-L-determinate.” A non-L-determinate
statement is called true or false not only on the basis of the rules of
interpretation in the relevant deductive system, but also on the basis of a
rule of disposition by reference to empirical data. Non-L-determinate
statements for which a rule of disposition by reference to empirical data
has been established are called “factual statements,” while the deductive
systems in which they appear are called “applied.”
A “scientific theory” is a deductive system (pure or applied) that explains
generalizations (i.e., “scientific laws”) or aims to criticize and change the
structure of the world and/or consciousness.
In symbolic or mathematical logic, the following symbols are used:

A or &: conjunction (“and”);

v: disjunction (“or”

—: negation (“not”);

— or =: material implication (“if . . . then . . .”);

< or ©: biconditional (“if and only if”);

V: universal quantification (“for every”);

3: “there exists”;

3!: “there exists exactly one”;

A: “there does not exist”;

P(x): predicate letter (meaning that x (an object) has property P);

|: “such that”;
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F: turnstile (x + y means that x “proves” (i.e., syntactically entails) y;
a sentence ¢ is “deducible” from a set of sentences 2, expressed
2+ @, if there exists a finite chain of sentences g, P4, Py, ..., P,
where 1, is ¢ and each previous sentence in the chain either
belongs to X, or follows from one of the logical axioms, or can be
inferred from previous sentences; i denotes the negation of I);

E: double turnstile (x E y means that x “models” (i.e., semantically
entails) y; a sentence ¢ is a “consequence” (i.e., an ordered list) of
a set of sentences X, expressed X = ¢, if every model of X' is a
model of @);

B € A: B is a “subset” of A, meaning that every element of a set B is
an element of a set 4;

B < A: B is a “proper subset” of A, meaning that B € A and there is at
least one element of A that is not an element of B;

x < y: x is less than or equal to y;

x < y: x is strictly less than y;

X = y: x is greater than or equal to y;

x > y: x is strictly greater than y;

x™: this operation is called “exponentiation” (pronounced as “x raised
to the power of n”), and it means that x is multiplied by itself n
times, where n = 0,1,2,3,..;x° =1, x' =x, x2 =x-x, x> = x -
XX, etc.;

x/n: this operation is called the “nth root,” and it is the number whose
nth power equals the given number (n # 0); x'2 = Vx is the

square root, x'/3 = Vx is the third root, etc.;

(' ): brackets; they are used for convenience in grouping terms
together (there are specific rules for removing brackets);

@: the empty set;

$#(X): the power set of a set X. The “power set” of a set X is the set of
all the subsets of X, including the empty set and X itself. If a set has
n elements, then the number of its subsets is 2™, and the number of
its proper subsets is 2" — 1. For instance, if A = {a, b}, then its
power set is {(Z), {a},{b} {a, b}}, and its proper subsets are @, {a},
and {b}.

Sometimes, for emphasis, instead of the equality sign, namely, =, we use
the symbol =, which, in this case, means “identically equal.”

The English mathematician and philosopher George Boole (1815-64)
realized that arguments expressed in an ordinary language (e.g., in
ordinary English) can be expressed in the notation of mathematical logic
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and then studied in the context of “propositional calculus.” For instance,
consider the following argument:
e If you want to learn mathematics, then you must study
methodically.
e If you must study methodically, then you must be taught an
effective method of studying.
e Therefore, if you want to learn mathematics, then you must be
taught an effective method of studying.
The aforementioned argument involves various propositions, which we
may present by letters as follows:
P: You want to learn mathematics.
Q: You must study methodically.
R: You must be taught an effective method of studying.
These propositions can be “true” or “false.” The aforementioned argument
can be formalized as follows:
P=0Q
Q>R
P>R
where the two propositions above the dashed line are the “premises,” and
the one below the dashed line is the “conclusion.” The reasoning process
that leads from premises to a conclusion is called a “deductive process” or
just a “deduction.” A “theorem” is a formula inferred by means of a rule of
inference in a finite number of steps from axioms and previously inferred
formulae. Those propositions where truth value is dependent on the values
of the variables in them are called “predicates” (hence, we talk about
“predicate calculus”).
It is important to distinguish between the terms “validity” and “truth” as
they are used in logic. An argument, a reasoning process, or a deduction is
said to be valid (i.e., logically correct) if the truth of the conclusion
follows from the truth of the premises. Notice that, if the premises are both
true, then the conclusion is logically necessarily true, too. Therefore, with
one or more factually incorrect premises, an argument may still be valid,
although its conclusion may be false. Furthermore, a valid argument based
on false premises does not necessarily lead to a false conclusion. In other
words, there is a significant difference between logical (i.e., procedural)
correctness (“validity”) and factual correctness. If an argument is valid
(i.e., logically correct), and if its premises are true (i.e., if the facts on
which it is based are true), then it is said to be “sound.” In logic, we focus
on the validity of arguments rather than on their soundness, and this fact
explains the “instrumental” role of logic in philosophy and science.



50

In the context of logic, truth is a structural issue. Given a language L (i.c.,
a collection of symbols, letters, or words with arbitrary meanings that are
governed by rules and are used for communication), a structure S is an
ordered pair (D, ) where: D is a non-empty set denoting the domain of
discourse (it is a non-empty set of any entities), and I is an interpretation,
that is, a rule that assigns to each individual element of L an element of D,
and to each n-place predicate of L a subset of D™ (where D™ denotes the
set of n-tuples taken from D).
A “Boolean algebra” is the six-tuple
(4, A, v,—,0,1),
consisting of a set A equipped with two binary operations: A (called
“meet” or “and”) and v (called “join” or “or”), a unary operation — (called
“complement” or “not”), and two elements 0 and 1 in A (called “bottom”
and “top,” respectively, and denoted by the symbols L andT ,
respectively), such that the truth value of a true sentence is 1, the truth
value of a false sentence is 0, and, for all elements a, b, and c of A, the
following axioms hold:
i.  Associativity:
av(bvc) = (avb)vc; an(bac) = (anb)Ac.
ii. Commutativity:
avb = bva; anb = baa.
iii. Absorption:
av(anb) = a; an(avb) = a.
iv. Identity:
av0 = a;anl = a.
v. Distributivity:
av(bac) = (avb)a(avc); an(bvc) = (anb)v(anc).
vi. Complements:
av-a = 1and arn—a = 0.
For instance, the 2 -element Boolean algebra has only two elements,
namely, 0 (or “False”) and 1 (or “True”), and it is defined by the rules
mentioned in Table 1-1.
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Table 1-1: Truth tables of a 2-element Boolean Algebra.

a b anb avb a —a
0 0 0 0 0 1
1 0 0 1 1 0
0 1 0 1
1 1 1 1

Let U ={uy,uy,..,u,, ..} be the original alphabet consisting of
variables (arguments). A “Boolean function” is a rule that maps each
argument in its domain to exactly one value in its range where the
allowable values of range and the allowable values of domain are just one
of two variables, namely, “true” (symbolized by 1) and “false”
(symbolized by 0). In order to define any Boolean function, we must
specify its value for each possible value of its inputs. For instance, the
Boolean functions “not” (=), “and” (a), and “or” (v) are defined as
follows:
lifxisO0
NOT(x) = {0 if xis1
1if bothxandyarel

AND(x,y) = ,
() { 0 otherwise

1if at leastoneof xandyis1
OR(x,y) = ,
xy) { 0 otherwise
(the corresponding “truth tables” are shown in Table 1-1).
De Morgan’s Laws

The following pair of transformation rules is known as De Morgan’s laws
(named after the nineteenth-century British mathematician Augustus De
Morgan), and it is originally due to Aristotle:

The negation of a disjunction is the conjunction of the negations:
not(A or B) = (notA)and(notB).

The negation of a conjunction is the disjunction of the negations:
not(A and B) = (notA)or(notB).

Basic Principles of Predicate Calculus

As I have already mentioned, George Boole developed a purely symbolic
system for deduction in a rigorous language of predicates (or relations, or




52

properties), and, thus, Predicate Calculus (henceforth, PC) emerged. The
formal system PC involves the following:

i.  The alphabet of PC: a countable set of variables (or arguments):
V;1,V,, V3, ... and a two-place predicate letter P; two logical
connectives: = and A; one quantifier symbol: 3; three improper
symbols: the left parenthesis, the comma, and the right
parenthesis, namely, ( , ), but quite often we may also use
brackets [ and ] as well as the symbol | standing for “such that.”

il. These symbols are used in order to build the (well-formed)
formulae of PC, according to the following rules:

a. Ifx,y are individual variables, then P(x,y) is a formula of

PC.

b. If ¢,y are formulae of PC, then so are (@Aay) as well as ¢
and —.

c. Ifxis an individual variable and ¢ is a formula, then so is
Ixe.

d. Something is a formula of PC only by virtue of the
aforementioned conditions (a), (b), and (c).
Remark: The alphabet contains only the logical symbols —, A, and 3,
because the other usual symbols can be defined in terms of these three as
follows:
(pvy) is defined as = (—pA—Y),
(@ = Y) is defined as = (A1),

(¢ © ) is defined as ((¢ = Y)A(Y = @), and
Vx is defined as =3 x—¢.

A variable is said to be “bounded” if it is determined by a quantifier;
otherwise, it is said to be “free.” For instance, in the formula 3xP(x,y), x
is bounded, and y is free. If a formula of PC contains no free variables,
then it is said to be a “sentence.”
By an “interpretation,” we mean the task of giving a certain meaning to the
undefined terms of a formal system. Consider, for instance, the following
sentences of PC:

L Vaxvy(P(x,y) - P(x,y)),

ii. ((P(x,y)aP(y,z)) - P(x,2)), and

iii. Vy3xP(x,y).
If we interpret P as the ancestor relation over the domain of all (living and
dead) people (and if we assume that such a relation is biologically
determined in a definite way), then: the sentence i means that, “if x is an
ancestor of y, then x is an ancestor of y, for every x and y,” namely, it is a
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tautology; the sentence ii means that, “if x is an ancestor of y, and if y is
an ancestor of z, then x is an ancestor of z”’; the sentence iii means that,
“for every y, there exists an ancestor x.” Thus, the sentences 1, ii, and iii
are true. However, if we interpret P as < (“strictly less than”) over the
natural numbers, then the sentence iii is false. Moreover, if we interpret P
as “the father of” over the domain of human beings, then the sentence ii is
false. We can easily notice that the sentence i will remain true for any
interpretation of P; such sentences of PC are said to be “universally valid”
(and they are tautological in character).

A “formal system” is obtained by choosing a finite set of axioms (or
schemes of axioms, i.e., selected formulae) and a finite set of rules of
inference in a given language. In the case of PC, we have the following
axioms and the following rule of inference ( ¢,y,y are formulae,
X, Y, V1, - Yy, .- are variables, and @ () is the result of substituting y for
all free occurrences of x in @ (x)):

Axioms of Predicate Calculus:

L VYV (9= (= 9)).

ii. vy ..y (0 - @ - 20) - (o= 9) > (9= 0).

iii. Vy; .. ¥y, (29 = =) = (= > ) > ¢)).

iv. Yy, ..Vy, (Vx(p = ) = (p = Vxi)), provided that ¢ has no
free occurrence of x.

Vo VY VY ((0 = ) = (VY Ve = Yy V).

vi. Yy, ..Vy, (Vx@(x) = ¢(¥)), provided that, as we substitute the
free occurrences of x in ¢(x) with y, the y’s are free in @ (y),
that is, they are not determined by quantifiers already occurring
in .

The rule of inference for predicate calculus is modus ponens (“method of
affirming,” or proof by affirming the antecedent), which has the following
form: from ¢ and (¢ — ¥), infer . In other words, if a conditional
statement (“if ¢ then 1) is accepted, and the antecedent (¢) holds, then
the consequent (i) may be inferred.

Remark: Another very famous and important rule of inference (logical
argument) is modus tollens (“method of denying,” or proof by
contrapositive), which has the following form: from = and (¢ — ¥),
infer —¢.

A “theorem” is a formula inferred by means of a rule of inference in a
finite number of steps from axioms and previously inferred formulae.
Hence, we are faced with the problem of determining that finite set of
axioms (or schemes of axioms) from which the rule of inference will give
only true sentences.
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Formalism, Structuralism, and Mathematical Modeling

The formalist approach to mathematics maintains that, in order to analyze
a mathematical text, it suffices to study its formal devices, mainly, its
syntax. Hence, according to formalism, mathematical statements are
statements about the consequences of the manipulation of strings (i.e.,
alphanumeric sequences of symbols, usually presented in the form of
equations) using established rules of inference (by a “rule of inference,”
we mean a logical form consisting of a function that takes premises,
analyzes their syntax, and returns a conclusion). In other words, according
to formalism, mathematics does not consist of propositions representing an
abstract sector of reality, but it is actually a game of symbols, without
bringing with it more ontological commitments than, for instance, chess.
In the 1930s, the great Austrian mathematician and logician Kurt Godel
undertook to evaluate the logical rigor of formalism. Broadly speaking,
Godel considered a statement of the type

P = “This statement is false,”

which leads to the following complicated situation: if P = “This statement
is false” is true, then it is false, but the sentence asserts that it is false, and,
if it is, indeed, false, then it must be true, and so on. The earliest study of
problems pertaining to self-reference in logic is due to the seventh-century
B.C.E. Greek philosopher and logician Epimenides, who formulated the
classical “liar paradox.” Godel’s Incompleteness Theorem shows that such
complicated situations can occur in any theory that is consistent and
comprehensive enough to contain elementary arithmetic as the latter has
been encoded by Peano’s axioms for natural numbers (see Chapter 2).
Consequently, logic is necessary and capable of organizing every
mathematical and, generally, scientific theory, but logic is not sufficient to
completely organize itself. According to Gddel, human consciousness, in
general, and thought processes, in particular, are not merely algorithmic.
Godel established the following argument mathematically: Either the
human mind (even within the realm of pure mathematics) infinitely
surpasses any finite machine (algorithmic process), or else there exist
absolutely undecidable arithmetic propositions (see: Shanker, ed., Godel’s
Theorem in Focus).

Formalism rightly stresses the importance of syntax and, particularly, of
logical consistency, but it cannot stand as a general theory of the
epistemology of mathematics or any other scientific discipline. Therefore,
we have to turn from formalism to structuralism. Structuralism is
concerned with the analysis of the underlying structures in a text. The
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structure of a mathematical text can be explained and described as follows:
Let C denote the set of all basic conceptual objects (i.e., the “universe” of
concepts), R the set of all basic conceptual relations, and A the set of the
axioms of a structure. Then the corresponding structure is denoted by
S(C,R,A). A segment of a structure is a set of concepts, definitions, and
judgments of the given structure, it satisfies the axioms of the given
structure as well as some additional conditions, and it is denoted by
S(C,R,A). Suppose that a phenomenon of the sensible world has been
described by a structure S(C, R, A), or by a segment of this structure. Both
the phenomenon and its mathematical model can be regarded as two
isomorphic models, since the original phenomenon is initially modeled by
our perception of it. More precisely, it is modeled by the initial reference
of our consciousness to it, and its mathematical model is S(C, R, A) or a
segment of S(C, R, A).

The creation of isomorphisms between mathematics and other scientific
disciplines or human activities is called mathematical modeling. Thus,
mathematical modeling consists of two stages: (i) the formulation of the
mathematical model of the object that one studies—that is, the
transformation of the given problem into a mathematical one—and (ii) the
solution to the corresponding mathematical problem, namely, the
processing of the information that is contained in the given problem by
means of mathematics and mathematical informatics.

Regarding the logical-mathematical modeling of problems that belong to
the realm of the social sciences, in particular, the value-system of the
society in which behavior is studied must somehow find its place in the
framework of action employed in the relevant analysis (see: Parsons, The
Structure of Social Action). The French philosopher Louis Lavelle (one of
the greatest French metaphysicians of the twentieth century) has argued
that every value is an object of a desire and of a judgment. Thus, in the
philosophy of the social sciences, by the term “values,” we mean needs
that arise in consciousness and must be addressed by consciousness. For
instance, needs to know, to reap, to sustain, to socialize, to individuate, to
control, to act, and so on. Consciousness selects some concrete values-
needs which it projects onto the world, thus transforming them into
historical objects, and, finally, the values that have been historically
objectified (specifically, have become social and institutional events)
influence consciousness, shaping the subject’s existential conditions.

The transition from the natural sciences to the social sciences is an
upward-moving process known as “emergentism.” The specific nature of
the social sciences clearly emerges when we examine them from an
ontological point of view. In his book Le Regole dell’Azione Sociale
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(Milano: 11 Saggiatore, 1983), Giuliano Di Bernardo (specifically, in the
chapter entitled “La fondazione del sociale”) shows that social reality is
constructed by humanity through “constitutive rules.” In particular, Di
Bernardo (ibid) maintains that, based on constitutive rules, language, and
the collective self, social reality has a dual ontology: one that is “visible,”
observable, made up of objects from the external world, such as houses,
monuments, and money; the other is “invisible,” made up, respectively, of
housing regulations, the aesthetics of monuments, and the significance of
money.

As Giuliano Di Bernardo maintains in his book The Epistemological
Foundation of Sociology (p. 48), “values and norms are closely related to
action,”, and, indeed, “values, norms, and action are a unit, which can only
be broken down analytically, in order to gain a better understanding of the
different parts of which it consists.” Furthermore, Giuliano Di Bernardo
(ibid, p. 50), referring to the “construction of social reality through
constitutive rules,” succinctly maintains that “the social being (fact) is
constituted not only by the visible ontology (of physics and biology) but
also by the invisible ontology (of the normative).”

The consciousness of existence that not only functions as a witness or an
observer, but also functions as a judge is what we call “moral
consciousness.” The logic of moral consciousness, that is, the logic of
ethics, is called “deontic logic” (the word “deontic” derives from the
Greek word “deon,” which means “what is binding” or “proper”). Ethics is
concerned with what good as a concept is and with what we should and
should not do. Deontic logic is concerned with the manner in which we
can represent those things that we should and should not do logically.
Some formal analogies between deontic notions and “pure” (alethic)
modalities (“necessity,” “possibility,” and “impossibility”’) were studied
during the Middle Ages (especially in the context of fourteenth-century
Aristotelianism) in terms of the following equivalences (where the
sentential operator O denotes the concept of obligation, the sentential
operator P denotes the concept of permission, the sentential operator F
denotes the concept of prohibition, and p is the corresponding sentence):

L P(p) © —0(=p),
ii. O(p) A d —|P(—|p),
iii. 0(p) © F(—p),
iv. F(p) © 0(—p).

In his book Elementa juris naturalis, Gottfried Wilhelm Leibniz
developed the first modern system of deontic logic based on modal logic,
and he called the deontic categories of the obligatory (debitum), the
permitted (/icitum), and the prohibited (illicitum) “modalities of law” (juris
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modalia). The system of “standard deontic logic” developed by the
Finnish philosopher Georg Henrik von Wright (1916-2003) can be
axiomatized by adding the following axioms to the standard
axiomatization of classical propositional calculus (modal logic):

1. (Ep)— (I= O(p)) meaning that, “if p is a tautology, then it
ought to be that p” (i.e., contradictions are not permitted);

il. Op—-q) - (O(p) - O(q)), meaning that, “if it ought to
be that p implies g, then, if it ought to be that p, it ought to
be that q.”

iii. O(p) = P(p), meaning that, “if it ought to be that p, then it

is permitted that p” (equivalently, “if it is not permitted that
p, then it is not obligatory that p”).
The sentential operator F(p), meaning “it is forbidden that p,
formally defined as O (—p) or as =P (p).
In general, deontic logic builds a bridge between logical rigor and ethics.
For a systematic study of deontic logic, one should read the following
books by Giuliano Di Bernardo: Introduzione alla logica dei sistemi
normativi, Bologna: Il Mulino, 1972; Le regole dell’azione sociale,
Milano: 11 Saggiatore, 1983; and Normative Structures of the Social
World, Amsterdam: Rodopi, 1988.

2

can be

Proof: A Theme in Need of a Focus

In its broadest sense, science is a system of behavior by means of which
humans become masters of their environment. For this reason, no human
society can exist without science. In a narrower sense, science is not so
much a system of behavior as a system of knowledge which, specifically,
aims to conceptualize, describe, and interpret the phenomena of the
macrocosm and the microcosm according to a clearly determined and
robust method, as well as to create the necessary intellectual tools for
understanding the aforementioned phenomena, logic, and mathematics.
Science builds knowledge through logic and testable explanations and
predictions. Thus, science contrasts prejudice, superstition, personal
opinion, subjective political beliefs, and, generally, irrational passions.

In mathematics, a “proof” is a verification of a proposition by a chain of
logical deductions from a set of axioms. As already explained above, by a
“proposition,” we mean a statement that is either true or false; by a
“predicate,” we mean a proposition whose truth value depends on the
value of a variable; and, by an “axiom,” we mean a proposition that is
assumed to be true (because we think that it is reasonable, that is, worthy
enough to be declared true). We can choose any propositions as axioms,
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provided, however, that the axiomatic system that we create is consistent
and complete: a set of axioms is “consistent” if no proposition (in the
given axiomatic system) can be proved to be both true and false, and a set
of axioms is “complete” if it can be used to prove that every proposition
(in the given axiomatic system) is either true or false (and, hence, in such
an axiomatic system, every problem becomes solvable). However, as |
have already mentioned, Kurt Godel, in the 1930s, proved that there is no
such axiomatic system (if it is to contain arithmetic), and, therefore, we
must make compromises as to the range of validity and the explanatory
power of each axiomatic system, but we must always follow the rules of
logic in order to avoid contradictions.

The first systematization of logic is due to the ancient Greek philosopher
and scientist Aristotle, and, for this reason, the phrase “Aristotelian logic”
is still commonly used. Aristotle’s works on logic were grouped together
by ancient commentators under the title Organon (“Instrument”). In
particular, the Organon comprises the following logical treatises written
by Aristotle: (i) Categories, (ii) On Interpretation, (iii) Prior Analytics,
(iv) Posterior Analytics, (v) Topics, and (vi) On Sophistical Refutations.
The title Organon, meaning instrument, implies that logic is an instrument
and a method used by philosophy and science, and, in particular, according
to both Aristotle and the later Peripatetics, the ultimate purpose of correct
reasoning is to create correct social relationships and to enable people to
correctly communicate the results of philosophical and scientific research
with each other. In the third century B.C.E., the Greek Stoic philosopher
and logician Chrysippus founded a propositional calculus, studying
implication, conjunction, and disjunction, and, in the early twentieth
century, the Austrian philosopher Ludwig Wittgenstein brilliantly studied
the problems of communication in a comprehensive and systematic way.
Logic underpins “mathematical proof.” As Steve Halperin (Introduction to
Proof in Analysis, p. 9) has pointedly argued, by the term “mathematical
proof,” one should understand “a sequence of statements which establish
that certain assumptions (the hypotheses) imply that a certain statement
(the conclusion) is true,” and the statements that constitute a proof must
satisfy the following requirements: (i) “each is clear and unambiguous”;
(i1) “each is true, and its truth follows immediately from the truth of the
preceding statements and the hypotheses™; and (iii) “the final statement is
the conclusion.” Thus, in the context of a mathematical proof, we may use
several techniques, such as direct proof (involving arguing step by step,
starting from what we know until we have demonstrated the truth of some
conclusion), mathematical induction, counterexamples (since a single
counterexample suffices to prove that a statement claiming necessity and
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universality is wrong), reductio ad absurdum (i.e., the form of argument
that attempts to prove a statement by proving that the negation of the given
statement leads to absurdity or contradiction), proof by contraposition (i.e.,
inferring a conditional statement from its contrapositive; the contrapositive
of the statement “if A, then B” being the statement “if not B, then not A”),
etc. In addition, the concept of a mathematical proof is inextricably linked
to the concept of a definition, that is, to a deep and rigorous understanding
of the essence of the object under consideration.

In ancient Greece, Socrates, Plato, and Aristotle developed a way of
thinking that is based on “universal definitions.” The classical Greek way
of thinking consists of understanding the whole as a whole and of thinking
upon thinking itself, thus leading contemplation to a level that supersedes
mere practical thinking and spontaneity. This way of thinking opens the
mind to the world of philosophy, scientific rigor, and genuine strategy.
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Chapter 2
The Structure of Number Sets, Arithmetic,
and Algebra

The attempts of nineteenth-century mathematicians to found mathematical
analysis in a rigorous way were based on real numbers, which also needed
a rigorous foundation. Numbers are abstract objects, concepts.
Simultaneously, they are intimately related to the world, since we organize
the world with them (that is, we count, we measure, and we form scientific
theories with numbers). In order to understand the concept of a number,
we have to keep in mind that what we count are not “things,” but “sets of
things.”

The history of set theory and of non-numerical mathematics, in general,
can be traced back to the era of classical Greece, but the first systematic
inquiry into the foundations of set theory was due to the German
mathematician Georg Ferdinand Ludwig Philipp Cantor (1845-1918).
However, before Cantor, George Peacock (1791-1858), Augustus De
Morgan (1806-71), and George Boole (1815-64) had already made
significant contributions to the formalization of non-numerical mathematics.
According to Cantor, by the term “set,” we should understand a well-
defined gathering together into a whole of definite, distinguishable objects
of perception or of our thought that are called elements of the set. By the
term “well-defined,” Cantor means that, given any object and any set, the
given object is either an element of the given set or not an element of the
given set. By the terms “definite” and “distinguishable,” Cantor means that
no two elements of a set are the same.

The empty set is denoted by @. The empty set has no elements. If a set has
only one element, then it is called a “singleton.”

If every element of a set B is an element of a set 4, then B is said to be a
“subset” of A, and we write B S A. Every set is a subset of itself. If 4 is an
arbitrary set, then @ C A; that is, the empty set is a subset of every set.
Two sets A and B are “equal” if and only if A € B and B € A, and then
we write A = B. If two sets A and B satisfy the condition B € A and there
is at least one element of A that is not an element of B, then B is said to be
a “proper subset” of A, and we write B c A. If BS Aor B c A, then 4 is
said to be a “superset” of B. When in a particular situation all the sets
under consideration are subsets of a fixed set, this fixed set, which is the
superset of every set under consideration, is called the “universal set,” or
the “universe of discourse.”
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If the elements of a set are sets themselves, then the set is called a “set of
sets,” “family of sets,” “collection of sets,” or “class of sets.” For instance,
C= {{x}, {y, Z}} is a class of sets (notice that x is something different

from {x}).
If A and B are two arbitrary sets, then we define their
i.  “union™
AUB =
{every x such that x belongs to at least one of A and B};
and

il. “intersection”:
AN B = {every x such that x belongs to both A and B}.

Two sets are called “(relatively) disjoint” if their intersection is the empty
set.
However, in 1901, the British philosopher and mathematician Bertrand
Russell proved that every set theory that contains an unrestricted
comprehension principle leads to contradictions. In other words, the
“universal set” is not a set. The aforementioned contradictory situation is
known as Russell’s paradox.
Russell’s Paradox: Let U be the collection of all sets:
U = {x|x is a set}.
Then U is not a set.
We can prove Russell’s paradox by reductio ad absurdum. Assume, for
the sake of contradiction, that U is a set. However, any ordinary
mathematical set (e.g., of numbers, functions, etc.) is not a member of
itself and can be naturally regarded as a member of a smaller universe of
sets. In particular, let V be an arbitrary set and V € V. Then, by the
definition of U, V € U. Moreover, because U is a set, either U € U or U &
U. IfU & U, then, because V € U, it follows that U € U. But, if U € U,
then, again because V € U, where VV € V, it follows that U & U. Therefore,
in both of these cases, we reach a contradiction, and, in this way, we prove
that U is not a set (U is called “Russell’s class”).m
The German mathematician, logician, and philosopher Friedrich Ludwig
Gottlob Frege (1848-1925) believed that the foundational problems of
mathematics could be solved and overcome by reformulating Aristotelian
logic in a “Platonic” way, in order, in this way, to equip mathematics with
epistemologically and ontologically robust underpinnings. Thus, Frege
argued that mathematical truths are reducible to logical truths, and that
logic is equivalent to Plato’s world of ideas. In order to understand the
manner in which Frege attempted to reduce all mathematics to logic and to
a rigorous conception of set theory, we have to understand the manner in
which he defined the concept of a number as a set of mutually equivalent
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sets. In particular, Frege has explained that any number n can be used in
order to count any n-membered set. For instance, the number two can be
thought of as the set of all 2-membered sets, or as the set of all pairs,
independently of the nature of the objects that constitute each pair.
Similarly, the number three can be thought of as the set of all triplets, the
number four can be thought of as the set of all quadruples, and so on.
In particular, in order to define the concept of a natural number
(0,1,2,3,...,n,n+ 1, ...), Frege defined, for every 2-place relation R, the
concept “x is an ancestor of y in the R-series,” and this new relation is
known as the “ancestor relation on R.” The underlying idea can be easily
grasped if we interpret Frege’s 2-place relation R as “x is the father of y in
the R-series.” For instance, if a is the father of b, b is the father of ¢, and ¢
is the father of d, then Frege’s definition of “x is an ancestor of y in the
fatherhood-series” ensures that a is an ancestor of b, ¢, and d, that b is an
ancestor of ¢ and d, and that c is an ancestor of d. More generally, given a
series of facts of the form aRb, bRc, and cRd, Frege showed that we can
define a relation R* as “y follows x in the R -series.” Thus, Frege
formulated a rigorous definition of “precedes,” and he concluded that a
“natural number” is any number of the predecessor-series beginning with
0.
Using the concept of a “predecessor,” the American mathematician John
von Neumann (1903-57) has proposed an even more accurate definition of
a “natural number.” According to von Neumann, instead of defining a
natural number n as the set of all n-membered sets, a natural number n
should be defined as a particular n-membered set—more specifically, as
the set of its predecessors. For instance, the number two having two
predecessors, zero and one, we can think of the number two as the set
{0,1}, where zero has no predecessor. Therefore, zero can be thought of as
the empty set, denoted by @. The number one has only one predecessor,
zero. Therefore, we can think of the number one as {@}, namely, as the
singleton of the empty set. Thus, von Neumann formulated the modern
definition of “ordinal numbers.” In particular, given the “successor
operation,” which is defined as
succesor(n) = n U {n},
the set of von Neumann natural numbers, namely, the ordinal numbers,
denoted by w, is defined as follows:

i. Q€w.

ii. Ifn € w, then succesor(n) € w.

iii. Nothing belongs to w unless it can be constructed using the

preceding rules.

Thus, we obtain the following definitions:
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0=0.
1 = successor(0) = @ U {9} = {0} = {0}.
2 = successor(1) = {p} U {{0}} = {0, {0}} = {0,1}.

3 = successor(2) = {0, {0} U {{(25, {(D}}} = {Q), {0}, {0, {Q)}}} ={0,1,2}.

The set-theoretical approach to modern mathematics is necessarily based
on the acceptance of the following axioms (see: Halmos, Naive Set
Theory):

Axiom 1 (“Axiom of Extensionality”): For every set A and for every set B,
A = B if and only if, for every element x, it holds that x € A if and only if
x € B.

Axiom 2 (“Axiom of Foundation”): Infinite descending membership
chains of sets (X; 3 X, 3 X3 3 -+-) are forbidden; that is, we cannot have a
set X; that has an element X, that has an element X5, and so on, forever.
Any descending membership chain of sets, where each term of the chain
belongs to a previous term of the given chain, must be finite (and the last
element of any such chain must be the empty set).

Axiom 3 (“Axiom of Specification”): 1f ¢(x) is a formula, whose truth
value (“True” or “False”) depends on x, then, for every set A, there exists
a set B such that, for every element x, it holds that x € B if and only if x €
A and ¢@(x) is true. In other words, given a set A4, the “container” B whose
elements are the elements of A that satisfy ¢(x) is a set (this axiom, by
forbidding unrestricted comprehension, shields modern mathematics
against Russell’s paradox).

Axiom 4 (“Axiom of Pairing”): For every set A and for every set B, there
exists a set C such that, for every x, it holds that x € C if and only if x € A
or x € B (meaning that any two things in mathematics can also be paired
up). In other words, for any sets A and B, there exists a set {4, B} that
contains exactly A and B.

Axiom 5 (“Axiom of Union”): Given any set X whose elements are sets,
we can create the set whose elements are all the members of all the sets
that belong to X.

Axiom 6 (“Axiom of Replacement”): We can take a set X and form another
set by replacing the elements of X with other sets according to any definite
rule.

Moreover, later in this chapter, I shall refer to the “Axiom of Choice,”
which allows us to perform a lot of operations on infinite sets that mirror
things that are intuitively obvious on finite sets.
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Let X be a set of elements a, b, ... Suppose that there is a binary relation
expressed by a < b, defined between certain pairs (a, b) of elements of X,
and satisfying the following properties:

a<a;

if a<bandb < a, thena = b;

ifa < band b < c, then a < c (transitivity).

Then X is said to be “partially ordered” (or “semi-ordered”) by the relation
<.

Let X be a partially ordered set with elements a, b, ...Ifa <cand b <c,
then c is said to be an “upper bound” for a and b. If, furthermore, c < d
whenever d is an upper bound for a and b, we call c the “least upper
bound,” or the “supremum,” of a and b, and we write sup(a,b). This
element of X is unique if it exists. In a similar way, we define the “greatest
lower bound,” or the “infimum,” of a and b, and we denote it by
inf(a,b).

A partially ordered set X is said to be “linearly ordered” (or “totally
ordered”) if, for every pair (a,b) in X, either a < b or b < a holds. A
subset of a partially ordered set X is itself partially ordered by the relation
that partially orders X; and the subset may even be linearly ordered by this
relation. If X is a partially ordered set and A is a subset of X, then an
element m € X is said to be an upper bound of 4 if a < m for every a €
A. An element m € X is said to be “maximal” if the relations m € X and
m < x imply that m = x (the maximum is the largest number of the set,
while the supremum is the smallest upper bound of the set). In a similar
way, we define a “minimal element.”

The Number Sets N, Z, Q, Q~, and R

In this section, we shall study the structure of the number sets N, Z, Q, Q~,
and R.

The Natural Numbers

N: the “natural numbers,” namely, the positive integers 1,2,3, ..., which are
used to count objects, and 0. For any natural numbers m, n, and k, the
following equalities hold true:

. m4+n=n+m,

ii. m+n+k)=m+n)+k,

iii. mn =nm,

iv. m(nk) = (mn)k,
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v. mm+k)=mn+mk,

vi m-1=m.
Equalities (i) and (iii) express the “commutative law” of addition and
multiplication respectively; equalities (ii) and (iv) express the “associative
law” of addition and multiplication respectively; and equality (v) is known
as the “distributive law” of multiplication over addition. The
aforementioned laws underlie all computations. If a natural number m is
divisible by a natural number n, then m is said to be a “multiple” of the
number n, and n, in turn, is said to be the “divisor” of the number m. If m
is a multiple of the number n, then there is a natural number k such that
m = kn. For instance, 18 is divisible by 3, and we write 18 = 6-3. In
this case, m = 18 (the “dividend”), n = 3 (the “divisor”), and k = 6 (the
“quotient”). If a natural number m is not exactly divisible by a natural
number n, that is, if there is no natural number k such that kn = m, then
we consider “division with a remainder.” For instance, 33 divided by 2
equals 16 (“partial quotient”) with a remainder of 1, and therefore 33 =
16-2+1.
For any two natural numbers a and b, there exists a unique natural number
n such that a - n = b if and only if a is a divisor of b, and then we write

b o . .
n=>b-+a =-. “Even numbers” are divisible by 2 without remainders,
a

whereas “odd numbers” are not evenly divisible by 2. Notice that odd
numbers end in the digit 1, 3, 5, 7, or 9, whereas all the numbers ending
with 0, 2, 4, 6, or 8 are even numbers.

The greatest common divisor (denoted by gcd) of two natural numbers a
and b is the largest natural number that divides both a and b, and the
Euclidean Algorithm for computing gcd(a, b) is as follows:

i. Ifa=0,then gcd(a,b) = b.

ii. Ifb=0,then gcd(a,b) = a.

iii. If a and b are both non-zero natural numbers (a > b), then we
write a in quotient remainder form, namely,a = b-q +r, and,
subsequently, we compute gcd(b,r) using the Euclidean
Algorithm since gcd(a, b) = gcd(b,r). For instance, if a = 280

and b = 120, then we can compute gcd(a, b) as follows: firstly,

we  use long division  to find  that % =

2 with aremainderof 40, which can be written as 280 =

120X 2 +40 ; secondly, we compute gcd(120,40) =

40 with a remainderof 0; and, therefore, gcd(280,120) = 40.
Let a and b be both non-zero natural numbers. Moreover, let Icm(a, b)
denote the least common multiple of a and b (i.e., Icm(a, b) is the
smallest natural number that is evenly divisible by both a and b). Then
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a-b ab
ng(a' b) = lem(a,b) gcd(a,b)’
If a natural number has only two divisors, a unity (one) and the number
itself, then it is called a “prime number”; if it has more than two divisors,
then it is called a “composite number.” For instance, 2, 3, 5, and 7 are
prime numbers, but 9 is not a prime number (9 is a composite number,
because the divisors of 9 are 1, 3, and 9). Notice that 2 is the only even
prime number, and that, except for 2 and 5, all prime numbers end in the
digit 1, 3, 7, or 9. All numbers have prime factors. For instance, the prime
factors of 10 are 2 and 5, since 10 = 2! x 51; the prime factors of 11 are
1 and 11, since 11 = 1! x 111; the prime factors of 100 are 2 and 5,
since 100 = 22 x 52, etc.
The Italian mathematician and glottologist Giuseppe Peano (1858-1932)
has organized the natural numbers as an axiomatic system on the basis of
the following axioms, known as the “Peano axioms™:
i. 0 1is anatural number, symbolically: 0 € N.
ii. If n is a natural number, then the successor of n (ie.,
successor(n) = n + 1) is also a natural number.
iii. If two natural numbers have the same successor, then the two
natural numbers are identical.
iv. 0 is not the successor of any natural number.
v. “Induction Axiom”: If X is a set containing both 0 and the
successor of every natural number belonging to X, then every
natural number belongs to X.
The “Induction Axiom” gives rise to and underpins the principle of
“Mathematical Induction,” which is a mathematical proof technique for
propositions: Suppose that P is a proposition defined on the natural
numbers N, such that:
1. P(1) is true, that is, P holds true for 1;
ii. P(n + 1) is true whenever P(n) is true.
Then P is true for every natural number. In this case, P is the “inductive
hypothesis.” By completing the aforementioned two steps of mathematical
induction, we prove that P is true for every natural number.
Example: Let P be the proposition that the sum of the first n natural
numbers is

%n(n + 1), namely: P(n) =1+2+3+ - +n= %n(n +1). We can
prove that P is true for every natural number n € N using mathematical
induction as follows:

o lem(a,b) =

Basis step: The proposition holds for n = 1, because 1 = %(1)(1 +1).
Hence, P(1) is true.
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Induction step: We assume that P(n) is true, and we add n + 1 to both
sides of P(n), obtaining

14243+ +n+m+1) =-nn+D+@n+1) =
%[n(n +D)+2(n+1)] = % [(m+D(n+2)],
which is P(n + 1). Hence, P(n + 1) is true whenever P(n) is true. By the

principle of mathematical induction, P is true for every natural number
n € N.

The Fundamental Theorem of Arithmetic: Every natural number greater
than 1 can be uniquely represented as a product of prime numbers, up to
the order of the factors. This theorem can be derived from Book VII,
propositions 30, 31, and 32, and Book IX, proposition 14, of Euclid’s
Elements. In other words, this theorem states that every natural number
n > 1 can be represented in exactly one way as a product of prime
numbers:

k
n=ppy? ..pk = i_lpini
where p; < p, < -+ < py, are prime numbers, and n; are natural numbers
greater than zero. This representation is commonly known as the
“canonical representation of a natural number” (it can be extended to
include 1 by the convention that the “empty product” is equal to 1; the
“empty product” corresponds to k = 0).
Proof: The existence of prime factorization can be proved using
mathematical induction: In the basis step, we see that the statement is true
for n = 2, since 2 is a prime number. Suppose that the statement is true for
all n such that 1 < n < k, so that we can write every n (where 1 <n < k)
as a product of primes. We can prove that the statement is true forn = k
as follows: If k is prime, then the case is obvious. If k is not prime, then it
is a composite number, and we can factor it as follows:
k=xXy wherel <x,y <k.
Hence, by induction, we can argue that x and y can be written as the
product of primes, meaning that k can also be written as the product of
primes.
The uniqueness of prime factorization can be proved by reductio ad
absurdum, using Euclid’s Lemma, which states that, if a prime p divides
the product ab of two natural numbers a and b, then p must divide at least
one of those natural numbers a or b (Euclid’s Lemma can be proved using
mathematical induction). For the sake of contradiction, suppose that there
exist two distinct prime factorizations for the same natural number n (>
1), so that:
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ny Ny mj

Nk my mp
N=p;py P =4 Q-9 @)
Moreover, suppose that n (> 1) is the least natural number that has two

distict prime factorizations. Notice that
ny_ Ny my M mj

n=ppy? ..ok =q;q, e
implies that p, divides q;"q, > ...q;nj (p; divides the left side, so it

divides the right side); and, therefore, by Euclid’s Lemma, p, divides
some q;. Without loss of generality, let that q; be g;. Because both p, and
q, are primes, the fact that p, divides g, implies that p; = q,. Since p; =
q.1, we can delete p; and g, in equation (1), so that now (1) gives us two
distinct factorizations of some natural number strictly smaller than n,
contradicting the assumed minimality of n; quod erat demonstrandum

A set is said to be “countable” (or “denumerable”) if you can make a list
of its members, and, by a “list,” we mean that you can find a first member,
a second member, a third member, and so on, and, thus, assign to each
member a natural number of its own, perhaps going on forever. Obviously,
the natural numbers are countable (you can assign each natural number to
itself).

The Integral Numbers

Z: the “integral numbers,” or the negative integers, zero, and the positive
integers:
.—3,-2,-10,1,23,..

The notation Z for the set of integers derives from the German word
“Zahlen,” which means “numbers.”

From the perspective of ancient mathematicians, numbers are things by
means of which we count, but modern mathematical analysis, founded on
Cartesianism, understands numbers mainly as positions on the number
line. Let us draw a straight line [ and mark on it a point 0 that will be taken
as the origin. Then we choose a unit segment 0P, where P is a natural
number that lies to the right of 0, and, in this way, we specify the positive
direction. In other words, the unit segment 0P determines the direction of
the number line and corresponds to the positive unity +1 (or simply 1).
Let us, for instance, take the number 4. Laying off the unit segment from
the point 0 in the given direction four times, we obtain the point Q that
corresponds to the number 4. Let us now lay off four unit segments from
the zero point in the direction opposite to the specified. We then get the
point Q’, which is symmetric to the point Q about the origin 0. The point



69

Q' corresponds to the number —4. Thus, the numbers 4 and —4 are said to
be “opposite.” By analogy, we can define any other integer (positive or
negative). In general, the numbers situated on the number line [ in the
specified direction are said to be “positive,” whereas the numbers located
on the number line in the direction opposite to the given one are said to be
“negative.” Hence, the natural numbers and their opposites (the opposite
of the number zero being the same number) form together the set of
integral numbers (integers), which is denoted by Z.

If a point X of the line [ corresponds to some number 7, then this number
is said to be the “coordinate of the point X,” and, in this case, we write
X(r).

The “absolute value” of the number r is denoted by |r|. The absolute
value of any positive number is the number itself. The absolute value of
any negative number is equal to its opposite number. The absolute value of
the number zero is zero.

The sum of two negative numbers is a negative number. In order to find
the absolute value of a sum, it is necessary to add together the absolute
values of the addends. The sum of two numbers having unlike signs is a
number that has the same sign as the addend with greatest absolute value;
and, in order to find the absolute value of their sum, it is necessary to
subtract the smaller value from the larger one (so that, for instance, 5 +
(=3)=5-3=2).

In order to subtract one number from another, it is necessary to add to the
minuend a number that is the opposite of the subtrahend.

The product (resp. quotient) of two negative numbers is a positive number.
The product (resp. quotient) of two numbers having unlike signs is a
negative number. In order to find the absolute value of a product (resp.
quotient), it is necessary to multiply (resp. divide) the absolute values of
these numbers.

When we divide two integers, we get an equation of the following form:

% = q withremainderr,

where a is the dividend, b is the divisor, g is the quotient, and r is the
remainder. Sometimes, we are only interested in the remainder in the
division of a by b, and, for these cases, there is an operator called the
“modulus operator” (abbreviated as mod). If the difference of two integers
a and b is divisible by n, then a and b are said to be congruent with
respect to the modulus n, and this is symbolically expressed as follows:
a = b(modn)

(and then we read “a is congruent to b modulo n”), and each of the
numbers a and b is said to be a residue (modn) of the other (the
“modulus” is the remainder of the division of one number by another; for
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instance, 9 divided by 4 equals 2 and there is a remainder of 1, so that we
write 9 = 4 = 1, whereas, for instance, k = k = 0 for all k € N). Our
intuition for the integers modn should be a circle with the integers 0
through n — 1 arranged on it. Notice that:

a = b(modn) ©®nlb—a
where n|b — a means that n divides b — a, in which case a and b have the
same remainder when we divide them by n (this notation and much of the
elementary theory of congruences are due to the German mathematician
Carl Friedrich Gauss). For instance, 5 = 2(mod3) because 3|5 — 2; and
4 = —1(mod>5) because 5|4 — (—1).
Fundamental principles of the theory of congruences:
I. If a = b(modn) and a = c(modn), then b = c(modn).
II. If a=ad,b=b",c=c',etc.(modn), then atbtct---=a +
b'+c' £ - (modn).
III. If a = a’(modn), then ka = ka'(modn).
IV.If a = a’(modn) and b = b’ (modn), then ab = a’'b’(modn).
V.Ifa=a',b=b',c =, etc. (modn), then abc ... = a’'b'c’ ... (modn).

VI. If ka = kb(modn), then a =b (mod g) where d is the greatest

common divisor of k and n.

By a “linear congruence,” we mean a congruence of the form

ax = b(modn), where a,b,n € Zand n > 0. )
A solution to (1) is an integer x that satisfies (1) and is a least residue
(modn) (that is, 0 <x <n—1). The congruence relation (1) has a
solution if the (“unknown”) integers x (where 0 <x <n-—1) and k
satisfy the equation

ax=>b+kn 2)
(keep in mind that, in congruences, we work only with integers).
Moreover, notice that

ax = b(modn) & ax —ny = b,

where ax —ny = b is the corresponding linear Diophantine equation (by
a “Diophantine equation,” we mean an equation involving only sums,
products, and powers in which all the constants are integers and the only
solutions of interest are integers; they are named in honor of the third-
century C.E. Greek mathematician Diophantus, who developed a
systematic theory of such equations). The linear congruence (1) has a
solution precisely when gcd(a,n)|b, that is, precisely when b is a
multiple of d = gcd(a,n), and, in this case, (1) is equivalent to

x=2 (mod 2).

d d d

We shall prove this theorem and its ramifications shortly.
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If gcd(a,n) = d|b, then (1) has a solution x,, and, given a solution x,,
we can construct infinitely many solutions to (1) of the form

X =xy+ /1%, where A is any integer. If x,, is one solution to (1), then all
the solutions to (1) are described by

X = X, (mod g)

where d = gcd(a,n).

Example 1: Consider the linear congruence

4x = 8(mod5).

In this case (where a = 4 and n = 5), we are allowed to divide both sides
by 4, because gcd(4,5) = 1. Thus,

4x = 8(mod5) = %x = g(modS) = x = 2(mod5),

so that, according to the above definition of a linear congruence
(specifically, according to relation (2)), x = 2 + 5k.

Example 2: Consider the linear congruence

4x = 2(mod5).

In this case, we cannot divide both sides by 4, because % is not an integral

number, and, therefore, it is not allowed in linear congruences. In this
case, we can work as follows: Since 4x can be treated as 2(2x), and
gcd(2,5) = 1, we can divide both sides by 2 to obtain:

2x = 1(mod5),
so that, according to the above definition of a linear congruence
(specifically, according to relation (2)), 2x = 1+ 5n & x = 1+25n; and we

. . 1 11 21
have: if n > 0, then possible values of x are 3 3,7, 8,7, 13, ..., whereas,

if n <0, then possible values of x are —2,—3,—7,—%, .. If we are

looking for integral values of x , then possible solutions include
(3,813,...) and (—2,-7,-12, ...).

The linear congruence ax = b(modn) has a solution (for x) if and only if
gcd(a,n) divides b, in which case the congruence has d = gcd(a,n)
incongruent solutions.

Proof: Let x,, be a solution to the given linear congruence, so that

ax, = b(modn). €))
Due to (1), n divides ax, — b; symbolically, n|ax, — b. 2)
By the definition of divisibility, (2) implies that

ax, — b = ny for some integral number y. Therefore,

ax, —ny =b. 3)
Equation (3) implies that b can be written as a linear combination of a and
n, and, for this reason, b is a multiple of gcd(a,n), meaning that
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gcd(a,n) divides b, as required. Now, we shall prove the reverse as
follows:
Suppose that gcd(a,n)|b, and let d = gcd(a,n). Hence, b = dk for
some integral number k. Let us consider two integral numbers X, and y,
such that

axy, —ny, =d. (4)
If we multiply both sides of equation (4) by k, then we obtain:
a(kxy) —n(ky,) = dk = b. &)

If we set kx, = x, and ky, = y;, then (5) becomes

ax, = b +ny, = ax;, — b =ny, = nlax; — b.

Because n divides ax; — b, it holds that ax; = b(imodn), where x, is the

solution to the given congruence; quod erat demonstrandum.

Finally, we have to prove that, given the solution x,, the linear congruence

has d = gcd(a, n) incongruent solutions. In other words, we know that

ax, = b(modn). Let

X = %o +m (%), ©6)

where 0 <m <d—1, and, as before, d = gcd(a,n). These are the

required d = gcd(a, n) incongruent solutions to the given congruence. To

show that they are indeed solutions to the given linear congruence, we

work as follows: We multiply (6) by a to obtain:

ax, = axg + mgn.

Notice that d is a divisor of a, and, thus, g is an integral number, so that,

given that d = gcd(a,n), we obtain:

ax, = axy + m%n = b(modn),

meaning that all of these x,,’s are indeed solutions to our original

congruence, ax = b(modn). We can show that these solutions are

incongruent as follows: Suppose that

x; = xj(modn). @)

We shall show that this implies that i = j. Equations (6) and (7) imply that

Xo +1i (E) =x,+J (2) (modn) = i (E) =j (E) (modn) = (i —j) (E)
d d d d d

(i.e., a multiple of n), meaning that % is an integral number. Given that

0<m<d-1and % is an integral number, it holds thati —j =0 &

{ = j, meaning that the only case in which the solutions x; and x; are

congruent modulo n is when they are the same (i.e., when i = j); ; quod
erat demonstrandum.
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Remark: The above theorem provides a criterion by which we can decide
whether a linear congruence has solutions and how many solutions it has,
and, in fact, the structure of the proof of this theorem shows us the way in
which we can find the solutions to a linear congruence (provided that it
has solutions).

Fermat’s Little Theorem: If p is a prime, and if a is any integer prime to p,
so that gcd(a,p) = 1, then

aP~! = 1(modp)
(thus, this theorem, also known as “Fermat’s Little Theorem,” provides an
important primality test).
Proof: Let us consider the numbers a, 2a, 3q, ..., (p — 1)a, pa. All of these
numbers are incongruent to each other modulo p, as can be easily shown
by reductio ad absurdum, and, therefore, their residues modulo p form the
set {0,1, ...,p — 1}. Hence,
a-2a-3a-...(p—Da=[1-2-3-...-(p—1)](modp) © a-2a-3a-
wr(p—1Da = (p— 1! (modp) © aP~1(p — 1)! = (p — 1)! (modp),
and, dividing both sides by (p — 1)!, which is prime to p, we obtain
aP~! = 1(modp), quod erat demonstrandum.
Fermat’s Little Theorem implies the following “primality test”: given an
integer n, we can test whether it is prime by checking whether a™~1 =
1(modn) for any integer a not divisible by n. If this congruence holds,
then n is likely to be prime; this is a necessary but not sufficient condition.
For instance, in order to test if 23 is a prime number, we need to calculate
a?? = 1(mod23) for different integral values of a, and, indeed, we shall
always get the 22nd power of a to be congruent to 1 modulo 23.
Howerver, for instance, the number 561 passes the aforementioned
primality test (that is, satisfies Fermat’s Little Theorem), in the sense that
a®®® = 1(mod561), but it is a composite number (561 = 3 X 11 X 17).
The composite numbers that pass the aforementioned primality test (that
is, satisfy Fermat’s Little Theorem) are called “Carmichael numbers”
(named after the American mathematician Robert Daniel Carmichael).
Number theory and, especially, prime numbers have important
applications in cryptography. In the context of cryptography, there is a
plaintext (i.e., an intelligible message) that is converted into a ciphertext
(i.e., an unintelligible message) according to an encryption algorithm, and
this ciphertext is transmitted on the internet and is received by a receiver
who will use the decryption algorithm (which is the opposite to the
encryption algorithm) in order to convert the ciphertext into the original
plaintext. Thus, in cryptography, the computer converts information into a
single number (representing one’s message), say m. In order to be
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computationally secure, many encryption algorithms are based on prime
numbers because of the following reason: generally, multiplying two large
prime numbers can be very fast, but it is very difficult to do the reverse (it
is extremely computer-intensive to find the prime factors of large
numbers).

The Rational Numbers

Q: the “rational numbers,” namely, the set of all numbers of the form%

such that the numbers p and q are integers, g # 0, and the greatest
common divisor (gcd) of the integers p and g is +1 (that is, p and g are
relatively prime integers). In other words, the integral and the fractional
numbers (both positive and negative) form together the set of rational
numbers, which is denoted by Q. The notation Q for the set of rational
numbers derives from the Italian word ‘“quoziente,” which means
“quotient.”

By the term “common fraction,” we refer to a number of the form %,

where m and n are integral numbers, and n # 0. The number m is called
the “numerator” of the fraction, and the number n is called the
“denominator” of the fraction. In particular, n may be equal to 1. In this
case, we usually write m rather than % In other words, any integral

number can be represented in the form of a common fraction whose
denominator is 1.
Two fractions % and 2 are regarded to be equal if ad = bc. The “basic

property of fractions” states the following: the fractions % and % are

equal. Therefore, if the numerator and the denominator of a given fraction
are multiplied or divided by the same positive integer, then an equivalent
fraction is obtained (namely: % = %). Taking advantage of the basic

property of fractions, we may sometimes replace a given fraction with
another equivalent fraction but with a smaller numerator and a smaller
denominator by dividing all common factors out of the numerator and the
denominator. This operation is called “reduction of a fraction to its lowest
terms,” or simply “reduction of a fraction.” In general, reduction of a
fraction is always possible if its numerator and denominator are not
relatively prime numbers. If the numerator and the denominator are
relatively prime numbers, then the fraction is called “irreducible.”

The addition of common fractions is defined in the following way:
a c ad+bc

b da bd
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The subtraction of common fractions is defined in the following way:
a_c¢_ ad-bc

b d  bd . . )

The multiplication of common fractions is defined in the following way:

a ¢ ac

b d  bd

The division of common fractions is defined in the following way:
@a.c_ab_ad

b d  c/d  bc

A fraction % is called a “proper fraction” if its numerator is less than the
denominator; and it is called an “improper fraction” if its numerator is
greater than the denominator.

Let us consider an improper fraction % Since m is greater than n, there are
two numbers p and r (with r less than n) such that m = pn +r, so that:
m _ pntr _ pn

+< =p+<. Since the remainder is always less than the
n n n n n

.. T . . . .
divisor, — is a proper fraction. Hence, we have succeeded in representing
n
the improper fraction — in the form of a sum of a natural number p and a
n

proper fraction % This operation is called the “reduction of an improper

fraction to a mixed number.” A number consisting of an integer and a
fraction is called a “mixed number.” For instance, in order to locate the

mixed number 3 % on the number line, we think as follows: laying off the
unit segment (0P = +1) from the point zero in the given (positive)
direction three times and then %th part of this unit segment, we obtain the

point @ that exactly corresponds to the mixed number 3 % (the coordinate

of the point Q is 3 %).

The Irrational Numbers

Q™ : the “irrational numbers,” or the set of all numbers that cannot be
written as the quotient of two relatively prime integers. For instance, we
can prove that V2 € Q~ by reductio ad absurdum as follows: For the sake
of contradiction, suppose that v2 =§ where p,q € Z, the greatest
common divisor of the integers p and g is 1, and g # 0. Then

2
\/§=§:2=Z—2=>p2=2q2:p=2k,
where k is an appropriate integer; therefore 4k? = 2q% = q% = 2k?; but
then the greatest common divisor of the integers p and q is 2, which
contradicts the hypothesis.



76

The German mathematician Richard Dedekind (1831-1916) observed that
there exist infinitely many points on the straight number line L that
correspond to no rational number. Thus, the domain of rational numbers is
insufficient if we want to arithmetically follow up all phenomena on the
straight line. Therefore, new numbers must be created in such a way that
the domain of all numbers will gain the same “completeness” or
“continuity” as the straight line. In fact, Dedekind observed that there exist
infinitely many cuts that are not produced by rational numbers. For
instance, as shown in Figure 2-1, construct a square OABC on the unit
segment OC (i.e., the length of OC is equal to one) and lay off in the
positive direction a line segment 0D equal in length to the diagonal OB;
then (according to the Pythagorean Theorem, which we shall study
shortly) it is clear that D is a point that does not correspond to any rational

number—it, in fact, corresponds to /2.

Figure 2-1: Irrational numbers.

The history of irrational numbers goes back to the Pythagorean
mathematicians, who had demonstrated that there exist lengths
incommensurable with a given unit of length. In the seventh century
B.C.E., Thales of Miletus (a Greek mathematician, astronomer, and
philosopher from Miletus, in Ionia, Asia Minor) officially initiated a new
approach to mathematics. In contrast to the mathematics of other
civilizations, such as the Babylonians and the Egyptians, Thales’s
approach to mathematics is based on the thesis that scientific propositions
are not recipes for practical tasks—that is, techniques whose validity is
determined by the method of trial and error—but they should be explained
and proved. In other words, Thales attempted to endow mathematics with
rigor—which, in this case, means logical validity.

In the context of Thales’s rigorous mathematics, by the term “line
segment,” we mean a part of a line that is bounded by two distinct
endpoints, and contains every point on the line between the endpoints. Let
us consider the line segments a,,a,,as,...,a, and the non-zero line
segments by, by, bs, ..., b,. The line segments a4, a,, as, ..., a, are said to
be “proportional” to by, by, bs, ..., by, respectively, if
f_%2_3_ . %

by by b3 T by
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Thus, two arbitrary line segments a and c are proportional to two other
arbitrary line segments b and d, respectively, if and only if b and d are

non-zero, and it holds that
a c

a_c (1
b~ d

Any equality between two ratios, such as (1), is said to be a “proportion”
with terms a, b, c, and d, as shown above.

Assume that AB is a non-zero straight line segment, and that P is a point
on AB. Then we say that the point P “divides internally” the straight line
segment AB in a ratio A, where A > 0, if it holds that

PA

PB

If this is the case, then
PA A

=— PA= AB which implies the uniqueness of P.
PA+PB  A+1

Similarly, we say that a point Q “divides externally” the straight line
segment AB in a ratio A, where A > 0, if the points A, B, and Q are
collinear, Q is external to AB, and it holds that

U _

QB

If this is the case, then
A+1), so that

QA =— AB which implies the uniqueness of Q.

QA (
|QA—QB| M 1

given that QA # QB, it holds that

Tl hales S T heorem: If parallel straight lines intersect two straight lines,
then they define proportional straight line segments on them. For instance,
if parallel straight lines [;, [, and [ intersect straight lines a and a’ at

points 4, B, C and A’, B’, C' respectively, as shown in Figure 2-2, then
AB _ AC BC

A'B" T a'c’ T B'c”
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Figure 2-2: Thales’s Theorem.

A/ \A'

C
/a o

Corollary 1: Every straight line that is parallel to the bases of a trapezoid
divides, internally or externally, the non-parallel sides of the given
trapezoid in equal ratios.

Corollary 2: Every straight line that is parallel to one side of a triangle
divides, internally or externally, the other two sides of the given triangle in
equal ratios.

Corollary 3: If two triangles have a common angle, and if they have
parallel opposite sides, then they are said to be in Thales position, and then
they are similar triangles and have proportional sides.

In the sixth century B.C.E., Pythagoras and his school (the so-called
“Pythagoreans”) endorsed Thales’s approach to mathematics. From the
Pythagorean perspective of mathematics, the relations between the objects
of the world (e.g., magnitudes) correspond to the relations between natural
(and, generally, integral) numbers. However, it was soon realized that
things are not so simple, since it was realized that there exist magnitudes
that do not have a common measure. According to the Pythagoreans, two
objects (magnitudes) are “commensurable” (that is, they have a common
measure) if and only if there is a magnitude of the same kind that is
contained an integral number of times in both of them. In other words, two
magnitudes are “commensurable” if and only if their ratio is a rational
number. However, the Pythagoreans encountered “incommensurable”
magnitudes: magnitudes whose ratio is an irrational number. For instance,
as shown in Figure 2-1, the length of a diagonal of a unit square (i.e., of a
square with sides measuring 1 unit) is, according to the Pythagorean
Theorem, equal to V2, which is an irrational number. Similarly, a circle’s
circumference and its diameter are incommensurable (that is, 7, the ratio
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of a circle’s circumference to its diameter, is an irrational number). The
awareness that there exist incommensurable magnitudes compelled ancient
Greek mathematicians to inquire into the relations between
incommensurable magnitudes. This event marked a major crisis in ancient
mathematics.

According to ancient Greek mathematicians, quantities (magnitudes) are
continuous and uniform objects, which are best represented by straight line
segments. Their division into parts, or their measurement in terms of a
“unit of measurement” (i.e., a definite magnitude of a quantity),
meanwhile, represents the notion of discreteness. Ancient Greek
mathematicians used the term “ratio of magnitudes” in order to refer to the
relation between two magnitudes that can be measured in terms of a
common unit of measurement. Thus, the ancient Greek concept of a ratio
is most similar to the more abstract modern concept of a number. In the
context of ancient Greek mathematics, the objects of mathematics were
quantities (represented by straight line segments), and the ratio between
two quantities was a meta-object, or something that was used in order to
study mathematical objects without being treated as a mathematical object
itself. In other words, in the context of ancient Greek mathematics, a ratio
(a number) was construed as a measuring relationship between two
quantities, and such a measuring relationship could be built up (and,
hence, proved) in finitely many steps, using a common unit of
measurement. Nevertheless, the discovery of incommensurable ratios
demonstrated that a ratio could not be interpreted as a measuring
relationship in the aforementioned way. In fact, as a result of the discovery
of incommensurable ratios, the concept of a ratio (or a number) acquired
its conceptual autonomy, and, instead of being treated as a meta-object, it
started being treated as an object of mathematics. Therefore, ancient Greek
mathematicians had to transcend the system of mathematics that was based
on commensurable ratios. Notice that a commensurable ratio could easily
become an object of mathematical theory, since it is a rational number,
and, therefore, it can be constructed in finitely many steps, whereas the
decimal representation of an irrational number neither terminates nor
infinitely repeats but extends forever without regular repetition.

In the fourth century C.E., Theon, one of the most important Greek
mathematicians and commentators of Euclid’s and Ptolemy’s works,
attempted to solve the problems that were generated as a result of the
aforementioned crisis in the foundations of ancient Greek mathematics. In
particular, Theon started from an extremely small (infinitesimal) unit
square such that the ratio between any of its sides and any of its diagonals
is equal to 1 (given that it is infinitely small); symbolically, if a, is the
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length of any of the sides of the given infinitesimal unit square, and if §; is
the length of any of the diagonals of the given infinitesimal unit square,

then % = 1 (rather than v/2). Subsequently, Theon formulated a recursive
1

sequence of squares defined by the following rule:

a, = 6,4 +ay_qand 6, = 2a,_4 + 5,4,

so that the ratio between a diagonal and a side of a unit square approaches

its actual value, that is,

8 . . .
a—” -2 . The aforementioned recursive sequence yields
n

1 3 7 17 41 99 . . . S5 1

=,=,=,—,—,=,.. begining with £ == and, thus, Theon’s rule
1°2°5°12°29°70 a 1

1
provides an algorithm for successive approximations to the square root of

2. Theon explained that he started from the case in which % = 1 because,
1

just as the sperm of a living organism encompasses subsequent properties
of the given organism, any ratio “spermatically” (i.e., at the infinitesimal
level) encompasses the unit.

Theon’s aforementioned reasoning is underpinned by Aristotle’s concept
of a “potential infinity.” The concept of modern mathematics that is
semantically most similar to Aristotle’s concept of a “potential infinity” is
the convergence of a sequence of natural numbers. Thus, from the
perspective of ancient Greek mathematics, infinity is not a being (i.e., it is
not an actual state); it cannot be simultaneously considered in its whole
extension, but it can only be considered as a becoming (i.e., a process). In
this way, the concept of an infinite approach helps us to overcome the
contradiction between incommensurable ratios and commensurable ratios,
since we can think of an incommensurable ratio infinitely approaching a
commensurable ratio (and vice versa). Similarly, the concept of an infinite
approach helps us to overcome the contradiction between broken lines and
curves, as well as the contradiction between continuity and discreteness.
This reasoning is endorsed by Euclid; in his Elements, he does not
consider infinitely extended straight lines, but he always works with
straight line segments which, as he says, can be extended as much as one
needs.

However, several intellectuals have used infinite processes in a way that is
not rigorous. For instance, they have attempted to compute the length of
the circumference of a circle by considering an inscribed polygon whose
number of sides increases indefinitely. Therefore, the length of each side
of such a polygon decreases indefinitely, so that a triangle whose base is a
side of the given polygon and whose vertex (i.e., the “top” corner opposite
its base) is the center of the given circle could become such that its base
coincides with the given circle’s circumference. To what extent is such a
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shape a triangle, and beyond which point does an arc become a chord?
One may argue that these changes happen when a straight line segment
becomes infinitely small, but then one may counter-argue that, by
becoming infinitely small, a straight line segment is not “something” any
more, and it becomes “nothing.” Hence, how is it possible that an infinite
series of “nothing” (“no-things”) gives “something,” such as a circle? The
aforementioned example indicates the problems that are generated as a
result of the use of infinite processes in computations.

The aforementioned crisis in the foundations of mathematics was
overcome by Eudoxus’s theory of proportions and by the method of
exhaustion, which derives from Eudoxus’s theory of proportions, and it
was used by Archimedes. The method of exhaustion was originally
developed in the fifth century B.C.E. by the Athenian intellectual
Antiphon, and it was put in a rigorous scientific setting shortly afterwards
by the Greek mathematician and astronomer Eudoxus of Cnidus, who used
it in order to calculate areas and volumes. The Greek mathematician
Euclid (the acknowledged father of “Euclidean geometry™) and the Greek
mathematician, physicist, and engineer Archimedes made extensive use of
the method of exhaustion in order to prove several mathematical
propositions. For instance, Archimedes used the method of exhaustion in
order to compute the area of a circle by approximating the area of a circle
from above and below by circumscribing and inscribing regular polygons
of an increasingly larger number of sides (so that sides become
“infinitesimals,” or infinitely small): each of the polygons is a union of
triangles, so it is easily verified that the area of a circle of radius r and
circumference C is equal to the area of a triangle whose altitude is equal to
r and whose base is equal to C = 2mr. Then, given that the area of a
triangle is equal to half of the product of its base and altitude, we obtain

the formula for the computation of the area of a circle: %(rC) =

%(er') = mtr2. Moreover, Archimedes was able to calculate the length of

various tangents to the spiral (i.e., to a curve emanating from a point
moving farther away as it revolves around the point).

Archimedes was very careful in the use of infinite processes; he
approximated 7 by using the fact that the circumference of a circle is
bounded by the perimeter of an inscribed polygon and by the perimeter of
a circumscribed polygon. According to Eudoxus and Archimedes, there is
always a ratio between any two magnitudes, and we can always make any
magnitude smaller or greater than a given magnitude, so that the ratio
between two magnitudes a and b is the same as the ratio between two
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other magnitudes ¢ and d if and only if, for any natural numbers m and n,
it holds that

ma % nb = mc % nd, 2)
meaning that both of these ratios are characterized by the same placement
property (i.e., ordering) with regard to other numbers. In (2), the equality
sign (=) refers to commensurable ratios, whereas the inequality signs (2)
refer to incommensurable ratios. These ideas of Eudoxus and Archimedes
indicate that ancient Greek mathematicians discovered not only
incommensurable magnitudes but also incommensurable numbers.
Eudoxus’s aforementioned theory of proportions underpins Archimedes’s
method of exhaustion for solving geometric problems, and Archimedes’s
method of exhaustion underpins modern infinitesimal calculus.

It is important to notice that the way in which Eudoxus solved the problem
of the existence of incommensurable ratios (specifically, his attempt to
study the conundrum of irrationality that appears to exist in elementary
geometry in a scientifically rigorous way) marks a shift away from the
traditional constructivist approach to mathematics towards formalism. In
other words, Eudoxus does not explain what a ratio is (as a mathematical
object), but he states only when two ratios are similar to each other. The
constructivist approach to mathematics allows us to determine what an
object is by being able to construct it, whereas the formalist approach to
mathematics is not concerned with the substance of the mathematical
object under consideration, and is concerned only with the relations
between the mathematical object under consideration and other
mathematical objects. Moreover, the ideas of Eudoxus and Archimedes are
conceptually very similar to Dedekind’s cuts.

Fusing geometry and arithmetic is an arduous task. In order to understand
the difficulties that originate from fusing geometry and arithmetic, let us
consider, for instance, the famous irrational number v2, which was
discovered by Pythagoreans when they attempted to compute the length of
a diagonal of a unit square.

The Pythagoreans realized that the diagonal of a unit square is not
commensurable with the side of the given square, but, by keeping
geometry and arithmetic separate from each other (that is, by refusing to
identify numbers with lengths of straight line segments), ancient Greek
mathematicians could argue as follows: given a straight line segment
whose length is one, we can construct a straight line segment whose length
is V2 (as shown in Figure 2-1). In general, irrational numbers are
geometrically constructible (and, hence, geometrically explicable and
manageable), even though, from the perspective of arithmetic, irrational
numbers are ideal quantities, in the sense that the calculation of irrational
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numbers (such as v/2) is an infinite process (namely, irrational numbers
have infinitely many decimal digits).

On the other hand, having endorsed the Cartesian approach to
mathematics, mathematicians in the nineteenth century realized that they
had to clarify some still ambiguous fundamental concepts (such as that of
a real number), to formulate new methods of doing mathematics in a
logically rigorous way, and to create a rigorous theory of the arithmetic
continuum—specifically, a rigorous theory of real numbers and their
arithmetic.

The Real Numbers

R: the “real numbers,” or the set that is formed by the union of the set Q
of all rational numbers and the set Q~ of all irrational numbers;
symbolically: R=QuU Q™.

Based on and following the methodology of the fifth volume of Euclid’s
Elements (that is, the mathematical work of Eudoxus), Richard Dedekind
formulated the modern theory of real numbers. He began with the
following three properties of rational numbers:

i. Ifa>bandb >c,thena > c.

ii. Ifaandc are two distinct (rational) numbers, then there exist
infinitely many distinct numbers lying between a and c.

iii. If a is any definite (rational) number, then all numbers of the
system @Q fall into two classes, A; and A,, each of which contains
infinitely many individuals; A; contains all numbers a; that are <
a, while 4, contains all numbers a, that are > a; the number a
itself may be assigned at will to 4; or A,, being, respectively, the
greatest number of A; or the least number of 4,.

Then Dedekind stated three properties of the points on a straight number
line L:

i.  Ifplies to the right of g and q to the right of r, then p lies to the
right of 7; and q is said to lie between p and 7.

ii. Ifp andr are two distinct points, then there always exist infinitely
many points lying between p and r.

iii. Ifpis a definite point on L, then all points on L fall into two
classes, P; and P,, each of which contains infinitely many
individuals; P; contains all the points p, that lie to the left of p,
while P, contains all the points p, that lie to the right of p; the
point p itself may be assigned at will to P, or P,. In any case,
every point of P, lies to the left of every point of P,.



84

Each such division (or partition) of the set Q of all rational numbers
defines a “cut,” called the “Dedekind’s cut.” However, after having
observed that every rational number effects a “cut” in the set of rationals,
Dedekind considered the inverse question: if, by a given criterion, the set
of rationals is divided into two subsets A and B so that every number in A
is less than every number in B, is there always a greatest rational in A or a
smallest rational in B? Dedekind immediately realized that the number
line should be “continuous,” or unbroken, in the intuitive sense. Like
Eudoxus and Cantor before him, he developed theoretical concepts for the
purpose of filling the gaps in the ordered set of rationals so that the final
geometric picture is a continuous, straight number line. However, the
answer to the last question is in the negative: when 4 has no maximum
rational and B has no minimum rational, there is, indeed, a gap in the
rational series (or a puncture in the number line) which must be filled. In
that case, the cut (4, B) is said to define (or to be) an irrational number (as
shown, for instance, in Figure 2-1). Hence, the set R of all real numbers is
called the “(arithmetic or geometric) continuum” or the “straight line of
real numbers.”

In modern mathematical notation, the set of all real numbers x such that
a < x < b is said to be a “closed interval,” denoted by [a, b], of the real
line R, while the set of all real numbers x such that a < x < b (which
does not include its endpoints) is said to be an “open interval,” denoted by
(a, b), of the real line R. The intervals [a,b) = {x € R|a < x < b} and
(a,b] = {x € R]a < x < b} are neither open nor closed, but they are
sometimes called “half-open” or “half-closed.” Notice that (a, a) = @, and
[a, a] = {a}. Moreover, we define the intervals:

(a,0) = {x € Rla < x},

[a,00) = {x € Rla < x},

(—,a) ={x ER|x < a},

(—,a] = {x € R|x < a}.

By the term “interval,” we generally mean a set of points with the property
that, if x and y are distinct points of the set, every point between x and y
is also a point of the set (if the points x and y are included, then the
interval is closed; otherwise, it is open).

A real number b is said to be an “upper bound” of a non-empty subset S of
R if every member of the set S is less than or equal to the number b,
symbolically, if x < bVx € S. If this is the case, then S is said to be
“bounded from above.” For instance, if S = {2,4,6,8,10}, then 10 is an
upper bound of S, and every real number greater than 10 is also an upper
bound of S. Notice that, if a set is bounded from above, then it has
infinitely many upper bounds, and that an upper bound of such a set need
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not be a member of the given set. For instance, the number 10 is an upper
bound of the open interval (2,10), but 10 € (2,10). On the other hand, the
set N of all natural numbers has no upper bound.

The least of all upper bounds of a set is said to be the “least upper bound”
(often denoted by l.u.b.), or the “supremum” (often denoted by sup).
Hence, a real number b is defined to be the l.u.b. of a set S if b is an
upper bound of S (i.e., x < bVx €S), and if , given any other upper
bound c of S, b < c¢; and then we write sup(S) = b. For instance, if S =
{2,4,6,8,10}, then sup(S) = 10. On the other hand, the set N of all natural
numbers has no supremum. The supremum, when it exists, is unique for a
set.

A real number a is said to be a “lower bound” of a non-empty subset S of
R if every member of the set S is greater than or equal to the number a,
symbolically, if x = aVx € S. If this is the case, then S is said to be
“bounded from below.” For instance, if S = {2,4,6,8,10}, then 2 is a lower
bound of S, and every real number less than 2 is also a lower bound of S.
Notice that, if a set is bounded from below, then it has infinitely many
lower bounds, and that a lower bound of such a set need not be a member
of the given set. For instance, the number 2 is a lower bound of the open
interval (2,10), but 2 & (2,10). On the other hand, the set Z of all integral
numbers has no lower bound.

The greatest of all lower bounds of a set is said to be the “greatest lower
bound” (often denoted by g.l.b.), or the “infimum” (often denoted by
inf). Hence, a real number a is defined to be the g.l.b.of asetSifais a
lower bound of S (i.e., x 2 aVx €S5), and if , given any other lower
bound d of S, a > d; and then we write inf (S) = a. For instance, if S =
{2,4,6,8,10}, then inf(S) = 2. On the other hand, the set Z of all integral
numbers has no infimum. The infimum, when it exists, is unique for a set.
A set is said to be “bounded” if it is both bounded from above and
bounded from below. In other words, a set S is bounded if there exist two
real numbers a and b such thata < x < b Vx € S. If this is the case, then
X € [a,b] Vx € S, meaning that, for any bounded set S, there exist two
real numbers a and b such that S € [a, b].

Notice that the empty set, @, is a subset of every set, and, Va,b € R, @ S
[a, b]. Therefore, @ is a bounded set. Because of the fact that @ < [a, b]
for any real numbers a and b, every real number is a lower bound of @,
and every real number is an upper bound of @, meaning that @ does not
have a supremum or an infimum.

Moreover, notice that, for an arbitrary singleton A = {x}, sup(4) = x =
inf(A). Thus, every singleton is a bounded set in which supremum =
infimum.
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If the supremum of a set belongs to the given set, then it is said to be the
“maximum element” of the given set. If the infimum of a set belongs to
the given set, then it is said to be the “minimum element” of the given set.
For instance, 5 is the maximum element of the set (closed interval) [—3,5],
and —3 is the minimum element of this set. However, the set (open
interval) (—3,5) does not have a maximum element or a minimum
element.

Assume that € is a positive real number—that is, € > 0. Moreover,
consider the open interval N=(p —¢,p+¢€). Hence, p € (a,b) S
(p —&,p+e¢). If this is the case, then (p —¢&,p + €) is called the “ e-
neighborhood” of the point p, and it is denoted by N,.(p). In other words,
the e-neighborhood of a point p on the real line is the set of all those real
numbers which are within an ¢ distance of p on either side of it; p is the
midpoint or the center of N.(p); and ¢ is the radius of N (p). In other
words, a subset N of R is said to be a neighborhood of a real number p if
there exists an open interval (a, b) containing p and itslf contained in N,
symbolically, p € (a,b) S N. Then the set N of all natural numbers, the Z
of all integers, the set Q of all rational numbers, and the set Q~ of all
irrational numbers are not neighborhoods of any of their elements,
whereas the set R of all real numbers itself is a neighborhood of each of its
elements.

We shall use the notation N,(p) in order to denote the “deleted
neighborhood,” consisting of N, (p) with the point p deleted. In terms of
the real line R, a deleted neighborhood is an interval on R with the center
point removed.

Given a set S, a real number p is said to be an “interior point” of S if S is a
neighborhood of p; symbolically: if p € (a,b) € S. Obviously, an interior
point of a set S belongs to S. The set of all interior points of a given set S
is called the “interior” of S, and it is denoted by Int(S). In general, a point
p € R" is said to be an “interior point” of U if some neighborhood (open
ball) N, (p) with center p is contained in U. For instance, if S = [2,5],

then 7 1s an interior point of S, whereas neither 2 nor 5 is an interior point

of S, because [2,5] is not a neighborhood of 2 and 5. The interior of the
closed interval [2,5] is the open interval (2,5). The points of the
“boundary” of a set S are those points on the edge of S separating the
interior of S from its exterior; and, more formally, we can say that a point
p is a “boundary point” of a set S if and only if every neighborhood of p
contains at least one point that belongs to S and one point that does not
belong to S.
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A real number p is called a “closure point” of a set S € R if every
neighborhood of p contains a point of S. The set of all closure points of S
is called the “closure” of S, and it is denoted by Cls(S). Therefore, every
point of S € R is a closure point of S.

A real number p is called an “accumulation point,” a “limit point,” or a
“cluster point” of S if every deleted neighborhood of p contains at least
one point of S ; symbolically: if S N Ng(p) # @ Ve > 0 (in other words,
every neighborhood of p contains at least one point of S other than p). For
instance, if A = [a,b] and B = (a,b), then every member of A is an
accumulation point of A and of B, since, for instance, Ve > 0, the
neighborhood (a — ¢, a + €) of a contains infinitely many elements of A
and of B. Moreover, every real number is an accumulation point of the set
Q of all rational numbers as well as of the set R of all real numbers, since,
for instance, given an arbitrary real number p, Ve > 0, the neighborhood
(p — &,p + ¢€) contains infinitely many real numbers as well as infinitely
many rational numbers. On the other hand, the set N of all natural
numbers, the set Z of all integral numbers, and the empty set have no
accumulation point. Furthermore, no finite set has any accumulation point,
because, if, for instance, A = {a;,a,,as, ..., a,}, and if p is an arbitrary
real number, we can construct a sufficiently small neighborhood N with
center p such that N contains no point of A; therefore, p, which is an
arbitrary real number, is not an accumulation point of A.

Every accumulation point of a set is also a closure point of that set, but not

conversely. For instance, given the set A = {% [neN - {0}}, 0 =inf(4A)

and 0 € A, and, therefore, 0 is an accumulation point of A, but 1 is a
closure point of A without being an accumulation point of 4, since a
neighborhood (1 — &,1 + ¢), where € > 0, does not contain a member of
A other than 1.

The following theorem, known as the Bolzano—Weierstrass Theorem, can
be easily deduced from the principles of the Dedekind’s cuts:
Bolzano—Weierstrass Theorem: If a set S contains infinitely many points
of the real line, and if it is entirely contained in an open interval (a, b),
then at least one point of that interval is a point of accumulation of S. In
other words, every bounded infinite set of real numbers has at least one
accumulation point. Indeed, if we define a Dedekind’s cut (P;, P,) with
a € P, and b € P,, then there is a poit ¢ such that, however small be ¢,
§—¢e€P and £+ € €P,, so that the interval (¢ —¢,& + €) contains
infinitely many points of S, and, therefore, ¢ is a point of accumulation of
S; in fact, this point may coincide with a or b, as, for instance, when a =
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0, b =1, and S consists of the points 1,%%, ..., in which case 0 is the sole

point of accumulation.
The Bolzano—Weierstrass Theorem is important, because, by guaranteeing
the sufficiency of the density of R, it provides a rigorous way of proving
the convergence of infinite sequences of real numbers. Bernard Bolzano
(1781-1848), an Italian-Czech mathematician, philosopher, theologian,
and Catholic priest, and Karl Weierstrass (1815-97), a German
mathematician, were pioneering advocates of rigor in mathematical
analysis.
We can think of infinity in two ways: either as an indefinite quantity
whose size has exceeded all limits or as a definite quantity that we imagine
growing continuously, but the latter always remains less than what we call
actual infinity. Thus, we come up with two types of infinity: one is
absolute and static, corresponding to the notion of an indefinite quantity,
and the other is dynamical, corresponding to a definite yet potentially
continuously growing quantity. Furthermore, it is important to understand
the difference between infinity per se and an infinite quantity. Infinity per
se is an idea of pure reason, whereas an infinite quantity is a constructive
concept based on the idea of infinity. Infinity per se does not coincide with
any empirical (or theoretical) quantity, but it is a critical intellectual
capability that enables us to characterize any particular quantity as finite
by conceiving a quantitative space that contains the entire finite and is
based on the notion of transcendence. The negation of the finite—and,
more precisely, the conception of a process of transcending any particular
quantity—refers us to the idea of infinity. Whereas infinity qua infinity is
an idea of pure reason, an infinite quantity manifests itself through several
concepts, so that, for instance, we refer to the infinite quantity (or the
infinite size) of the natural numbers, of a line, of a plane, of a geometric
Space, etc.
A “real number” is a quantity x that has a “decimal expansion”:
x=n+0.d,d,d; ...,
where n is an integer, each d; is a digit between 0 and 9 (i = 1,2,3, ...),
and no infinite sequence of 9°s appears (0.999 ... with an infinite sequence
of 9’s is exactly the same number as 1 ). The aforementioned
representation implies that

1

n+Bp ey gyl g Gy L
10 100 10 10 100 10 10

for all positive integers k.

Exponents, factorials, and logarithms: Let a be a real number. Then the

product a-a-a... (n times) is denoted by a™, where n is called the
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“exponent,” and a is called the “base.” Therefore, the following properties
of exponents hold Va, b € R:

i. aa™ = a*t™m,

ii. (@)™ =a"",

fii. — =gq"™,

iv. a®=1,and

a\" _a"

@2
A “factorial” is a function in mathematics denoted with the symbol ! that
multiplies a positive integer n by every number that precedes it:
nn=n-n—-1)-n—-2)-..-2-1.
For instance, 4! =4-3-2-1 = 24. Notice that 0! =1, and 1! =1. In
other words, n! (“n factorial”) is the product of all natural numbers from 1
ton.
The number of “permutations” (ordered arrangements) of n elements

and the number of “combinations” of n

taken m at a time is By, = = i s

1
elements taken m at a time is CJ}, = e

—_— = P—m. Notice that the term
(n m)!m! m!

“permutation” means the number of ways we can arrange a set of objects
in a specific order (in this case, the order of the objects matters), whereas
the term “combination” means the number of ways we can select a subset
of objects from a larger set without taking the order of the objects into
consideration. For instance, consider a group of 10 persons. If we want to
form a subgroup, a subcommittee, of 3 persons from this group, then this
is a combination problem (since the order we select persons for the

subcommittee doesn’t change the subcommittee we form), and, therefore,
10!

~ Qo3
a group of 3 persons from a group of 10 persons). If we want to select a
President, a Vice President, and a Secretary from this group (of 10
persons), then this is a permutation problem (since the order we select

them changes the role that they perform), and, therefore, we apply the
10!

(10-3)!
Vice President, and a Secretary from a group of 10 persons). But if we
simply want to find the number of ways that a group of 10 persons can
arrange themselves in a row of 10 chairs, then the answer is 10! (the 10
persons can arrange themselves in a row in 10! ways).

Intimately related to the concepts of an exponent and an index is the
concept of a logarithm, which is the inverse function to exponentiation.

we apply the formula C3° = 120 (there are 120 ways to select

formula P;° = 720 (there are 720 ways to select a President, a
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The “logarithm” of a number a is the exponent to which another fixed
number, the base b, must be raised to produce the number a; symbolically:
logya =x © b* =aq,
where b and a are positive numbers with b # 1.
For instance, log,,1,000 = 3, since 103 = 1,000, and log;81 = 4, since
3% = 81. The method of logarithms was originally developed by the
Scottish mathematician, physicist, and astronomer John Napier (1550—
1617), who published his book Mirifici Logarithmorum Canonis
Descriptio (Description of the Wonderful Rule of Logarithms) in 1614.
The following properties of the logarithm can be easily verified (since they
derive from the properties of exponents):

i. logy(xy) =logyx + logyy,

ii. logy (i) =log,x — log,y,

iii. log,x* = klogpx,

iv. logy1 =0,

v. log,b* = x = bo9rx,
where b, x, y are positive, with b # 1, and k any real number.
Equation-solving principle: 1f x, y, and b are positive real numbers with
b # 1, then
x =y = log,x = log,y, and, conversely,
logypx =logpy = x=1y.
Therefore, we can solve exponential equations (i.e., equations in which the
unknown is in the exponent) by taking the logarithm of both sides of the
equation. For instance, let us solve the exponential equation 52* = 21 for
x, using log base of 10: 5% = 21 = log(5%*) = log21 = 2x - log5 =

log21
log21 = 2x = 2928 5 x = 1985 ~ (.9458,
logs 2

Change of base rule: We may change a logarithm in one base to a

logarithm in another base according to the following rule:
logax

logy,x = .
9p logab

The number e and the “natural logarithm”: Now, let us consider
exponential expressions that represent phenomena that change
continuously, such as the concept of compound interest. By the term
“compound interest,” we mean the interest calculated on the principal (the
invested/borrowed initial sum) and the interest accumulated over the
corresponding period of time (i.e., compound interest differs from simple
interest, where interest is not added to the principal when we calculate the
interest during the next period of time). Let P denote the principal, r
denote the interest rate, n denote the number of times interest is
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compounded per year, t denote time (in years), and A denote the amount
(including principal and interest) of an investment or a loan. Then:

r\nt
A=pP(1+-)
n
(this is the formula of compound interest). For instance, using the formula
of compound interest, let us examine the return on an $1 investment for
one year at an investment rate of 100%. Moreover, progressively, we shall
compound our investment more frequently and observe the result (we

chose P = $1 and r = 100% in order to illustrate the situation with the
easiest numbers). Therefore, if compounded:

1
annually (n = 1), then A = (1 + %) = $2.00;
2
semiannually (n = 2), then 4 = (1 + %) = $2.25;
4

quarterly (n = 4), then A = (1 + i) ~ $2.441;

12
monthly (n = 12), then 4 = (1 + %) ~ $2.613;

. 1 1365

daily (n = 365), then A = (1+ =) ~$2.714;

1 8760
hourly (n = 8,760), then A = (1 + m) ~ $2.718.
The problem of compound interest was systematically investigated by the

Swiss mathematician Jacob Bernoulli (1655-1705), who observed that, in
the above situation, as n increases (that is, as compounding intervals

n
become smaller), (1 +%) approaches a limit (the “force of interest”),
specifically, it approaches an irrational number that is denoted by the letter
e, in order to honor the Swiss mathematician Leonhard Euler. Notice

that e = Z,‘f;o% . +l+%+%+ -+~ 2.718 , meaning that, with

o

continuous compounding, the value of the aforementioned investment will
reach approximately $2.718. Euler proved that the number e is irrational
by showing that its simple continued fraction expansion is infinite (by a
“continued fraction,” we mean an expression obtained through an iterative
process of representing a number as the sum of its integral part and the
reciprocal of another number, then writing this other number as the sum of

its integral part and another reciprocal, etc.).

In case the base b = e = Z;’f;o% ~ 2.718, which is known as “Euler’s
number,” then log,a is written as Ina, and it is said to be the “natural
logarithm” of a. Notice that log,a = Ina is called the “natural logarithm”

because many processes can be described mathematically using it; such as:
the rate at which your money will grow if you apply an interest rate
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continuously over a period of time; the population of a colony of rabbits
that reproduce at a constant rate; the population of seeds in a sun flower;
the decay rate of a radioactive isotope; etc.

Ordered Pairs and the Cartesian Product

The Fundamental Property of Ordered Pairs: For any ordered pairs
(w,x)and (y, z), it holds that:

wx)=Wz)ow=y&x =7z

and, in this case, the two ordered pairs are called “equal.”

The “Cartesian product” (also known as the “direct product”) A X B of
two sets A and B is the set of all ordered pairs (a,b) such that a €
A and b € B; symbolically:

AxB={(a,b)la€ A&b € B}.

For instance, if A = {1,2} and B = {1,3}, then the Cartesian product
A x B is the set {(1,1),(1,3),(2,1),(2,3)}. In general, the Cartesian
product of the sets 4;, 45, ..., 4,, denoted by A; X 4, X ... X 4, is the set
of all ordered n-tuples of the form (a,, a,, ..., a,,), where a; is an element
of 4;(i=12,..,n).

Remark: 1t is easily checked that, for any sets 4, B, and C, we have:
AX(BUC)=(AXB)U(AXxC(),

AX(BNC)=((AXB)Nn(AxC(C).

IfA=@orB=0,thenA X B = 0.

AXB=BxAs A=B.

Let Ax B ={(a,b)|a &b are real numbers}. Then A X B is the set of
all points in a plane whose coordinates are (a,b). Thus, A X B is the
Cartesian plane

R? =R X R,

as shown, for instance, in Figure 2-3. In this case, each point P in the
plane represents an ordered pair (a, b) of real numbers, and vice versa. In
other words, the vertical line through P meets the x-axis at a, and the
horizontal line through P meets the y-axis at b. Thus, we can understand
the relationship between set theory, mathematical analysis, and geometry.
In other words, a two-dimensional coordinate system consists of the
horizontal axis (namely, the x-axis) and the vertical axis (namely, the y-
axis), and the intersection of the two axes is the origin 0(0,0) of the
coordinate system (by the term “axis,” we mean a straight line with respect
to which a body or structure is symmetrical). By analogy, we can define an
n-dimensional coordinate system for anyn > 2 (n = 2,3,4,5, ...), usingn
axes of reference at right angles to each other.
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Figure 2-3: Cartesian coordinates.

A. The Cartesian plane R? (source: Wikimedia Commons: Author: K. Bolino;
https://commons.wikimedia.org/wiki/File: Cartesian-coordinate-system_v2.svg).
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As noted above, the set R of all real numbers is called the real line, or the
continuum. A set of pairs of real numbers is called a “number plane,” and
it is denoted by R2. As already mentioned, the set R can be represented
geometrically as a horizontal number line. A geometric representation of
the set R? is the coordinate plane xOy, defined as two perpendicular
number lines with a common origin O and the same scale (the number of
units represented by a unit length along an axis is called the “scale”). The
point 0(0,0) is called the “origin of coordinates.” If P, is a point in the
coordinate plane, then, by projecting it on the coordinate lines Ox and Oy,
we find the coordinates of the projections x, and y, (notice: if you drop a
perpendicular from a point to a line or plane, then the point you reach on
that line or plane is called the projection of the point onto the line or
plane). The coordinates are called, respectively, the “abscissa” (i.e., the x-
coordinate) and the “ordinate” (i.e., the y-coordinate) of the point P, and
the straight lines Ox and Oy are respectively called the “axis of abscissas”
and the “axis of ordinates”. Hence, to the point P, there corresponds one
pair of numbers (x,, y,); conversely, given a pair of numbers (x,, y,), we
mark the points x, and y, on the coordinate lines (axes) Ox and Oy,
respectively, and, drawing through these points straight lines parallel to the
coordinate lines (axes) Ox and Oy, we find the point of their intersection
P,. By analogy, we work in R™.

In general, the use of coordinate systems implies that space itself is
encoded by n-tuples (i.e., by sequences, ordered lists, of n numbers), and,
specifically, that the two-dimensional space, the “plane,” is encoded by
pairs of numbers, so that the conception of space becomes subordinate to
the conception of arithmetic.

The “absolute value” (also known as the “modulus” or the “magnitude”)
of a real number x is denoted by |x|, and it is defined as follows:

_(xifx=0

x| = {—x ifx <O

Therefore, the absolute value of any real number is always non-negative,
and it may be thought of as that real number’s distance from zero along the
real line (“arithmetic continuum”). The aforementioned definition implies
the following:

i.  |x| is the distance between the point x and zero (i.e., the “origin”)
on the real line. Hence, for instance, |x| < 2 means that the
distance between x and the origin is less than 2, so that x lies
between —2 and +2 on the real line, that is, =2 < x < 2. In
general, whenever |x| < a, it holds that —a < x < a. Moreover,

Vx2 = |x|.
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ii. |x| =|-x| (“evenness,” namely, “reflection symmetry” of the
graph).

iii. |x|=xand|x| = —x.

Notice that |x| = |y| does not necessarily imply that x = y.
The absolute value of any real number has the following properties:

i. |xy| = |x||yl, and, generally,

o2 2| = Lo [la | oo | |-

ii. [x+y|l<|x|+|yl (triangle inequality: its geometric
interpretation is that, for any triangle, the sum of the lengths of
any two sides is greater than or equal to the length of the
remaining side; equality only happens in the degenerate case
when the sides are collinear and the triangle has zero area), and,
generally,

g + x5 + x| < g | + x| + -+ + | x| (subadditivity).

iil. |x—yl=Ix| =yl

iv. |x|—1yl < ||x| — |y|| < |x — y| (reverse triangle inequality).

v. |lx—yl<k=>y—-k<x<y+k.

The concept of an absolute value was originally articulated by the French
mathematician Jean-Robert Argand (1768-1822), who used the French
term “module” (meaning “unit of measure”), which was borrowed into
English as the Latin equivalent “modulus.” The notation |x| was
introduced by the German mathematician Karl Weierstrass (1815-97).

Relations and Functions between Sets

Let A and B be two arbitrary sets. Then a “relation” between A and B,
denoted by R, is defined to be a subset of the Cartesian product A X B;
symbolically: R € A X B. The “domain” of relation R is defined by D, =
{a|(a,b) € R}, and the “range” of relation R is defined by Ry =
{b|(a,b) € R}. If R is a relation from A to B, then the relation from B to A
is called the “inverse” of R, and it is defined by R™* = {(b, a)|(a, b) € R}.
A relational proposition is often denoted by aRb, where R relates a term a
to a term b. Hence, a relation of two terms proceeds, somehow, from one
to the other.

If R, is a relation from a set A to a set B, and if R, is a relation from B to a
set C, then their “composition” denoted by R,° R, is a relation from A4 to
C, symbolically:

Rio R, ={(a,c) EAXC|for someb € B,(a,b) ER, & (b,c) €
R,witha € A,c € C}.

If R, and R, are relations such that R; € R,, then R, is said to be an
“extension” of R, and R; is said to be a “restriction” of R,.
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A relation R on a set A4 is “reflexive” if (a, a) is an element of R for every
a € 4; it is “symmetric” if (a, b) is an element of R whenever (b, a) is an
element of R; and it is “transitive” if (a, c) is an element of R whenever
(a,b) and (b,c) are elements of R. A relation R on a set A is
“antisymmetric” if, whenever a and b are distinct, then (a,b) is an
element of R only if (b, a) is not an element of R. For instance, if A =
{u,v,w} and R is a relation on A, then:

R = {(u,v), (v,w), (u,u), (v,v), (v,w), (w,w)}is a reflexive relation on
A;

R = {(u,v), (v,u), (w,w)} is a symmetric relation on 4;

R = {(u,v), (v,w)(u,w), (v,v)} is a transitive relation on 4;

R = {(u,w), (v,v), (u, v), (u, w)} is an antisymmetric relation on A.

Let A and B be two arbitrary sets. A relation f €S A X B is called a
“function,” “mapping,” or “transformation,” denoted by f: 4 — B, if it
assigns to each element a € A exactly one element b € B. The set 4 is
called the “domain” of the function f and is denoted by Dy, while the set B
is called the “codomain” of the function f. The set of all elements of B
that are related to the elements of A via f is called the “range” (or
“codomain”) of the function f, and it is denoted by Ry, meaning that the
range of f is the image of A by f:

f(A) = {f(a)|a € A}.

Notice that the Axiom of Replacement, to which I referred earlier in this
chapter, allows us to construct new sets from old ones by specifying a rule
for generating the elements of the new set. Now, we shall state the Axiom
of Choice.

The Axiom of Choice: Let X = {A;,i € I} be a non-empty family of non-
empty pairwise disjoint sets. Then there exists a set A consisting of exactly
one element from each 4;. In other words, there exists a function f defined
on X with the property that, for each 4; € X, f(4;) € 4;; and the function
f is then called a “choice function.”

The acceptance of this axiom by mathematicians guarantees the existence
of mathematical objects that are obtained by a series of choices. Thus, the
Axiom of Choice can be viewed as an extension of a finite process
(choosing objects from sets) to infinite settings. The Axiom of Choice was
originally formulated in 1904 by the German logician and mathematician
Ernst Zermelo in order to ensure that, whenever infinite sets play a role,
the formulation of theorems is simple and relevant to the sets under
consideration.

By the term “graph” of a function f: A = B, we mean the set {x, f(x)},
where x € A. In other words, the “graph” of a function f(x) is the set of
all points in a coordinate system that correspond to ordered pairs in f(x).
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Vertical line test: Imagine a vertical line sweeping across a graph. Assume
that the vertical line at any position intersects the graph in more than one
point. Then the graph is not the graph of a function.
If ¢ is a positive constant, then:
i.  The graph of y = f(x) + c is the graph of f raised by c units.
ii. The graph of y = f(x) — c is the graph of f lowered by c units.
iii. The graph of y = f(x + c) is the graph of f shifted c units to the
left. In fact, if we analyze the x-values, we can see a pattern, and
we realize that the new x that we need in order to obtain f(0) is
the one that makes f(x +c) = f(0), namely, —c. We can
generalize this result as follows:
f(Xnew +6) = f(X) 2 Xpew + € =X = Xpey =X —C,
meaning that the new x-values are the old x-values translated - ¢
units (that is, ¢ units to the left, since that direction is the negative
direction).
iv. The graph of y = f(x — c) is the graph of f shifted c units to the
right.
The graph of y = —f(x) is the graph of f reflected about the x-axis.
If ¢ > 1, then the graph of y = c¢f(x) is the graph of f stretched by a
factor of ¢. If 0 < ¢ < 1, then the graph of y = c¢f(x) is the graph of f
flattened out by a factor of c.
Operations with functions:
i Fx) =fx)£gM).
ii. (f &) = f(x) - g(x).

ii. Do) =2 g(x) # 0.
gx)

iv. Comp051te functions of functions f and g:

(9°)(x) = g(f (x)) and

(foq)(x) = f(g(x)).
Two functions f:A— B and g:A — B are called “equal” if f(x) =
g(x),Vx € A, and they are called “different” if there is at least one x, € A
such that f(x,) # g(xg)-
A function f is said to be “odd” if f(—x) = —f(x) for every x in the
domain of f. The graph of an odd function has symmetry about the origin.
For instance, y = x3 is an odd function. A function f is said to be “even”
if f(—x) = f(x) for every x in the domain of f. The graph of an even
function has symmetry about the y-axis. For instance, y = |x| is an even
function.
A function f:X - Y is called “one-to-one” (or “injective,” or an
“injection,” or a “monomorphism”) if
flxy) =f(x3) = % = x;, VX1, %, € X
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that is, a function is “one-to-one” if each x value in the domain is assigned
a different y value, so that no two ordered pairs have the same second
component. If more than one element of X has the same f-image inY,
then the function f: X — Y is said to be “many-to-one.”

Horizontal line test: Imagine a horizontal line sweeping down the graph of
a function. Assume that the horizontal line at any position intersects the
graph in more than one point. Then the function is not one-to-one, and its
inverse is not a function.

A function f: X — Y is called “into” if there exists at least one element of
Y that is not the f-image of an element of X. In other words, for any into
function f:X - Y , the range set f(X) is a proper subset of Y ;
symbolically, f(X) Cc Y.

If the range of a function f is the whole codomain of f, then f is said to be
“onto” (or “surjective,” or a “surjection,” or an “epimorphism”). In other
words, for any onto function f: X - Y, f(X) =Y.

If a function is both one-to-one and onto, then it is called “bijective,” or a
“bijection,” or an “one-to-one correspondence.”

For instance:

i. If Ais a subset of X, then the restriction to A of the identity
mapping id,, defined by A 3 x - x € 4, is an injection j,, called
the “natural injection.”

ii.  The identity mapping of any set is bijective.

ili. The function f: X XY — Y X X defined by (x,y) = (¥, x), where
X € X and y €Y, is bijective.

iv. The function f(x) = x?, where x € R, is not injective, since
f(=x) = f(x) = x?, but the restriction to R* (the set of all
positive real numbers) of f is injective.

v. f:R-> R defined by f(x) =x3 is an one-to-one and onto
mapping, that is, a bijection from R to R.

Inverse functions: By the “inverse function” of a function f, we mean a
function that undoes the operation of f, and it is denoted by f~!. The
inverse of f exists if and only if f is bijective. Given a function f: X - Y,
its inverse f~1:Y — X assigns each elementy € Y to the unique element
x € X such that f(x) =y. In other words, two functions with exactly
reverse assignments are said to be “inverse functions.” Thus, a function
f:X - Y is “invertible” if there exists a function g:Y — X such that
g(f(x)) = x for all x € X and f(g(y)) =y for all y €Y; and then the
function g is called the inverse of f. Given an one-to-one function y =
f(x), you can find its inverse function as follows: (i) Interchange x and y
in this equation. (ii) Solve the resulting equation for y, and then replace y
with f~1, (iii) Define the domain of f~? to be equal to the range of f. For
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instance: if f(x) = x + a, then f~1(y) =y —a; if f(x) = a — x, then
1) = a—y; if f(x) = mx, then f~1(y) = %provided that m # 0; if
f(x) =x*, then f~1(y) = 4/y = y/* with x,y > 0 if k is even, and
integer k > 0; and, if f(x) = a*, then f~1(y) = log,y, where y > 0, and
a>0.

Sequences and Series

A “sequence” is a function whose domain is the set of positive integers
(i.e., 1,2,3,...). The functional values (i.e., the range elements) are called
the terms of the sequence. In other words, a sequence is a set of numbers
arranged in a definite order. Sequences test our logical skills and play an
important role in the study of functions, spaces, and other mathematical
structures, using the convergence properties of sequences.
Arithmetic progression: An “arithmetic progression” is a sequence of
numbers in which each term after the first is found by adding a constant to
the preceding term. This constant is called the “common difference” and is
symbolized by d. Thus, the formula for the nth term in an arithmetic
progression with first term a, and common difference d is:
a,=a, +(n—1)d.
Geometric progression: A ‘“geometric progression” is a sequence of
numbers in which each term after the first is found by multiplying the
preceding term by a constant. This constant is called the “common ratio”
and is symbolized by r. Thus, the formula for the nth term in a geometric
progression with first term a, and common ratio r is:
a, = a;r* 1
Arithmetic and geometric series: Associated with any sequence
a,, 4y, as, ... is a “series”

a, +a,+az+ -
which is the sum of all the terms in the sequence. A series that is
associated with an arithmetic progression is called an “arithmetic series.”
A scries that is associated with a geometric progression is called a
“geometric series.”
The sum of the first n terms of an arithmetic series is given as the
following formula:
Sy = %((JL1 +a,) = Z [2a, + (n — 1)d].
The sum of the first n terms of a geometric series is given as the following

formula:
ai—a;r™  ag—apr  a;(r™-1)
Sn = = =

1-r 1-r r—1
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Infinite sequences: Let us consider an infinite list of numbers: a,, a,, as, ...
This infinite list can be symbolized as follows:

{an};.lo=1
(n goes from 1 to infinity); and this is what we call an “infinite sequence”
(for simplicity and if there is no likelihood of confusion, we may
symbolize a sequence by (a,,), or, sometimes, even simply by a,). If the
numbers in a sequence {a,}n—, get arbitrarily close to some fixed number
a, then we say that this sequence tends to the limit a, and we write
a, »aasn - o, orlim,_ ,a, = a.

[oe]

For instance, {l} =1,332 . gets closer and closer to 0, and the
n)p=1 2’3’4
1% 1 .1 .1 .1

sequence {1 +—n} =1-,1-,1-,1—,... gets closer and closer to 1.
PL) 2’74’ 78" " 16

However, not all sequences tend to a limit. For instance, the alternating
sequence {(—1)"*1}°_, =+1,—1,+1,—1,.. does not approach any
particular number (it just bounces back and forth between +1 and —1),
and the sequence {n},—; = 1,2,3, ... doesn’t tend to a limit at all.

Given an infinite sequence {a, }n=;, the statement that

a, > aasn— o

is equivalent to the statement that

|an - al -0,

that is, |a, — a| gets arbitrarily close to 0. More formally, we can say the
following: a,, = a asn — oo if and only if, for every real number € > 0,
there exists a natural number n such that, for every natural number m > n,
it holds that |a,, — a| < €. This definition is absolutely crucial to calculus
and, generally, “real analysis” (i.e., the analysis of the system of real
numbers). This definition can be explained as follows: from some point
(m = n) onward, all the members of the sequence {a, },—; are within a
distance ¢ from a (symbolically, |a,, — a| < €), and, since we can take the
positive real number ¢ as small as we want, this condition means that a,,
gets arbitrarily close to a as n — oo (the e-neighborhood of a can become
arbitrarily small). For instance, using this formal definition, we can

formally prove that the sequence {%}w_l gets arbitrarily close to 0 as
follows: We have to prove that "

(Ve > 0)(3n € N)(Vm > n) [|% - o| < s] & (Ve > 0)(3n € N)(Vm >
n) [% < s].

Let € > 0 be given and arbitrary. Then we must find an n € N such that,
vm=n, % < e. Let us choose any n such that n > i Then, if m = n,
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(oo}

%S % < &, and this proves the statement that the sequence {%} gets

n=1
arbitrarily close to 0. Notice that the choice of n depended on €, so that,
the smaller the € is, the bigger the n has to be, meaning that, for this

sequence, the more we want % to be close to 0, that is, the smaller the € in

the inequality |% - O| < &, the further out in the sequence we have to go,

that is, the bigger the n is before we are within the required neighborhood
of zero.

Let us consider another example. In terms of the above formal definition,
®  _ 1234
n=1 2'3°4’s’
oo as follows: This is intuitively obvious, but, working in the same way as
before, we have to show that

(Ve > 0)@n e N)(vm = m) [ 1| < ¢]
Let € > 0 be given and arbitrary. Then we must find an n € N such that,

we can prove that the sequence { 21} .tendstolasn —

vm=n, |l - 1| < &. Let us choose any n such that n > i Then, if

— << % < g, and this proves that the

m=mn -1 = ] = 5
m+1 m+1 m

sequence { } gets arbitrarily close to 1.
n+1l)p=1

Cauchy sequence: A sequence {a, }y=1 is said to be a “Cauchy sequence”
if and only if, for every real number € > 0, there exists a natural number
m such that, for every natural number n > m and for every natural
number k, it holds that |a,,, —a,| < &. The intuition behind this
definition is that the terms of a Cauchy sequence become arbitrarily close
to each other (i.e., the distance & between two terms of this sequence
becomes arbitrarily small) as the sequence progresses. For instance, using

[ee)
the above definition, we can show that the sequence {zin} is a Cauchy
n=1

1 1 1

sequence as follows: If a, =ns then |a,ix — ayl| = W_z_n =

Zinzik—l| (1——)<£ where k €N, and € > 0, for — < &, so that
1 1

2" > =>n > —£. Letm > —=£. Then m is a natural number such that

|an+k ag| < € for alln > m, and k € N.
Subsequences: Let (a,,) be a sequence, and let ny, n,, ..., n;, ... withn; . ; >
n; and i = 1,2,3, ... be a set of positive integers. Then

(ani)
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is said to be a “subsequence” of (a,), and, if a,, - l" asi — oo, then l' is
said to be a “subsequential limit” of (a,). For instance, the sequences
(ayn-1), (ayy), (a2), and (a3) are subsequences of (a,,).

Theorem 1: Every accumulation point of a subsequence of a sequence is
also an accumulation point of the sequence.

Proof: Let (ani) be a subsequence of the sequence (a,), n;4; > n; and
i =1,2,3,... Suppose that p is an accumulation point of (ani). Then, by
definition, a,, € (p —e,p+e) > a, E(p—¢&p+e), €>0. Thus, pis
an accumulation point of the sequence (a,,).

Remark: The converse is not necessarily true. For instance, consider the
subsequence {1,2,3,4, ... } of the sequence {1,1,1,2,1,3,1, ...}. In this case,
1 is an accumulation point of the sequence, but the subsequence has no
accumulation point.

Theorem 2: Let (a,) be an arbitrary bounded sequence, meaning that its
range R = {a,|n € N} is a bounded set. Then (a,) contains a convergent
subsequence.

Proof: If R is a finite set, then there exists at least one element r € R such
that r,, = r for all i = 1,2,3, ..., where n; are positive integers and n;,; >
n;. Hence, (a,,) contains a subsequence (rnl.) that converges to 7.

Now, suppose that R is infinite. Then, by the Bolzano—Weierstrass
Theorem (proved in Chapter 2), R has at least one accumulation point, say
p. Let us take an element p; € R such that 0 < |p; —p| < 1, and then let
us take an element p, € R such that

P2 # p1,and 0 < |p, — pl <%~ (1)
Similarly, let p,,, € R such that p,., # p;, where i = 1,2,3, ...,n, and

0 < |pnss =Pl < == 2
Therefore, by induction, for all n, there exist p,, € R such that, for all n,
all p,,’s are distinct and

0<|p,—pl<-.

Let m be the least integer such that m > % for any € > 0, so that

sZ%foralanm. (3)
From (2) and (3), we obtain

lp, —pl < eforalln =m,

meaning that p, = p as n = oo. Thus, (a,) has the so defined convergent
subsequence (p,,), quod erat demonstrandum.

Cauchy’s General Principle of Convergence: A sequence (a,) converges
if and only if it is a Cauchy sequence.
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Proof: Firstly, suppose that (a,) converges to [. Then, Ve > 0,Im € N
such that

la, — 1] <§,Vn2m.

Let us consider |an . —ayl = la, —1—(a, —D| < lap — U+
la, — | <§+§=> la ik — anl < e, Vn = m, meaning that (a,) is a
Cauchy sequence.

Now, we shall prove the converse. Suppose that (a,) is a Cauchy

sequence, that is, Ve > 0, 3m € N such that, ¥n > m and k € N, it holds
that

lanii — anl <e. (1)
Then

anp—e<a,<a,+&vn=>m. 2)
If b = max{|a,|,|a,|, ..., |a,,|}, then, due to (2), for all n, it holds that
la,| < b +¢,

meaning that (a,) is a bounded sequence. Therefore, (a,) has a
convergent subsequence. Let (ani) be a convergent subsequence that
converges to a. Then, Ve > 0, 3m, € N such that, Vn; = m,, it holds that
|ani — a| <e.

Moreover, due to (1),

|an —ap| <gVn=mandVp =>m,

so that, for m, = max{m, m,}, we obtain

la, —al = |a, — an, + an, —a| < |ay, —ay,| + |an, —a| <2¢ , vn=
m,, meaning that a,, converges to a, that is, (a,,) is convergent, quod erat
demonstrandum.

Monotone sequences: A sequence (a,) is called “increasing” ifa,, < a,
for allm < n € N; and it is called “strictly increasing” if a,,, < a,, for all
m < n € N. By analogy, a sequence (a,) is called “decreasing” if a,, =
a, for allm < n € N; and it is called “strictly decreasing” if a,, > a,, for
all m <n € N. A sequence that is increasing or decreasing is called
“monotone.”

Completeness Axiom of the Real Numbers: If (a,) is any monotone and
bounded sequence in R, then (a,) converges.

Without loss of generality, suppose that (a,,) is increasing and bounded
from above (we work similarly in case it is decreasing and bounded from
below). Then the set A = {a,|n € N} has a supremum sup(4) = s, so
that, Ve > 0, 3p € A such that s — & < a, <s. Because, by hypothesis,
(a,) is increasing, it also holds that, Ve > 0, Ip € N such that, Vn = p, it
holds that s — ¢ < a,, < a,, < s, meaning that a,, » s asn — co.
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Infinite series: By a (real) sequence, we mean a function f: N — R whose
images are a,, a,, s, ..., Ay, ... Let us consider a sequence of real numbers
a,, n € N. From this sequence, we can create a new sequence S,, n € N,
as follows:

S1 =4

S, =a; +a,

S3=a;+a,+ag

Sp=a;+a,+az++a, =X a.

This sequence s,, n € N, whose general term is s,, = Dij—; @y, is said to
be the “sequence of the partial sums” of the sequence a,,, n € N. The real
numbers Sy, S,, S3, ..., Sy, are, respectively, called the first partial sum, the
second partial sum, . . ., the nth partial sum.

A “series” of real numbers, symbolized by Y0 i a, = a; +a, +a; +
-+ a, + -, is defined to be the ordered pair (a,, s,,) where a,,, n € N, is
a sequence of real numbers, and s, =a, +a, +as+--+a,,n€N.
Each term of the sequence a,, n €N, is called a “term” of the
corresponding series, and each term of the sequence s,,, n € N, is called a
“partial sum” of the series },;—; Q.

The founders of the modern theory of infinite series are Isaac Newton and
James Gregory in the seventeenth century, and the Bernoulli family
mathematicians (Jacob, John, Nicolaus, and Daniel), Leonhard Euler, and
Joseph-Louis Lagrange in the eighteenth century. In fact, the eighteenth-
century mathematicians were thinking of infinite series as infinite
polynomials (mathematical expressions consisting of variables,
coefficients, and the operations of addition, subtraction, multiplication,
and non-negative integral exponents), and they tried to develop an
arithmetic system of infinite polynomials.

The basic idea in the study of infinite series is that an infinite summation
of numbers can have a finite sum. Some of the early work on series was
motivated by paradoxes related to the concept of infinity, with which
many ancient Greek mathematicians were preoccupied. In the fifth century
B.CEE., the Greek mathematician and philosopher Zeno posed the
following paradox: Consider a race between the legendary Greek hero
Achilles and a tortoise over 100 meters. Suppose that the tortoise starts 80
meters ahead, and Achilles can run 10 times as fast as the tortoise. Then,
after 10 sec., when Achilles will have run 80 meters, reaching the point
where the tortoise started, the tortoise will have run only 8 meters farther.
Then it will take Achilles 1 sec. more to cover that distance, but, during
the same time, the tortoise will have run 0.8 meters farther. Then it will
take Achilles 0.1 sec. to reach this third point, while the tortoise moves
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ahead by 0.08 meters, etc. Thus, whenever Achilles reaches somewhere
the tortoise has been, the tortoise is still ahead, and it seems that the
tortoise will stay ahead. In fact, Zeno’s paradox can be resolved as
follows: the total time that it would take Achilles to catch up, in seconds,
is10+ 1+ 0.1 4+ 0.01 4+ 0.001 + ---, which is an infinite series. But this
infinite series is equal to 11.111..., which is a finite number. In particular,

let x=0.140.01+0.0014- . In fact, 0.1+ 1"—0 =0.1+0.01+
0.001 + -+, and, therefore, x = 0.1 +% 210x=1+x=2>9%=1=

x = %. Hence, the time for Achilles to catch up is 11§ sec.

A series Yo @, is said to “converge” to a number [, and we write
Yme1 a4, =L, if and only if lim,,_,.s, = [, where s, is the nth partial sum
of the corresponding sequence a,, n € N. For instance, consider the

infinite geometric series Yp—q L _ %+ % o 000 zin + --- The nth partial

2n
sum of this sequence is
1[/\"
S U DO W () Mk
"2 4 750 11 2
2

(and it is intuitively obvious that, as n increases, 0 decreases, and the

difference 1 — zin approaces 1). Given that lim,,_,,S, = 1, we conclude
that N_, = = 1.

A series ) y_q a, is said to “diverge” to *oo if and only if lim,_.S, =
oo, respectively.

A series Y5_; a,, is said to “diverge,” or to be an “alternating series,” if
and only if lim,,_,..S,, does not exist.

For instance, consider the series Zﬁzli =1+ % + § + 4 % + ---, which

0 o o 2 1 1
is known as the “harmonic series,” because — = + vn = 2. We

an an-1 an+1
can prove that the harmonic series diverges to +oo as follows:
Instead of considering all the partial sums s,, (where n = 1,2,3, ...), let us
look to the following sequence of partials sums (each time, we consider
the sum of 2™ terms, where n = 1,2,3, ...):

52=1+%,
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and, in general, we observe the following pattern: when we take the sum
of 2™ terms, the corresponding partial sum is bigger than 1 +§ 2

symbolically, the general pattern of this sequence of partial sums can be
captured by the inequality

n

2

and, thus, [imy, ,c,S;n > limy, .o, (1 +2). The right-hand side diverges to

Son>1+

infinity, and, therefore, the limit of s,» also diverges to infinity, and, then,
the whole s,, diverges to infinity (even if just some of the partial sums
diverge to infinity, the whole series diverges to infinity). Notice that the

1 [oe]
sequence {—}
Nin=1
fact, in the case of sequences, “convergence” refers to the behavior of the
terms of a sequence, whereas, in the case of series, “convergence” refers to
the behavior of the sum of the terms.
Operations with series:

1. Addition: Y01 a, + Ymeq1 bp = Xm=q(a, + by).

2. Subtraction: Y0 @y — Yipmeq1 bp = Xmeq(a, — by).

3. Scalar multiplication: ¢ Y74 a, = Xp=q €Qy, Where ¢ € R.

Basic propositions regarding the convergence of series:

1. If).>, a, converges to a number, then the sequence s,,, n € N,
is bounded.

2. If the sequence s,, n € N, is not bounded, then };7_; a,, does not
converge to a number.

3. IfY;_,a, converges to a number, then lim,_,,a, = 0 (but not
conversely, as, for instance, the case of the harmonic series
indicates).

4. The series Ymeq @, and Yo @, 44 have the same behavior with
regard to convergence.

5. IfY>_,a, witha, > 0 Vn € N, and if the sequence s,,, n € N, is
not bounded, then },;_; a,, = +o.

6. If)>_,a, witha, < 0Vn €N, and if the sequence s,,, n € N, is
not bounded, then },;7_; a,, = —oo.

Comparison Test: Suppose that we have two series Ypeq @, and Yo—; b,
such that a,, > 0 and b,, > 0 for alln € N. If a,, < b,,, then:

i. If Y, by, is convergent, then so is Yp; a,,.

ii. If Y>>, a,, diverges to +oo, then so does Y51 b,,.

Proof: If s, = Y%-, a; and t,, = D¢_; by, are the terms of the sequences of
partial sums, then, since they are summations of finitely many positive

converges to 0, but the series Zfﬂ% diverges to +oo. In
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terms, it is straightforward that 0 <s, <t, < oo, as well as that the

sequences (s,,) and (t,) are both increasing.

Suppose that Y, b, is convergent, and that Y g, b, =b . Then

lim,_.t, = b. Hence, the sequence (s,,) is increasing and bounded from

above by b. Therefore, as I have already shown in the study of sequences,

(s,,) converges, and so does Y o1 ay,.

Now, suppose that Yo, a, diverges to +oo. Then lim,_ .S, = +0.

Hence, lim,,_,,t,, = +0, which implies that )}, b,, diverges to +o, and

the proof of the Comparison Test is complete.

The Limit Comparison Test: Suppose that we have two series Yo, a, and

Yme1 by, such that a,, > 0 and b, > 0 for all n € N. If lim,,_,,, Z—" = ¢ for
n

some positive real number ¢ (i.e., ¢ > 0, and ¢ < ), then either both

series converge, or both series diverge to +oo, or both series are

alternating series.

Proof: Because 0 < ¢ < o, we can find two positive (finite) numbers m

and M such that m < ¢ < M. Given that lim,,_,, Z—” = ¢, the definition of
n

the limit of a sequence implies that, for a sufficiently large n, the quotient
i—“ must be close to ¢, and, therefore, there must exist a positive integer N

such that, if n > N, it holds that

m<& <M.
by

Multiplying through by b,,, we obtain
b,m < a, < b,M, provided thatn > N.
Hence, if Y.5i_, b,, diverges, then so does )., mb,,, and, since b,m < a,
for all sufficiently large n, then the Comparison Test implies that Y, a,,
also diverges. Similarly, if )., b, converges, then so does ).5i—, Mb,,
and, since a,, < b, M for all sufficiently large n, then the Comparison Test
implies that }_;a, also converges, and the proof of the Limit
Comparison Test is complete.
Cauchy Criterion: A series Y5—, a, converges if and only if the sequence
(s,) of its partial sums is a Cauchy sequence (it is the same as the Cauchy
criterion for sequences).
Fibonacci sequence: The Fibonacci sequence (named after the medieval
Italian mathematician Fibonacci) is a sequence in which each number is
the sum of the two preceding ones. Thus, starting from 0 and 1, the
Fibonacci sequence begins

0,1,1,2,3,5,8,13,21,34,55,89, 144,233, ...
The Fibonacci numbers may be defined by the following recurrence
relation:
Fo=0,F,=1,andF, =F,,_; + F,_,,Vyn > 1.
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Applications of Fibonacci numbers include computer algorithms (such as
the Fibonacci search technique, which narrows down possible locations
with the aid of Fibonacci numbers), and Fibonacci numbers appear in
several biological settings (such as branching in trees, the arrangement of
leaves on a stem, the fruit sprouts of a pineapple, the arrangement of a pine
cone’s bracts, the flowering of an artichoke, etc.). The Fibonacci sequence
diverges to infinity, since, starting with n = 6, we see that F, > n; and,
therefore, given any number M > 0, E, > M for all n > max{[M], 6},
where [x] denotes the “ceiling function,” which maps x to the smallest
integer greater than or equal to x.

The Cardinality of Number Sets

Two sets A and B are “equinumerous” or “have the same cardinality” if
their elements can be correlated one-to-one in such a way that each
element of either corresponds to exactly one of the other, namely, if there
exists a bijection from A to B; then we write A =, B. A set 4 is countable
if and only if either A = @ or A accepts an “enumeration,” namely, there
exists an onto function €: N — A such that
A ={(0),e(1),&(2), ... }.
We can prove the theorem that a union of a countable collection of
countable sets A =U,, A,,, where n € I € N, is a countable set as follows:
Assume that [ is infinite (if / is finite, then we work analogously), so that /
can be replaced by N. Then the given countable collection of countable
sets may be designated by
A=U;_ogA, =4, UA U4, U ..

Without loss of generality, assume that each A, is non-empty. Then we
can find an enumeration e™: N — 4, for each 4,, . Setting
af = e"(0),
we obtain
Ay ={ag,ai, ...},
and we can construct a table containing every element of A as follows:

Ay:adadal ...

Aj:alalal ...

A,:a3a?a;s ..

Therefore, collecting the aforementioned elements diagonally, we obtain

A ={ad,a},ald,al, a}, ...}, which proves the theorem.

We can prove the theorem that, if the sets 4, 4,, 45, ..., 4, are countable,
then their Cartesian product A; X 4, X ... X A, is a countable set as
follows: By definition, if A;i=1,2,..,n, is empty, then the
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corresponding Cartesian product is empty. Otherwise, for two sets A and
B, we have the enumeration of B given by

B = {by, by, b,, ... },

so that

AX B =Ujo (A X (by}),

and each A X {b,,} is equinumerous to A (and, therefore, countable) by the
correspondence x — (x, b,,), which proves the theorem.

As I have already mentioned, the set N of natural numbers is countable.
The set Z of integers is also countable, since we can define a bijection
from Z to N as follows: send 0 to 1, send negative integers to odd natural
numbers, and send positive integers to even natural numbers. Moreover,
the set Q of rational numbers is countable. In fact, notice that Q is a set of
tuples of integers, since every rational number is of the form a/b where a
and b are integers, and the set of tuples of integers is countable. However,
one may ask if there exists a rational number for every tuple of integers (a
and b must be coprime). The answer is that, if A is a subset of B, and if B
is countable, then so is A, and, in this case, Q is a subset of the set of the
tuples of integers. However, the set Q™ of irrational numbers is
uncountable (i.e., it contains too many elements to be countable): it
suffices to consider an irrational number, such as /2, and think that all the
infinitely many products of v2 by all the infinitely many rational numbers
are irrational numbers. Even though both Q and Q™ are infinite sets, the
set Q™ is much larger than the set Q. Given that R = Q U Q™ and Q~ is
uncountable, the set R of real numbers is uncountable.

Real Equations and Algebra

By the term “equation,” we mean a statement that two quantities are equal.
For instance, 1,000m = 1km . More often, an equation contains an
unknown quantity that is represented by a symbol, and we try to find the
value of this unknown quantity. By the term “algebra,” we refer to
methods and techniques for solving equations. In fact, the core of the study
of structures in mathematics consists of taking numbers and putting them
into equations in the form of “variables”; and the rules for manipulating
these equations are contained in algebra. Moreover, in the context of
algebra, we study multidimensional numbers, such as matrices and vectors
(see chapters 3 and 7).

The word “algebra” derives from the Arabic word “al-Jabr,” meaning
“transformation.” It refers to a methodology developed by the Persian
mathematician Al-Khwarizmi, who lived in Baghdad early in the Islamic
era. Al-Khwarizmi was interested in solving algebraic equations, and his
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method consists in applying a transformation to the given equation in
order to put it into a standard form for which the solution method is

known.

Equations requiring multiplication and division:

1.

ii.

We can solve the equatlon — = 4 as follows: multiplying each
side by 12, we get E X 12 =4 X 12 = x = 48. Check: when

x = 48, the left-hand side of the given equation becomes % =4.

The right-hand side of the given equation is equal to 4. Therefore,
the solution is correct.
We can solve the equation 6x = 3 as follows: dividing each side

by 6, we get %x = % =>x = % Check: when x = %, the left-hand
side of the given equation becomes 6 X % = 3. The right-hand side

of the given equation is equal to 3. Therefore, the solution is
correct.

Equations requiring addition and subtraction:

1.

ii.

We can solve the equation x — 2 = 4 as follows: adding 2 to each
side, we get x — 2 + 2 = 4 + 2 = x = 6. The operation of adding
2 to each side is the same as transferring —2 to the right-hand
side, but, in so doing, the sign is changed from a minus to a plus.
Hence, x —2 =4 x=4+4+2 < x =6. Check: when x =6,
the left-hand side of the given equation becomes 6 — 2 = 4. The
right-hand side of the given equation is equal to 4. Therefore, the
solution is correct.

We can solve the equation x + 18 = 30 as follows: subtracting
18 from each side, we get x +18—-18 =30—-18 = x = 12.
Alternatively, moving +18 to the right-hand side (changing the
sign from a plus to a minus), we get x =30 — 18 & x = 12.
Check: when x = 12, the left-hand side of the given equation
becomes 12 + 18 = 30. The right-hand side of the given equation
is 30. Therefore, the solution is correct.

Equations containing the unknown quantity on both sides: In equations of
this kind, we group all the terms containing the unknown quantity on one
side of the equation and the remaining terms on the other side.

1.

We can solve the equation 4x +3 = 6x + 11 as follows:
transferring 6x to the left-hand side and +3 to the right-hand side,

we get 4x — 6x = 11—3$—2x=8$x=—§= —4. Check:
when x = —4, the left-hand side becomes 4(—4) + 3 = —13, and
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the right-hand side becomes 6(—4) + 11 = —13. Therefore, the
solution is correct.
ii. We can solve the equation 7x — 2 = 5x + 8 as follows: 7x —
54 =8+4+2=2x=10= x = 5. Check: when x =5, the left-
hand side becomes 7 X 5—2 =33, and the right-hand side
becomes 5 X 5 4+ 8 = 33. Therefore, the solution is correct.
Equations containing brackets: When an equation contains brackets, we
remove these first, and then we solve according to the aforementioned
methods. For instance, 3(2x —1) =9=>6x—3=9=>6x=12=>x =
2. Check: when x = 2, the left-hand side is 3(2 X2 —1) =9, and the
right-hand side is 9. Therefore, the solution is correct.
Equations containing fractions: When an equation contains fractions, we

multiply each term of the equation by the least common multiple of the

. . . x 2 5x
denominators. For instance, we can solve the equation ste=5— 1as

follows: The least common multiple of the denominators 3, 5, and 2 is 30.
Multiplying each term by 30 gives ;—CX 30 + E X 30 = 57)( X 30 —

1><30z10x+12=75x—30=>—65x=—42$x=§ . The

solution may be verified by the check method shown in the previous
examples.

Simultaneous equations: Consider the two following equations:
ax+by=c

{px taqy= T}'

Each equation contains the unknown quantities x and y. The solutions to

the equations are the values of x and y that satisfy both equations.

Equations such as these are called “simultaneous equations” (or a “system

of equations™).

i We can solve the simultaneous equations
4x + 5y = 14 (%)
x+2y=11 (++)

as follows: If we multiply equation (**) by 4, we shall have
the same coefficient of x in both equations:

4x + 8y =44 (%)
We can now eliminate x by subtracting equation (*) from
equation (xx*):

4x + 8y = 44
4x + 5y =14
3y =30

Hence, y = 10. In order to find x, we substitute y = 10 in
either of the original equations. Therefore, substituting for



112

ii.

iii.

1v.

y =10 in equation (*), we get 4x +5x10=14>x =
—9. In order to check these values, it suffices to substitute
them in equation (*x).

We can solve the simultaneous equations

5x+7y =15 (%)
4x + g y =124 (*%)
as follows: the same coefficient of x can be obtained in both
equations if equation (x) is multiplied by 4 (the coefficient of
x in equation (**)) and equation (**) is multiplied by 5 (the
coefficient of x in equation (*)). Multiplying equation (*) by

4, we get

20x + 28y = 60 (%)
Multiplying equation (**) by 5, we get

20x + 8y =120 (koK)

Subtracting equation (***) from equation (****), we get
—20y =60 =y = -3.

Substituting for y = —3 in equation (*), we get x = %, In
order to check these values, it suffices to substitute them in
equation (x).

We can solve the simultaneous equations

7x +4y =20 (%)
3x—2y=3 (*%)
as follows: in this system of equations, it is easier to
eliminate y, since the same coefficient of y can be obtained
in both equations by multiplying equation (**) by 2. In fact,
multiplying equation (**) by 2, we get

6x—4y =6 (k%)
Adding equations (x) and (xx*), we get 13x = 26 = x = 2.
Substituting for x = 2 in equation (), we gety = % In order
to check these values, it suffices to substitute them in
equation (x).

We can solve the simultaneous equations

r_y_1
53,10 (*)
X _y_=
4 3 3 (%)

as follows: first, we shall clear each equation of fractions. In
equation (*), the least common multiple of the denominators
is 30. Hence, by multiplying equation (*) by 30, we get

6x —10y =3 (k%)
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In equation ( ** ), the least common multiple of the
denominators is12. Hence, by multiplying equation (**) by
12, we get

9x —8y =8 (xxx)
We now proceed in the usual way. Multiplying equation (**
*) by 6, we get

36x — 60y = 18 (A)
Multiplying equation (***x) by 4, we get
36x — 32y =32 (B)

Subtracting equation (B) from equation (A), we get —28y =
-14=>y= % Substituting for y = % in equation (**x), we
getx = % = g. Therefore, the solutions are y = % and x = %.
Since equation (***) came from equation (*), we must do the

3(4/3) _ 2(1/2) _ E

check in equation (**). Indeed, " S 5

Factoring Models

Common factor: ax + ay = a(x + y).

Difference of squares: x> —y? = (x + y)(x — y).

Trinomial (leading coefficient 1): x*> + (a + b)x + ab = (x + a)(x + b).
Perfect square trinomial: x* + 2xy + y? = (x + y)2.

General trinomial: (ac)x? + (ad + bc)x + bd = (ax + b)(cx + d).
Sum of cubes: a® + b3 = (a + b)(a? — ab + b?).

Difference of cubes: a® — b3 = (a — b)(a? + ab + b?).

Real Polynomials

A function of a single variable x is said to be a “polynomial” on its
domain if it can be put in the following form:

ApX™ + A X"+ agx + ay,

where a,, a,_4, ..., a4, a, are constants. Hence, every polynomial can be
expressed as a finite sum of monomial terms of the form a,x¥, in which
the variable is raised to a non-negative integral power. Notice that x° = 1,
and so ayx® = a,. For the aforementioned polynomial with a,, # 0:

the numbers a; (where 0 < i < n) are called “coefficients”;

a,, is the “leading coefficient”;

a,x™ is the “leading term”;

a, is the “constant term” or the “constant coefficient”;

a, is the “linear coefficient”;
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a,; x is the “linear term”;

when the leading coefficient, a,,, is equal to 1, the polynomial is said to be
“monic”;

the non-negative integer n is the “degree” of the polynomial, and we write
deg (p) = n.

A “constant polynomial” has only one term, specifically, a,. A non-zero
constant polynomial has degree 0, and, by convention, the ‘“zero
polynomial” (with all coefficients vanishing) has degree —oo.

A “zero” of a polynomial p(x) is any number r for which p(r) takes the
value 0. Hence, when p(r) = 0, we say that r is a “root,” or a “solution”
of the equation p(x) = 0.

Let

p(x) =ay +a;x +a,x?+ -+ a,x" and

q(x) = by + byx + byx? + -+ b x™

be two arbitrary polynomials. Then we can operate with them as follows:
Sum:(p + q)(x) = (ay + by) + (a, + by))x + (a, + by)x* + -
Difference:(p — q)(x) = (ag — by) + (a; — by)x + (a; — by)x? + -
Product of a constant and a polynomial: (cp)(x) = cay + cax +
cax? + -

Product of two polynomials: (p - q)(x) = ayby + (agh; + a,by)x +
(aghy + a;b; + ayby)x? + -+ (aghy + ayby_q + -+ a;bp_; + -+
agbo)x® + -+ + (apby)x™t™.

Composition of two polynomials: (peq)(x) = p(q (x)), so that we replace
each occurrence of x in the expression for p(x) with q(x).

Notice that we divide one polynomial by another in a manner similar to
the division of two integers. Firstly, we arrange the terms of the dividend
and the divisor in descending powers of x. If a term is missing, then we
write 0 as its coefficient. Then, we divide the first term of the dividend by
the first term of the divisor to obtain the first term of the quotient. Next,
we multiply the entire divisor by the first term of the quotient, and we
subtract this product from the dividend. We use the remainder as the new
dividend, and we repeat the same process until the remainder is of lower
degree than the divisor. As with the division of numbers,

dividend = (divisor)(quotient) + remainder.

Remainder Theorem: If a polynomial p(x) is divided by x — b, then the
remainder is p(b).

Proof: Let q(x) and r be, respectively, the quotient and the remainder
when p(x) is divided by x — b. Then, given that

dividend = (divisor)(quotient) + remainder,

it holds that, for any x,

p(x) = (x = b)q(x) + .
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Ifx =b,thenp(b) =r.m

Factor Theorem: Given an arbitrary polynomial function y = p(x), b is a
zero of y = p(x) if and only if x — b is a factor of p(x).

Proof. 1t can be easily verified using the Remainder Theorem.m

Remark: The usefulness of the Factor Theorem can be illustrated by the
following examples. Example 1: We can write a polynomial function (in
factored form) of degree 3 with zeros —1, 4, and 3 as follows: p(x) =
(x + 1D (x — 4)(x — 3). Example 2: If p(x) = x(x + 3)(x — 7)2, then the
zeros of this function are 0, —3, and 7; and, in particular, 7 is a “zero of
multiplicity 2,” since there are two factors of x — 7. In general, the
“multiplicity of a zero” b is given by the highest power of x — b that is a
factor of p(x).

The real number zeros of y = p(x) are also the x-intercepts in the graph
of y = p(x). If b is a real number zero with multiplicity n of y = p(x),
then the graph of y = p(x) crosses the x-axis at x = b if n is odd,
whereas the graph turns around and stays on the same side of the x-axis at
x = b if n is even. Hence, the x-intercepts can be obtained from the Factor
Theorem, and the behavior of the graph at an x-intercept, say (b, 0), is
determined by the multiplicity of zero b, that is, by the highest power of
(x — b) that is a factor of p(x). For instance, if p(x) = (x + 1)(x — 2)2,
then, by setting x = 0, we realize that the y-intercept is (0,4). Because
(x + 1) is a factor with an odd exponent, it holds that (—1,0) is an x-
intercept at which the graph crosses the x-axis. Because (x —2)? is a
factor with an even exponent, it holds that (2,0) is an x-intercept at which
the graph touches the x-axis and then turns around.

In fact, the fundamental problem in algebra consists in finding ways of
solving polynomial equations; specifically, we seek formulae for
zeros/roots in terms of the coefficients of the corresponding polynomial. A
well-known example is the “quadratic formula.” If we have the quadratic
equation ax? + bx + ¢ = 0, where a # 0, then we have the formula

—b +Vb?% — 4ac
X=—
2a

where the expression b2 — 4ac is known as the “discriminant,” meaning

that, if we have a number 7 such that 7?2 = b? — 4ac © r = Vb2 — 4ac,
then

_ ~btr d —
x; =——andx, =

2a
are the solutions to ax? + bx + ¢ = 0.

If f(x)=ax?+ bx+c where a,b,c €Q, then the value of the
discriminant shows how many roots f(x) = 0 has, and it explains the
behavior of the quadratic polynomial ax? + bx + c; specifically:
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e Ifb? — 4ac < 0, then the quadratic equation has no real roots (its
roots are conjugate complex numbers, which will be studied in
Chapter 9). Hence, if the discriminant is negative, then f(x)
never crosses the x-axis (the “roots” are where the graph crosses
the x -axis). A quadratic expression ax? + bx + ¢ is always
positive if and only if the discriminant is negative, that is, b —
4ac <0, and a > 0. A quadratic expression ax? + bx + ¢ is
always negative if and only if the discriminant is negative, that is,
b%? —4ac < 0,and a < 0.

e If b2 —4ac =0, then the quadratic equation has one repeated
real, rational root.

e Ifb? —4ac > 0and is a perfect square (i.e., a positive integer
that is obtained by multiplying an integer by itself), then the
quadratic equation has two distinct real, rational roots.

e Ifb? —4ac > 0and is not a perfect square, then the quadratic
equation has two distinct real, irrational roots.

Notice that, when the discriminant is positive, the quadratic function
crosses the x-axis twice, so that it has two real roots (and then the
function’s sign will be the same as that of a when x is less than the smaller
root or greater than the larger root, and the opposite of that of a when x is
between the roots).

Vieta’s formulae: If x, and x, are the roots of the quadratic equation
ax? + bx + ¢ = 0, then

Xyt x, =——
a

and
c

X1Xy = a
(we can, thus, find the roots x; and x, of the quadratic equation by solving
the aforementioned system of equations).
Now, let us try to find the roots of a third-degree polynomial. The first
thing that we have to do is to find at least one root of the given cubic
equation. Then we must divide that polynomial by the factor that we have
found out by hit and trial, so that we ultimately come up with the roots of a
quadratic equation. For instance, consider the cubic equation
x3—6x2+11x—6=0.
By considering the factors of —6, namely, 1,2,3,—1, -2, -3, ..., we notice
that 1 satisfies the above equation, and then we divide this cubic equation
by x — 1. Thus, we obtain the quotient x> —5x + 6, which can be
factored as follows: (x — 2)(x — 3). The three roots of the given cubic
equationare x =1, x = 2, and x = 3.
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For a cubic equation, Vieta’s formulae can be formulated as follows: If x;,
X5, and x5 are the roots of the cubic equation ax® + bx? + cx+d =0,
then

b
x1+x2+x3=—;,

c
x1x2+x1x3+x2x3=;,
and
XXXy = — &

1X2X3 = — .

If a function y = f(x) satisfies an equation of the form

Po(X)Y™ + 1)y + -+ pro ()Y + pa(x) =0,

where pgy(x), ..., p,(x) are polynomials in x, then it is said to be an
“algebraic function.” In other words, an algebraic function is a function
that can be defined as the root of a polynomial equation. If a function can
be expressed as the quotient of two polynomials,

f@=t5

qx)’
then it is called a “rational algebraic function.”
Polynomials play a very important role in everyday life. For instance, the
content of a shopping basket can be described in terms of a polynomial,
engineers design roller coasters using polynomial functions with the
quadratic equation, economists and businessmen use polynomials in order
to model the growth rate and forecast revenues, etc.

The Cauchy—Schwarz—Bunyakovsky Inequality: 1f a; and b; are any real

numbers (i = 1,2., ..., n), then
1

" = (Y ) (O )

with equality if and only if the sequences (a,,a,, ..,a,) and
(by, by, ..., b,) are proportional, namely, there is a constant A such that
a, = Aby for each k € {1,2, ..., n}. This inequality can be easily proved by
thinking as follows: For any x € R, we have

Titi(aix +b)? 20 & (XL, af)x? + 2x XLy azh; + XLy b = 0.

The left-hand side of the last inequality is a quadratic polynomial in x.
Because it cannot have two distinct real roots, its discriminant is non-
positive, namely, (&, a;p)? < Er,a?)EL,b?) , quod erat
demonstrandum.

The Minkowski Inequality: If a; and b; are any real numbers (i =
1,2.,...,n), then
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1

> o] (3 ) + (3 k)

with equality if and only if the sequences (a,,a,, ..,a,) and
(by, by, ..., by,) are proportional. This inequality can be easily proved by
thinking as follows: By the Cauchy—Schwarz—Bunyakovsky Inequality,

1 1
[Ba(a; + b2 = (B (a? + 2a;b + bPz < [B0, a? +

1
1 1 2 1 1
200 a2 (X, bz + X b?] =(Qkiad)2+ XL, b}z, quod erat
demonstrandum.

Fixed Points of Functions

By a “fixed point” of a function f, we mean a point a such that f(a) = a,
that is, a belongs to both the domain and the range of f. In other words, a
fixed point of a function is a point at which the input to the function is
equal to the output of the function (and, therefore, fixed points play an
important role in equilibrium analysis). For instance, the function f: R —
R defined by f(x) = x+ 1 has no fixed point, whereas the function
f:R = R defined by f(x) = x has infinitely many fixed points (in fact,
every real number is a fixed point of this function).

By definition, the fixed points of a function f are the solutions of f(x) =
x or the roots of f(x) — x. For instance, we can find the fixed points of
f(x) = Yx as follows: we set f(x) =x, and, therefore, Yx = x &
xh=xox=x3c0=x3—x x(x?—1) =0, and each of these
factors, namely, x and (x? — 1), must be set equal to 0. Thus, the first
fixed point is x = 0, and the other fixed points are x2 —1 =0 & x2 =
1 & x = +1. Hence, f(x) = /x has three fixed points: —1, 0, and +1.
One of the reasons why fixed points play a significant role in mathematical
analysis is that the existence of solutions to systems of equations is
equivalent to the existence of fixed points of appropriate functions. If we
want to show that f(x) = 0 for some x, then this is equivalent to showing
that f(x) + x = x, which means that the function F defined by F(x) =
f(x) + x has a fixed point.
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Chapter 3
Matrices and Applications in
Input-Output Analysis and Linear
Programming

Matrices are often used in physics, statistics, and economics, and they are
particularly useful when they are used in connection with systems of linear
equations. For instance, let us considers the following linear simultaneous
equations:

4x + 5y = 14

x+2y=11
By arranging the coefficients of x and y in the way in which they occur in
the equations, we obtain the array
G 2

1 27

which is an example of a matrix.
In general, consider the following rectangular array

ai; ot Qi
: . P,
Anm1 " Qmn

consisting of m rows (i.e., horizontal n -tuples) and n columns (i.c.,
vertical m-tuples). This is called an “m X n matrix,” usually denoted by
A = (a;j). If the number of rows in the matrix is m and the number of
columns is n, then the matrix is said to be of order m X n. The term
“matrix” was introduced by the nineteenth-century English mathematician
James Sylvester, but it was his friend the mathematician Arthur Cayley
who developed the algebra of matrices in the 1850s.
Types of matrices:
i.  Row matrix. This is a matrix having only one row; for instance,
the following is a row matrix:
4 5).
ii. Column matrix. This is a matrix having only one column; for
instance, the following is a column matrix:
5
(2)
iii.  Null matrix. This is a matrix with all its elements zero.
iv. Square matrix. This is a matrix having the same number of rows
and columns.
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v.  Diagonal matrix. This is a square matrix in which all the elements
are zero except the main diagonal elements (the main diagonal in
a matrix always runs from upper left to lower right, so that the
main diagonal of a matrix A = (a;;) is the list of entries a;; where
i = j); for instance, the following is a diagonal matrix:
(6 2)

0 2/

vi. Identity matrix. This is a diagonal matrix in which the main
diagonal elements are equal to 1 (an identity matrix is usually
denoted by I); for instance, the following is an identity matrix:

(b 1)

Two matrices are “equal” if and only if their corresponding elements are
equal.
Addition and Subtraction of Matrices: Two matrices may be added or
subtracted provided that they are of the same order. Addition of matrices is
done by adding together the corresponding elements of each of the two
matrices. For instance:
4 5 3 6 443 5+6 7 11
G 2+GC =032 23D=G &)
In general, the sum of two m X n matrices A and B is an m X n matrix C
whose elements are ¢;; = a;; + b;;, where a;; € A, bj; €B,1<i<m,
and1 <j<n
Properties of the addition of matrices: If A, B, and C are m X n matrices,
then:
A+ B =B+A4;
A+ (B+C)=(A+B)+C;
A=B&© A+C=B+C(;
the equation X + B = A has a unique solution X = A — B; and
—(A+B)=-A-B.
Subtraction of matrices is done in a similar way except the corresponding
elements are subtracted. For instance:
4 5 3 6 4—-3 5-6 1 -1

(1 z)_(z 4)‘(1—2 2—4)_ (—1 —2)'
Multiplication of Matrices:

i.  Scalar multiplication: A matrix may be multiplied by a number as

J i

follows:
5 =2 — 20 -8
4(1 8):(i§i 4:>(<82)):(4 32)'

In general, given a matrix 4 = (a ) and a real number k, kA =

(kaij).

ij
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ii. General Matrix Multiplication: Two matrices can only be
multiplied by each other if the number of columns in the one is
equal to the number of rows in the other. Multiplication of
matrices is done by multiplying a row by a column as follows:

(4 5)><(3 6)=(4x3+5x2 4><6+5><4)

1 2 2 4 1X3+2%x2 1X6+2x%x4
(22 44)
7 14/

The product of an m X n matrix A = (a;;) and an n X p matrix B =

(b;j) is an m X p matrix C = AB = (¢;;) whose (i,)) entry is
Cij = Xk=1Q bj, where 1 <i<mand 1 <j <p. Thus, ifAis
an m X n matrix, and if B is n X p matrix, then the product AB is
an m X p matrix in which the element that corresponds to the ith
row and the jth column of AB is found by multiplying each
element in the ith row of A by the corresponding element in the
jth column of B and adding the results.

Properties of the multiplication of matrices:

A(BC) = (AB)C;

A(B +C) = AB + AC;

(B+ C)A =BA+ CA.

Inverting a Matrix: An n-square matrix 4 is said to be “invertible” or

“non-singular” if there exists an n-square matrix B with the following

property:

AB=BA=1,,

where [, is the n-square identity matrix, namely, the n X n matrix with

ones along the main diagonal and zeros elsewhere. If this is the case, then

the matrix B is called the inverse of A4, and the notation A™! is used to

designate B. If no such B exists, then 4 is said to be “singular.” If

A= o)
then
= ()

In general, A™! can be found in the following way: (i) Write the
augmented matrix [A|I], where I is the identity matrix with the same
dimension as A. (ii) Using elementary row operations, replace matrix [A][]
with a matrix of the form [I|B]. (iii) Then A~ is exactly this matrix B. For
instance, if

3 0 2
A=12 0 —2),
01 1

then we can construct A~ as follows:
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We form the augmented matrix:
30 21100
(2 0 -2|0 1 O).
01 1|0 0 1
We add the second row to the first row to obtain
50 0l1 10
(2 0 -2|0 1 O).
01 1|0 0 1
Then we divide the first row by 5 to obtain
10 0102 02 0
(2 0 -2]0 1 0).
01 110 0 1
Now, let’s take two times the first row and subtract it from the second row
to obtain
10 0l02 020
(0 0 —-2|-04 06 0).
01 1] 0 0 1
We multiply the second row by — % to obtain

1 0 oloz 02 0
(0 0 1/02 -03 0).
0 1 1]0 0 1
Now, we swap the second and the third rows to obtain
1 0 oloz 02 0
(0 1 1[0 0 1).
0 0 1]02 =03 0
Finally, we subtract the third row from the second row to obtain
1 0 0lo2 02 0
(0 1 0/-02 03 1),
0 0 1102 -03 0
and, thus, we constructed
02 02 0
A"l = (—0.2 0.3 1).
02 -03 0
Transposition of Matrices: The “transpose” of a matrix A is denoted by
AT, and it is the matrix obtained by writing the rows of 4, in order, as
columns; that is, if A = (a;;) is an m X n matrix, then AT = (aiTj) is the

n X m matrix where aiTj = a;;, for all i and j. For instance, if

a=(l Dm0

If a square matrix A is such that A = AT, then it is called “symmetric” (its
elements are symmetric with respect to its main diagonal).
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Determinants: The determinant of a matrix 4 is a scalar assigned to A, and
it is denoted by det(A4). Given a matrix
A= (a11 ‘112)
Az1  Azz2)°
its determinant is

det(A) = a1 Qiz| _
et(4) = Ay Q| — H1%22 7 Q12021

Notice that a matrix A has an inverse if and only if the determinant of 4 is
not zero.
Solution to simultaneous equations using matrices: Let us consider a
system of two linear equations with two unknowns:

ax+by=c
{azx +byy = Cz}’
which gives rise to the following three matrices:

1= p)p=(g)max=()

Thus, the original system of linear equations can be reformulated as
follows:

AX=B & X =A"1B,

where A is the matrix of the system’s coefficients, X is the matrix of the
system’s unknowns, and B is the matrix of the system’s constant terms.
The system has a unique solution if and only if the determinant det (4) =
a;b, — bya, # 0, and that solution is:

¢ by
_ Bl byl _ by = bicy
x= det(d) |ax bi|  ab, — bya,
a, b,
and
a G
_ B, _ |a2 Cz| _ 46 — G4y
y= det(4d) |ax bi| ab, — ba,
a, b,

where the numerators B, and B, are obtained by substituting the column
of constant terms in place of the column of coefficients of the
corresponding unknown in the matrix of coefficients. If det (4) = 0, then
the system has either no solution or an infinite number of solutions.
Consider the 3-square matrix

a by ¢
A= <a2 b, cz>,
as by ¢

The determinant of A is
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a by ¢
det(A) =|a, by, c3| =a;byc5+ bicya5 + cia,b; —agbycq —
as bs c;

bsc,a, — c3a,b;.
Moreover, it can be easily shown that

a, b, c

tor _ b, ¢, a, & a, b,

a, b, C2| = a1y —D01|g. TG bl
3 C3 3 03 as 3

as by ¢

Let us consider a system of 3 linear equations with 3 unknowns:
ax+by+cz=d;

a,x + b,y +c,z =d,.

aszx + by +c3z =dy

The aforementioned system has a unique solution if and only if the
determinant of the matrix of coefficients is not zero:

a by ¢
det (A) =|a, b, c|#0.
as by ¢

In this case, the unique solution to the given system can be expressed as
quotients of determinants as follows:

B,

X = det(d)
By

Y= et (4)
— BZ

7= det ()

where the numerators By, B),, and B, are obtained by substituting the
column of constant terms for the column of coefficients of the
corresponding unknown in the matrix of coefficients, so that:

di by ¢ a dy ¢ a; by dg
By=|d; b, ¢|,B,=|a; d; c;|,andB,=|a; b, d,f
d; by c3 as d; ¢; as b ds

If det (A) = 0, then the system has either no solution or an infinite
number of solutions.

Advances in computing power have significantly contributed to the
application of matrix algebra in several scientific disciplines, such as
physics and mathematical economics.

The Application of Matrices in Input-Output Analysis
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In general, a “computational problem” is a binary relation between inputs
and outputs, and, in particular, we specify which outputs are correct for the
given inputs by means of specific predicates.

The major economic tasks that every society must accomplish pertain to
decision-making about an economy’s inputs and outputs. In economics,
the term “input” refers to goods or services used by firms in their
production processes. Thus, by means of its technology, an economy
combines inputs to produce outputs. In economics, the term “output”
refers to the various useful goods or services that are either employed in
further production or consumed.

The acknowledged founder of “input-output analysis” is the Russian-
American economist Wassily Leontief, who won the Nobel Prize in
Economics in 1973. An input-output matrix is a square matrix, say A =
(a; j), whose entries a; ; represent the amount of input i required per unit
of output j. A column of such a matrix depicts the inputs needed for the
achievement of a specific output. Therefore, from the perspective of
economics, it can be considered as a “production technique.” Hence, an
input-output matrix is a “constellation” of production techniques. If the list
of inputs is complete, including factor inputs, then the input-output matrix
contains techniques for the production of the factor services as well.
Input-output analysis is used in order to analyze inter-industry relations,
thus explaining inter-dependencies and complexities of the economic
system as well as the conditions for maintaining equilibrium between
supply and demand. The inputs of one industry are the outputs of another
industry, and vice versa. An input is obtained (purchased), and an output is
produced. Hence, “input” represents the expenditure of a firm, and
“output” represents the (sales) revenue of a firm. The sum of the money
values of inputs is the total cost of a firm, and the total money value of the
output is the total revenue of a firm. Input-output analysis implies that, in a
state of equilibrium, the money value of the aggregate output of the whole
economy must be equal to the sum of the money values of the inter-
industry inputs and the sum of the money values of the inter-industry
outputs. For instance, coal is an input for steel industry, and steel is an
input for coal industry, but both coal and steel are the outputs of their
respective industries. An important part of economic activity consists of
the production of intermediate goods and services (inputs) for further use
in producing final goods and services (outputs).

Let us divide the economic system into the “inter-industry sectors” and the
“final-demand sectors,” each of which can be divided into different sub-
sectors. The total output of any inter-industry sector can be used as an
input by other inter-industry sectors, by the given sector (i.e., by itself), as
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well as by final-demand sectors. Prices, consumer demand, and factor
supply (i.e., the availability of factors of production for purchase by
producers) are given. Moreover, we assume that there are no externalities
(by “externalities,” we mean the indirect effects that have an impact on the
consumption and the production opportunities of others, but the price of
the product does not take those externalities into account; for instance, a
traditional example of a negative externality is pollution, and the research
and development (R&D) activities are traditionally associated with
positive externalities, since they have positive effects beyond those
enjoyed by the producer). Furthermore, an input-output model is based on
the following assumptions: (i) No two products are produced jointly, and,
therefore, each industry produces only one homogeneous product. (ii)
Each producing sector satisfies the properties of a linear homogeneous
production function (i.e., the production of each sector is subject to
constant returns of scale: its inputs increase at the same rate as its outputs).
(iii) The combinations of inputs are employed in rigidly fixed proportions
(there are fixed input coefficients of production).

For instance, in Table 3-1, we see the input-output matrix of a four-sector
economy, which, specifically, consists of three inter-industry sectors,
namely, X;, X,, and X5, as well as one final-demand sector. The rows of
the input-output matrix (i.e., the rows of Table 3-1) inform us about the
products of X;, X,, and X5 that are used as intermediate products (inputs)
by the corresponding inter-industry sector as well as for final consumption
by the government and the households. The columns of the input-output
matrix (i.e., the columns of Table 3-1) inform us about the total inputs
(from all sectors) utilized by each inter-industry sector for its production.

Table 3-1: An input-output matrix.

Total

output X, X, X; Final

of the demand

sectors
Xy X11 X1z X3 F
X X X2z X33 F,
X3 X3 X3z X33 F

Labor Ly L, L,

input
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Given Table 3-1, the rows, which represent consumption functions, can be
written as follows:
X=X+ X, +X5+F
X, =X, +X5, + X,5+F,
X;=X5, + X5, + X35+ F5
L=L,+L,+ L,
or, equivalently:

L:ZL"

where i and j vary from 1 to 3 (since, in this example, there are three
inter-industry sectors).
Moreover, given Table 3-1, the columns, which represent production
functions, can be written as follows:

X, =X + X1 + X310+ Ly

Xy =Xqp +Xpp + X3, + L,

X3 =Xq3+Xp3 + X35+ L
(and, thus, each entry @;; in an input-output matrix represents the amount
of input i required per unit of output j).
In Table 3-2, we see the corresponding technological coefficient matrix,
for the same example (vertical interpretation: proportion of the
corresponding commodity produced by the corresponding sector;
horizontal interpretation: proportion of the corresponding commodity used
by the corresponding sector).

Table 3-2: A technological coefficient matrix

Total output

of the X, X, X3 Final

sectors demand
Xy a1 Xy a,X, a3X3 F
X, a1 X, as, X, as3X;3 F,
X3 asz1Xq as, X, as3X;3 F3

Labor input L, L, L
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Given that we have assumed that the input requirements are fixed, the
amount of input i that is required in order to produce one unit of output j
is given by a;; = X;;/X;, and we have:

X1 =a;1X; +a,X; +apX; + F

Xy = Ay X1 + X5 + a3X3 + F,

X3 = a3, X; + a3,X; + a33X3 + F3

L=0LX +LX,+ X5

or, equivalently:

for i = 1,2,3 (since, in this example, there are three inter-industry sectors).
Therefore, if we define the matrices

Xy
X=<&>

X3

a;; Q12 Qg3
A=<a21 asz; azs),

a3y Qzz Qzs
and

Fy
F=<5>
F3

then we have:
X=AX+F

L= ZliXi

(and, thus, we can determine the optimum level of production for the given
economic network). Notice that F indicates that the inter-industry sectors
not only satisfy each other’s needs, but they also satisfy some outside
demands (on the other hand, in case of a “closed system,” F = 0).

If I is the 3-square identity matrix, then, given the above definitions of the
matrices X, A, and F, we can formulate the matrix equation
X=AX+FeoX-AX=Fo(-AX=FeX=(1-A4)"F,

from which we can get the values of X;, X,, and X5 that correspond to a
state of equilibrium between supply and demand (and, thus, we can avoid
both oversupplying and undersupplying the market with the corresponding
commodities).

The Application of Matrices in Linear Programming
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By the term “linear programming,” we mean a method to achieve the best
outcome (e.g., to maximize profit, minimize cost, etc.) in a mathematical
model whose requirements are represented by linear functions. The first
contributions to linear programming are due to the Soviet mathematician
and economist Leonid Vitalyevich Kantorovich (1912-86), who won the
Nobel Prize in Economics in 1975. Moreover, one of the acknowledged
founders of linear programming is the American mathematician George
Bernard Dantzig (1914-2005), who managed to make significant
contributions to industrial engineering, operations research, economics,
statistics, and computer science. In fact, input-output analysis is a special
and very important case of linear programming.
The “canonical form” of linear programming is the following: given a
system of m linear constraints (or linear inequalities) with n variables, we
wish to find non-negative values (i.e., = 0) of these variables that will
satisfy the constraints and will maximize a function of these variables;
symbolically: given m linear inequalities and/or equalities
Z]- a;jxj <b,i=12..,mandj=12..,n, (*)
we wish to find those values of x; which satisfy the constraints (*) and the
condition that x; = 0 (for j = 1,2, ...,n) and simultaneously maximize the
linear function
z=Y, ¢xj,j=12,..,n (%)
For instance, consider a problem where we wish to maximize the gross
profit of an industry (or of a firm offering several product lines) that
produces n commodities, and, thus, has n sectors of production. In this
case, (x) and (**) can be interpreted as follows: z denotes an overall
performance measure (specifically, total gross profit); x; denotes the level
of activity j (j = 1,2, ...,n), specifically, the output of the jth sector of
production (i.e., the produced quantity of the jth commodity); ¢; denotes
the performance measure coefficient for activity j, specifically, the gross
profit per unit of output in the jth sector of production (so that the total
gross profit in the jth sector of production is ¢;x;); b; denotes the available
quantity of resource (input) i (i = 1,2,...,m); and a;; denotes the quantity
of resource (input) i consumed by each unit of activity j (i.e., required per
unit of output j).
In matrix form, the constrained maximization problem (**) can be
rewritten as follows:

X1

X2
Zmax = (€1 €2 = Cn)- PP

xn
under the constraints



a11 alZ e alTL x1 bl
Az Q22 - gy | [ X2 < b,
, . . : = S
Am1i Amz - Qmn Xn b,
and

xj = 0 for j = 1,2,...,n. More simply, given the above concepts, we can

write:
maxz = cx

under the constraints

Ax <b : (553

x =0
Regarding the geometric significance of (***), notice that the constraints
Ax < b and x; = 0 define a convex polyhedron P, in R", and such B, is
called the “feasible region” of the corresponding model, meaning the
region of all the feasible solutions to the corresponding problem. In
general, a polyhedron P, in R" is the set of all points x € R™ that satisfy a
finite set of linear inequalities. Moreover, a set Q in R™ is called “convex”
if, for any two points x and y in Q, the line segment joining them lies
entirely within Q (and, in particular, a convex polyhedron is a polyhedron
for which a line connecting any two non-coplanar points on the surface of
the polyhedron always lies in the interior of the polyhedron); symbolically:
Vx,y € Q, the “convex combination” kx + (1 — k)y € Q for any k such
that 0 < k < 1. The goal of constrained maximization in the context of
linear programming is to choose that feasible combination (x4, x5, ..., X;,)
of actions that maximize a given function z = cx. This occurs at the
maximum point (X7, X3, ..., x5,) of the feasible region.
The constrained maximization problem (***) is known as the “primal
problem,” while the so-called “dual problem” is the corresponding
constrained minimization problem where, given a system of m linear
constraints (linear inequalities) with n variables, we wish to find non-
negative values (i.e., = 0) of these variables that will satisfy the
constraints and will minimize a function (e.g., a cost function) of these
variables; symbolically (if, for instance, z represents total cost, ¢
represents cost per unit of output, and b represents the required level of
output), we obtain the following model:

minz = cx

under the constraints

Ax > b . (Fxx%)

x]- >0
For instance, using the “dual problem,” we can create models of
constrained cost minimization in economics and business management.
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Firms seek to minimize cost subject to the constraint that they produce at
least b units of output, so that the firm’s cost minimization problem is
given by (***x). In general, linear programming (also known as linear
optimization) is useful for guiding quantitative decisions in business
planning, microeconomics, industrial engineering, and in several other
problems of the social and the natural sciences.

Example: Let us consider the following linear-programming problem:
maxz = 4x + 5y
under the constraints
x+y <20
3x+4y <72
x,y=0
where z = 4x + 5y is the objective function. We work as follows: Firstly,
we have to draw the straight lines that represent the constraints, thus,
finding x-intercepts and y-intercepts. For the constraint
x+y <20,
we set y = 0 to find the x-intercept, which is x + 0 = 20 = x = 20, and,
therefore, the x-intercept is the point (20,0). For the same constraint, we
set x = 0 to find the y-intercept, which is 0 +y = 20 = y = 20, and,
therefore, the y-intercept is the point (0,20). For the constraint
3x +4y <72,
by setting y = 0, we obtain 3x + 0 = 72 = x = 24, and, therefore, the
the x-intercept is the point (24,0); and, by setting x = 0, we obtain 0 +
4y =72 = y =18, and, therefore, the y-intercept is the point (0,18).
Moreover, regarding the other given constraints, we notice that x = 0 is
the y-axis, and y = 0 is the x-axis. In Figure 3-1, the shaded region (a
convex polyhedron) is the feasible region, and the points that lie within it
satisfy all the given constraints simultaneously. In order to find the
intersection point Cin Figure 3-1 we have to solve the following system of
equations:
x+y=20 )
3x+4y =72 2)
and, therefore, we multiply equation (1) by —3 and then add it to equation
(2) to obtain y =12, and x = 8. Hence, the point Cin Figure 3-1 is
(8,12). Now, given Figure 3-1, we substitute all the corner points into the
objective function z = 4x + 5y in order to find the maximum one. Hence,
we obtain the following results:
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Table 3-3: A linear programming problem.

Corner points Value of z
(20,0) 80
(0,18) 90
(8,12) 92

Consequently, as indicated in Table 3-3, the maximum value of the
objective function is 92, and the corner point that corresponds to this value
is (8,12) , meaning that the optimal solution to the given linear-
programming problem is (x,y) = (8,12).

Figure 3-1: The feasible region.

7N

20
18

v
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Chapter 4
Basic Mathematical Economics, Political
Economy, and a Vision of Scientific
Totalitarianism

By the term “economy,” we refer to a system for making decisions about
the use of limited resources so that goods and services can be produced
and cosumed. By the term “market,” we refer to a system in which two or
more parties participate in order to engage in economic transactions.
Standard economic analysis is based on the concept of rationality. In
general, in the social sciences, “rationality” means that social behavior can
be seen in terms of actors pursuing goals. The “rationality postulate”
implies the following: (i) actors have well ordered preference systems over
the set of outcomes (i.e., of alternative actions), namely, for all pairs c; and
¢j, there is a preference relation R such that either ¢;R¢; (the actor prefers
¢; to ¢;), or ¢;Rc; (the actor prefers ¢; to ¢;), or both (the actor is
indifferent); (ii) each actor’s preference system is substantially
independent of the other social variables; and (iii) each actor acts to
maximize one’s utility index (according to the principle of utility, an
action is good in so far as it tends to promote happiness for moral agents,
and the meaning of happiness depends on one’s ethics; for instance,
according to Plato, societal happiness stems from citizens treating each
other justly, leading virtuous lives, and each fulfilling their social
function). In particular, one can formulate a decreasing sequence of
numbers (these numbers are called “utilities,” u,, ) where the largest
number is assigned to the most preferred outcome, the second largest
number to the next outcome in the preference order, etc. The function that
maps consequences to numbers representing an actor’s preference over
those outcomes is said to be a “utility function.” The most well-known
utility function is the von Neumann—Morgenstern utility function, which is
defined as follows: the actor considers a set of all conceivable states of the
world and assesses the likelihood of each state S by assigning a probability
p(S) to it, so that the expected utility U,(A) for an action A can be
calculated by multiplying the probability p(S) of each state’s occurring by
the utility u(C (S, A)) of the outcome that results from the given state of
the world and the given action, and then summing these products over all
the possible states:

U, (A) = Xan SP(S)U(C(S:A));
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the actor chooses A such that U, (A4) is maximized.
“Marginal utility” measures the change in the satisfaction that a consumer

gets from consuming one more unit of a commodity; symbolically:
ATU

Marginal Utility = 20

where ATU denotes the change in total utility, and AQ denotes the change
in the quantity consumed of the corresponding commodity. “Total utility”
measures the total amount of satisfaction that a consumer gets from all the
units that he/she consumes of a commodity.

By analogy, “marginal cost” measures the change in the total cost that
comes from making or producing one additional unit (of output);

symbolically:
Marginal Cost = %,

where AC denotes the change in total cost, and 4Q denotes the change in
output. “Total cost” is the sum of the expenses that a producer needs to
make in order to achieve a specific level of output.

“Productivity” measures how much output can be produced with a given
set of inputs, and “marginal productivity” measures the change in output

as a result of one additional unit of input; symbolically:
Marginal Productivity = j—;,
where AX denotes the change in the firm’s use of the input, and 4Y

denotes the change in the quantity of output produced.
Economic Equilibrium and Economic Planning

As shown in Figure 4-1, the demand curve is drawn with the price on the
vertical axis (y-axis) and quantity demanded on the horizontal axis (x-
axis), thus obtaining a downward-sloping curve, meaning that, as price
decreases, the quantity demanded will increase. Moreover, as shown in
Figure 4-1, the supply curve is drawn with the price on the vertical axis (y-
axis) and quantity supplied on the horizontal axis (x-axis), thus obtaining
an upward-sloping curve, meaning that, as price increases, the quantity
supplied will increase.

In a competitive market—which is based on the assumptions that the
number of economic actors is so big that none of them can influence prices
significantly by varying one’s demand or supply, and that economic actors
can freely enter and exit each trade and industry—economic equilibrium is
achieved by trial and error within the context of a competitive market. In
particular, according to this economic model, the conditions of “economic
equilibrium” are the following:
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The individual condition of equilibrium: it refers to the
maximization of the individuals’ utility, profit, or income
from the ownership of productive resources. The consumers
maximize the total utility that they derive from their income
by spending it in such a way that the marginal utility of the
quantity of commodity x; obtainable for a unit of income
(expressed in money) is equal for all commodities. Thus,
given commodities X4, X,, ..., X, the utility-maximizing rule
for consumers can be formulated as follows:
MU of x; MU of x, MU of x,

Price of x, Priceofx,  Price of x,
where MU denotes marginal utility. The producers maximize
their profit in two ways: firstly, by optimizing the
combination of factors of production (i.e., by combining the
factors of production in such a way that the marginal
productivity of the quantity of factor of production x; that
can be purchased for a unit of money is equal for all factors
of production) and, secondly, by optimizing the scale of
output. If prices cannot be manipulated by particular actors,
but are given by the market itself (as independent
parameters), then the minimum cost curve of the producer is
given (since the prices of the factors of production are
given), and, therefore, the optimum scale of output is
attained when the marginal cost is equal to the price of the
product (which is given by the market itself). The owners of
the fundamental productive resources (namely, labor, capital,
and natural resources) maximize their income by selling the
services of these resources to the highest bidder.

The social condition of equilibrium: it refers to the
assumption that the incomes of the consumers are equal to
their receipts from selling the services of the productive
resources that they own, plus entrepreneurs’ profits. When
the economic system is in a state of equilibrium,
entrepreneurs’ profits are equal to zero, since the marginal
cost is equal to the price of the product (which is given by
the market itself). By “zero entrepreneurs’ profits,”
economists mean that, in a state of equilibrium, workers,
managers, lenders, and owners of resources are earning their
equilibrium returns, and this situation does not mean that
there are in fact no profits, but that profits are expressed as
differences in the remuneration earned by different economic
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actors (such as, for instance, the difference between the
remuneration for providing managerial services or leadership
and the remuneration for providing basic labor skills). This
condition changes substantially when particular economic
actors can manipulate prices and, generally, the conditions of
economic activity by creating oligopolistic or monopolistic
conditions.

The structural condition of equilibrium: The equilibrium
prices are determined by the condition that the demand for
each commodity is equal to the supply of the corresponding
commodity, as shown in Figure 4-1. The French economist
Léon Walras (1834-1910) has explained this process as
follows: On the basis of a (historically) given random set of
prices, the economic actors strive to satisfy the individual
condition of equilibrium and optimize their positions. To
each commodity there correspond a quantity demanded and a
quantity supplied. If, for each commodity, the quantity
demanded and the quantity supplied are equal, then the entire
situation is settled, and the prices are the equilibrium prices.
But, if the quantities demanded and the quantities supplied
diverge, the competition of the buyers and the sellers will
alter the prices. When supply exceeds demand for a
good/service, the price of this good/service tends to fall, and,
when demand exceeds supply of a good/service, the price of
this good/service tends to rise. As a result, the economic
actors get a new set of prices, which serves as a new basis for
the economic actors’ attempt to satisfy the individual
condition of equilibrium and optimize their positions. The
individual condition of equilibrium being carried out, the
economic actors get a new set of quantities demanded and
quantities supplied. If, for each commodity, demand and
supply are not equal, then prices will change again, and the
economic actors will get another set of prices, which serves
as a new basis for the economic actors’ attempt to satisfy the
individual condition of equilibrium and optimize their
positions; and so on.
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Figure 4-1: Market equilibrium price: in this example, the supply curve (S) and the
demand curve (D) intersect at the equilibrium point E, representing a price of
$1.40 and a quantity of 600 (Source: Wikimedia Commons: Author: OpenStax
College; https://openstax.org/details/books/principles-microeconomics).

S
$2.20 Excess supply
o or surplus
& /
E $1.80 An above-equilibrium price
g
e $140 - Equilibrium price
o $1.20 ! i\\below—equilibn‘um price
P———l N
$1.00 Excess demand *® D
or §honage
$0.60 L : ]

300 400 500 600 700 800 900

Quantity of Gasoline (millions of gallons)

Assuming that freedom of choice in consumption and that freedom of

choice of occupation are maintained, and assuming that the preferences of

consumers, as expressed by their demand prices, guide production and the

allocation of resources, the major goals of a rational and scientifically
rigorous Central Economic Planning Authority (CEPA) are the following:

1. Minimization of the average cost of production: The

managers who run existing plants and those who are engaged

in building new plants must be guided and controlled by the

CEPA in order to combine factors of production in such a

way that the marginal productivity of the quantity of factor

of production x; that can be purchased for a unit of money is

equal for all factors of production. In other words, given

inputs (factors of production) x4, x,, ..., x,, employed in a

productive activity, the CEPA ensures that the following

cost-minimizing rule is fulfilled
MP of x; MP of x, MP of x,

Price of x, Price of x, "7 Price of x,
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1v.

where MP denotes marginal productivity. In this way, the
CEPA ensures that each commodity is produced with a
minimum sacrifice of alternatives, and it tries to eliminate
social waste.

Optimization of the scale of output: The managers of plants
and the leaders of whole industries must be guided and
controlled by the CEPA in order to determine the scale of
production in such a way that the marginal cost is equal to
the price of the product. In this way, the CEPA ensures that
the marginal significance of each preference that is satisfied
is equal to the marginal significance of the alternative
preferences, which have been sacrificed, and, thus, the CEPA
maintains a well defined hierarchy of preferences.

The maintenance of an objective price structure: In the model
of a competitive market, there is an objective price structure,
in the sense that, as a result of the parametric function of
prices, there is only one set of prices, which satisfies the
structural equilibrium condition, that is, it equalizes the
demand for and the supply of each commodity. The same
objective must be consciously and intentionally maintained
by the CEPA, but, whereas, according to the model of a
competitive market, the parametric function of prices derives
merely from the weak and fragile assumption that the
number of competing economic actors is too large to enable
any one to influence prices by one’s own action, the CEPA
can and should ensure the imposition of the parametric
function of prices by imposing rational and scientifically
rigorous price controls on strategic resources and, generally,
on goods and services of critical social importance, in
conjunction with appropriate monetary and fiscal policies.
Rational control of the production process: The huge
economic progress that took place during the nineteenth and
the twentieth centuries was mainly a consequence of scientific,
technological, and organizational innovations that (as they
were integrated into the production process) increased the
productivity of a combination of factors of production, or
created new economic goods and services. However, given
the contradictions of the capitalist system, the results of the
integration of scientific, technological, and organizational
innovations into the economy are not homogeneous.
Companies that innovate make a direct profit or increase
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their profitability, but this profit (or increase in their
profitability) is a temporary phenomenon, as free
competition will tend to equate the price of the product with
the average cost of production. On the other hand, companies
that use outdated factors of production or outdated
production models, and companies that produce competitive
economic goods that can be easily substituted with others (by
competitors) in the market, suffer losses which lead to a
devaluation of the capital invested in them. In the
competitive market regime, due to the parametric function of
prices and the freedom of entry and exit enjoyed by private
companies in every sector of the economy, any innovation is
inevitably associated with a reduction in the value of some
old investments, since, in principle, there is no way of
reacting against a given innovation. What entrepreneurs can
do to respond to their competitors’ innovations is to try to
innovate in their own companies, causing, in turn, losses for
their competitors. Moreover, innovative companies need to
constantly strive to innovate, because free competition tends
to nullify the profitability of existing innovations (due to the
freedom of entry of new competitors in each sector of the
economy), so the more a company leads in the field of
innovation the more profitable it becomes.

Nevertheless, as the prominent American economist,
diplomat, and economic consultant John Kenneth Galbraith
(1908-2006) has pointed out, industrial planning is
inextricably linked to the size of the industrial complex, and
size is not only a particular underpinning and provider of
profits, but also the general underpinning and provider of
technology and innovation. Furthermore, due to the inherent
contradictions of capitalism, in the free competitive market,
there emerge several phenomena that oppose free
competition, such as the following: (i) monopolies, (ii)
monopsonies, (iii) oligopolies, (iv) oligopsonies, and (V)
groups of companies (i.e., gentlemen’s agreements, cartels,
concerns, pools, and trusts).

When the size of some business units increases so much that
they can nullify both the efficiency of the parametric
function of prices (thus being able to exert some control over
prices) and the freedom of entry of new firms and new
investors in a sector of the economy in general, such



140

companies develop a strong tendency to prevent any
development that could bring about a devaluation of the
capital already invested. Therefore, when a firm is not forced
by market competition to innovate, it will only innovate
when the old invested capital is depreciated or if the
reduction in production costs that is achieved by the
immediate implementation of an innovation exceeds the
devaluation of the capital already invested. As J. K.
Galbraith has aptly explained, this delay in actualizing
available possibilities to improve the economy works to the
detriment of social interest. In addition, the British economist
Lionel Robbins (1898-1984), who was made a life peer as
Baron Robbins of Clare Market in the City of Westminster in
1959, has pointed out that the attempt of certain capitalist
elites to maintain the value of their invested capital may lead
them to prevent the entry of new producers who find the
prospects of one economic sector more attractive than the
prospects of other economic sectors, as well as to postpone
or cancel the implementation of technical improvements that
reduce costs and, consequently, reduce the price paid by the
consumer.

In any case, the ruling capitalist elite seeks to keep the
general development of innovation under control and to
manage innovations according to its own particular interests,
thus coming into conflict not only with the social interest, but
also with a rival capitalist elite which wants to become the
new ruling capitalist elite by displacing the previous one. As
a result of the contradictions of the capitalist system, the
protection of monopoly privileges and specific investments
contradicts economic progress, in the sense that it hinders the
reduction of prices and the improvement of the quality of
economic goods and services, and it is a major source of
imperialist rivalry between the great powers of the
international system. 2 When the pressure of scientific,
technological, and organizational innovations for structural
change is far greater than the tendency of some capitalist
elites to maintain the value of old investments and their
control over economic dynamics, an economic crisis ensues.
This crisis is exacerbated, at a later stage, by the

2 See also: Mavroudeas, “Periodising Capitalism”; Warren, Imperialism.
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intensification of stock speculation, which manifests itself
through a bear market for old investments and a bull market
for new investments (innovations). The CEPA has to correct
the aforementioned structural flaws of the competitive
market system, to implement an efficient policy of
innovation, and to ensure and impose a rational and
scientifically rigorous production model.

The Financial System

According to the standard functional definition of “money,” four functions
have been ascribed to money—namely: medium of exchange, unit of
account, store of value, and standard of deferred payment. The stock of
money held in an economy is held for various reasons: firstly, money is
held in order to facilitate exchange (i.e., it is to be spent rather than saved),
and, secondly, it may be held as an asset (i.e., to be saved rather than
spent).

If the supply of money falls below the level that is necessary to support the
growth of the economy, then the growth of the economy will be held
below its potential. On the other hand, if the supply of money is above the
level that is necessary to support the potential growth of the economy in
real terms, then the growth of the economy in money terms will be greater
than the growth in real terms, and this, other things equal, will manifest
itself in inflation. The “central bank” is a public institution that is
responsible for implementing and managing the monetary policy of a
country, or of a group of countries, and it controls the money supply.

In an economy, there will always exist two groups of economic agents: (i)
surplus units, namely, those whose revenue exceeds their current
expenditure during a given period of time, and (ii) deficit units, namely,
those whose expenditure exceeds their current revenue in a given period of
time. Therefore, some mechanism is required to ensure that the surplus
funds are channeled to the deficit units.

The surplus units can lend their excess funds directly to the deficit units.
For instance, a person can buy company or government securities through
a public issue. However, it is very often the case that a surplus unit will
lend its excess funds to a financial institution (“financial intermediary”),
which will then on-lend these funds by itself, buying company stocks,
government bonds, or other assets in which it invests. Thus, instead of a
direct contractual relationship between the provider and the user of the
funds, there are two contractual relationships: (i) the surplus unit lends to
or acquires a financial claim on the financial intermediary, and (ii) the
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financial intermediary lends to or acquires a financial claim on the
ultimate borrower, the user of the funds. Financial intermediation
facilitates the reconciliation of the differing needs of lender and borrower
by means of: (i) maturity transformation (since a financial intermediary
can borrow short and lend long), (ii) aggregation (i.e., by collecting
together a large number of relatively small amounts), and (iii) risk
transformation. The most important financial intermediaries are
commercial banks, investment banks, insurance companies, mutual funds,
hedge funds, pension funds, venture capitals, savings and loans
associations, credit unions, mutual savings banks, and consumer finance
companies.

In economics, by the term “interest,” we refer to the profit return on
investment. The money that is invested is called the “principal.” The
percentage return per annum is called the “rate per cent.” Thus, if P stands
for the principal, T stands for the time in years, R stands for the rate per

cent per annum, and I stands for the interest, then
PRT

I=—

100
where P and I must be in the same monetary units. This formula can be

transposed to give P, R, and T in terms of the other letters:
1001

PR’
1001

R =—— and
PT
1001

p ="
RT

Compound interest is different from simple interest in that the interest
which is added also attracts interest. If a sum of P monetary units is
invested at 7% per annum for n years, then the value or amount after n
years is

r n
P(1+=).

100
For instance, the value of $2,500 invested at 5% compound interest after

eight years (i.e., P = $2,500, r = 5, and n = 8) will be
r\" 5 8

P(1+=) =$2500(1+—-) =$3,693.

The mathematical formula of compound interest and regular deposits,
which underpins banking transactions, can be formulated as follows:
assume that you borrow an amount P of money (the “principal”) at an
(annual) interest rate of r > 0, and that, at the end of each year, you have
to pay back a fixed amount (a “deposit”) d. Let 4,, be the total amount of
money owed after n years. The formula for computing 4,, in terms of P
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(the principal of the loan), r (the interest rate of the loan), and d (the loan
deposits) is the following (where 0 < r < 1, e.g. 5% = 0.05):
A, =A4,_,(1+7r)—d

=PA+r)"—d@+r)"t—-d@+r)"2% -

—-d
=PA+r)"—d[@+r)"1+@+r)"2+--+(1+71)+1] , which
includes a geometric series, and r # 0; so that the initial condition is 4, =
P; at the end of the first year, you owe P (the principal) plus an interest
equal to rP minus the deposit you have agreed to pay each year.
Therefore, Ay =P +rP —d = P(1 + 1) —d; by analogy, at the end of
the second year, youowe 4, = A;(1+r)—d=P(1+r)?—d(d +71) —
d, etc. By allowing the owners of large sums of money to lend (that is,
trade) money on interest, we give them power to immunize themselves
against loss (in fact, this is the ultimate purpose of charging interest on
loans: to immunize the lender of money against loss), while socializing
loss and risks. Therefore, if the level of interest is formed spontaneously,
merely as a result of competition, it may give rise to important
irrationalities and inefficiencies, and it can lead to the establishment of an
exceptionally privileged financial oligarchy. As against this situation, a
rational and scientifically rigorous Central Economic Planning Authority
(CEPA) should systematically control and guide the banking system in
order to implement the optimal financial and monetary policy in
accordance with the CEPA’s economic plan. In other words, the CEPA
must ensure that credit is connected with the CEPA’s policy for the
rational organization of the resources of enterprises and for the
achievement of rational settlements between enterprises.
The net present value (NPV) of an investment project consists of
calculating the amount by which the value of that investment project
exceeds its cost. If i is the cost of capital (which, for convenience, is
assumed to be fixed for the project under consideration), then the NPV is
defined as follows:

X, X
NPV =

2 n

1+L‘+(1+i)2+ +(1+i)" Co

where X; (t = 1,2, ...,n) denotes the cash flow that corresponds to year ¢,
C, is the capital cost of the investment project in year 0, and n is the
lifetime (in years) of the investment project. Notice that, in the NPV
formula, i is the “discount rate,” that is, the company’s cost of capital
(specifically, the company’s interest rate and loan payments or dividend
payments to shareholders); when a company uses both debt and equity to
fund operations, i is the weighted average cost of capital. Hence,
according to the Italian-American economist Franco Modigliani (who was
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awarded the Nobel Prize in Economics in 1985) and the American
economist Merton Miller, under certain conditions (in particular, if we
assume that there is total information transparency and total rationality),
the intrinsic or real value of a company can be considered to be the net
present value of all the investment projects of that company. Furthermore,
if we divide the intrinsic or real value of a company by the total number of
outstanding shares issued by that company, we can find the real or
intrinsic value per share (for the given company).

Whereas the term “stock” means a share in the ownership of a company,
the term “bond” means debt. In fact, a bond is a debt instrument issued for
a period of more than one year with the purpose of raising capital by
borrowing. By the term “maturity,” we mean the date on which a debt
becomes due for payment. The “face value” (also known as the “par
value” or “principal”) is the amount of money a holder of a fixed income
security will receive back once the given security matures. The “coupon”
is the amount that a holder of a fixed income security will receive as
interest payments. The coupon is expressed as a percentage of the par

value. “Yield” is a figure that shows the return one gets on a bond.

) coupon amount
Current Yield = ——
market price

(when we buy a bond at par, yield is equal to the coupon, and, when price
changes, so does the yield). For instance, suppose that a bond has a par
value of $1,000 and that its coupon rate is equal to 6%. Since the market
price of a bond changes, an investor may purchase a bond at a discount
(i.e., less than par value) or a premium (i.e., more than par value). In
particular, if an investor buys this 6% coupon rate bond for a discount of
$900, then the investor earns an annual interest income of ($1,000 %
6%) = $60, and the current yield is $60/$900 = 6.67%. Notice that the
annual cash flow of $60 is fixed, regardless of the price paid for the bond.
On the other hand, if an investor buys this 6% coupon rate bond at a
premium of $1,100, then the investor earns again an annual interest
income of ($1,000 X 6%) = $60, but, in this case, the current yield is
$60/$1,100 = 5.45%.

A “zero-coupon bond” is a type of bond that makes no coupon payments
but, instead, is issued at a considerable discount to par value. For instance,
a zero-coupon bond with a $1,000 par value and ten years to maturity

might be trading at $600. In case of a zero-coupon bond,
1/N

("

where Y denotes the yield to maturity, M denotes the value of the given
zero-coupon bond at the time of maturity (i.e., the par value), P denotes
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the current price of this bond (present value), and N denotes the years to
maturity.
In general, as we have seen, in bonds, when price goes up, yield goes
down, and vice versa. The factor that influences a bond more than any
other is the level of prevailing interest rates in the economy. When interest
rates rise, the prices of bonds in the market fall, and, thus, we see an
increase in the yield of the older bonds, which are brought into line with
the newer bonds being issued with a higher coupon. On the other hand,
when interest rates fall, the prices of bonds in the market rise, thereby
lowering the yield of the older bonds and bringing them into line with the
newer bonds being issued with a lower coupon. Moreover, another
important factor that influences a bond is the issuer’s default risk. In fact,
investors try to determine if the bond rating agencies are going to change
the issuer’s rating. Rating changes may be prompted by changes in such
factors as: financial ratios, Gross National Product, inflation, etc.
In 1911, the American economist Irving Fisher expressed the “quantity
theory of money” in what is known as the equation (actually, identity) of
exchange:

MV = PQ
where M is the quantity of money in the economy, V is the velocity of the
circulation of money (i.e., the amount of nominal Gross National Product
each year divided by the money stock), P is the general price level (i.e.,
the average value of each transaction), and Q is aggregate output (i.e., the
physical volume of transactions during the given time period, so that
Gross National Product = PQ ). Thus, according to Fisher, if we
assume that, at least in the short-run, both ¥V and Q are constant (given that
the velocity of circulation is determined by institutional factors, such as
the payments interval for wages, and Q is determined by the productive
capacity of the economy), then a change in the money supply, M, results in
an equal percentage change in the price level P.
The previous equation implies that

PQ

M=—
4

and, since V is (assumed to be) constant, 1/V can be replaced by a
constant k. Additionally, when the money market is in equilibrium, the
demand for money, M, is equal to M. Hence,
M, = kPQ

which means that, according to Fisher’s model, the demand for money is a
function of income and does not depend on interest rates.

However, in practice, the velocity of the circulation of money, V, is not
constant, even in the short-run, and, especially, during periods of
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recession. Therefore, the English economist John Maynard Keynes
extended Fisher’s equation of exchange by pointing out that there are three
motives for holding money: (i) Transactions motive: money is a medium
of exchange, and, as income rises, people conduct more transactions and
hold more money. (ii) Precautionary motive: people hold money for
emergencies, and money demand is again expected to rise with income.
(iii) Speculative motive: money is also a way for people to store wealth,
and, under the speculative motive, the demand for money is negatively
related to the interest rate. Moreover, Keynes modeled the demand for
money as the demand for the real (as opposed to the nominal) quantity of
money (real balances), M/P. According to Keynes, the demand for real

money balances is a function of both income and interest rates:

M

> =@
where Q denotes output or income and i denotes the interest rate (and,
hence, the velocity of the circulation of money fluctuates with the interest
rate).
The level of interest rates can indeed be treated as a monetary target, but it
is important to determine the extent to which interest rates are a major
factor in decisions of either businesses, consumers, or governments. For
instance, if an economy is characterized by important structural
inefficiencies, then an increase in the supply of money (other things
equal), instead of boosting economic growth, may lead to an increase in
inflation and money incomes.
Moreover, it is worth mentioning that central banks have at their disposal a
number of policy instruments that can affect certain intermediate targets,
such as the money supply, interest rates, etc. The three major instruments
of monetary policy are:

i Open market operations: this is the activity of a central bank
in buying or selling government bonds to influence the
money supply, interest rates, and bank reserves. In fact, if
securities are bought (by the central bank), the money paid
out by the central bank increases commercial-bank reserves,
and the money supply increases. On the other hand, if
securities are sold (by the central bank), then money supply
decreases.

il. Discount-rate policy: given that the discount rate is the
interest rate charged by the central bank on a loan that it
makes to a commercial bank, it follows that the central bank
can increase the discount rate to reduce the money supply,
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whereas the central bank can reduce the discount rate to
increase the money supply.

Reserve-requirements policy: by the term “required
reserves,” we mean that portion of deposits that a bank sets
aside in the form of vault cash or non-interest-earning
deposits with the central bank. In fact, if the central bank
wants to tighten money overnight, then it can raise reserve
requirements, whereas, if the central bank wants to ease
credit conditions (and, thus, increase the money supply), then
it can cut reserve requirements.

Economic Cycle, Economic Crisis, and Political Economy

By the term “economic cycle,” or “business cycle,” we refer to economic
fluctuations between periods of economic expansion and economic
contraction. In other words, an economic cycle is the circular movement of
an economic system as it moves from expansion to contraction and back
again. The four stages that characterize the economic cycle (or business
cycle) are the following:

1.

ii.

iii.

1v.

Expansion: during this stage, the economy experiences
relatively rapid growth, interest rates tend to be low, and
production increases. The economic indicators associated
with growth (e.g., employment and wages, business profits
and output, aggregate demand, and the supply of goods and
services) tend to increase through the expansionary stage,
but, at some point, the increase in the money supply may
cause inflationary pressures.

Peak: during this stage, growth hits its maximum rate, and
prices and economic indicators may stabilize for a short
period of time before they start to decrease.

Contraction: during this stage, growth slows, employment
decreases, and prices stagnate. As demand decreases,
businesses may not immediately adjust production levels,
causing a situation characterized by oversupply and falling
prices. If the contraction of economic activity continues, then
it may turn into a “recession.”

Trough: during this stage, the economy hits a minimum
point, with supply and demand hitting bottom before
recovery.

By the term “economic crisis,” in general, we refer to sudden interruptions
in the (re)production of the economy. Irrespective of the romantic aspects
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of Karl Marx’s communist vision, which are irrelevant to my work and
thought, Karl Marx, under the influence of British and German scientific
economic theories, articulated a brilliant critical method of understanding
and restructuring social reality. Irrespective of the romantic, egalitarian
teleology of Marx’s thought, of which I disapprove, I maintain that Marx’s
analysis of capitalism is very useful in order to overcome class conflict
towards a hierarchical and scientifically organized society, in line with
Plato’s vision and the principles of cybernetics. Additionally, I would like
to mention that, in contrast to romantic populism, Vladimir Lenin (1870—
1924) conceded that, historically, scientific socialism comes from
educated intellectuals, from an elite, and the reason why it cannot easily
spread among the working class is that it is too complicated, and,
therefore, he highlighted the importance of education. Furthermore, in
view of Darwin’s theory of evolution, we have to keep in mind that, since
man is a thinking ape who developed civilization as a negation of nature
(in a Promethean sense) and as a manifestation of the intentionality of
human consciousness, humanity’s attempt to transcend its ape origins and
to rise to better and better and more successful levels of being is an open
process, a constant quest, and a constant existential gamble.

The way I have delineated my conception of the Central Economic
Planning Authority (CEPA) and its specific roles and goals suggests that I
am proposing a specific model of market socialism, where markets for
goods, services, money, and capital exist but are thoroughly controlled,
systematically directed, and totally constrained by a powerful ruling
scientific elite in the context of a vertical-hierarchical political system
based on Plato’s vision of the ideal republic.

Marx has correctly and mathematically rigorously analyzed the
endogenous causes of the capitalist crises. I shall briefly present Marx’s
explanation of economic crises, and afterwards I shall briefly present a
scientifically rigorous, “technocratic” approach to economic planning.
Karl Marx, in his seminal book The Capital (published as three volumes in
1867, 1885, and 1894), articulated a structural theory of economic crises in
the capitalist system. He started from the “labor theory of value,” which
was originally formulated by the Scottish economist and philosopher
Adam Smith and the British political economist and politician David
Ricardo. According to the labor theory of value, only people can create
value. Machines or production charts save value (in particular, they have
use value), in the sense that they are useful things, but machines and
production charts on their own cannot do anything, until someone does
something with them.
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Marx thought as follows: Let us divide the average working day into two
component parts, V and S, where V' denotes “variable capital,” and S
denotes “surplus value.” Variable capital means that proportion of capital
which is equal to the cost of labor, so that it is invested in wages (V is
sufficient for the purchase of labor power). Surplus value means the
additional capital that is produced, and it is the source of profit (i.e., the

accumulated product of the unpaid labor time of the producers). The ratio
S

vV
is called the “rate of surplus value.” Marx defined the “rate of profit” as

follows:
S

cC+V

where S is the surplus value, V is the variable capital (i.e., the wages paid
for the production of a commodity), and C is the constant capital. By the
term “constant capital,” Marx means the value of goods and materials
(e.g., machinery, raw materials, etc.) required to produce a commodity
(Marx used the term “constant capital” in accordance with the labor theory
of value). Thus, Marx formulated the “law of the tendency of the rate of
profit to fall” over an economic cycle due to competition.

A capitalist (or, generally, an owener of a business) cannot fritter away the
entire surplus value in luxury expenditure, but he/she has to reinvest a
significant proportion of the surplus value in order to protect
himself/herself from competition and in order to get an advantage over
competitors. Moreover, because of technical improvements (such as
machinery), represented by C (the “constant capital”), the productivity of

labor increases. Over time, as a capitalist invests, the ratio
C

%
increases (more and more machinery is working together with the

individual laborer). Hence, there is a tendency to replace living labor (i.e.,
V) with “dead labor” (i.e., C). If we divide both the numerator and the

denominator of the rate of profit by V, we obtain
s s

|4 — |4
T v T
14 |4 14

where the ratio C/V increases over an economic cycle, as we have just
explained. Therefore, if the ratio S /V increases at a lower speed than the

ratio C/V’ then the rate of profit decreases. This result is Marx’s “law of
the tendency of the rate of profit to fall” over an economic cycle due to
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competition. It goes without saying that there are counter-acting influences
that can delay the onset of this effect (e.g., through technology,
imperialism, foreign trade, labor intensification, an expansionary monetary
policy, etc.), but the underlying structure of the economy is reflected by
Marx’s “law of the tendency of the rate of profit to fall” over an economic
cycle due to competition. In other words, capitalist crises are due to the
very nature, the intrinsic contradictions, of the capitalist system. During
capitalist crises, business bankruptcies and consolidations occur, so that C
decreases, and the “reserve army of unemployed” increases. The increase
in unemployment causes a downward pressure on the level of wages, and,
therefore, VV decreases. As C and V decline, the rate of profit recovers, and
a new cycle of accumulation begins until a new crisis occurs, and so on.

In view of the foregoing, a policy of economic planning is necessary. My
conception of a Central Economic Planning Authority (CEPA), as I
described it earlier in this chapter, represents an updated, modern version
of Plato’s vision of a republic ruled by the “epaiontes” (i.e., “those with
real understanding,” the “genuine experts,” “those who perceive things
according to their nature”). Advances in mathematics and technology
combined with an aristocratic ethic can make this ideal practical,
consistent, and effective. Thus, Plato’s political theory should be merged
with cybernetics, which reflects a conception of a “universal
organizational science,” which would be capable of combining and
coordinating all the individual scientific disciplines. Cybernetics is a
transdisciplinary systematic study of regulatory and purposive systems
(their structures, constraints, and possibilities). Hence, cybernetics has
been defined as “the art of governing or the science of government”
(according to the French physicist and mathematician André-Marie
Ampere), “the art of steersmanship” (according to the English psychiatrist
Ross Ashby), “the study of systems of any nature which are capable of
receiving, storing, and processing information so as to use it for control”
(according to the Soviet mathematician Andrey Kolmogorov), “the science
and art of the understanding of understanding” (according to Rodney E.
Donaldson, the first president of the American Society for Cybernetics),
“the art of creating equilibrium in a world of constraints and possibilities”
(according to the American philosopher Ernst von Glasersfeld), as well as
“a branch of mathematics dealing with problems of control, recursiveness,
and information, focuses on forms and the patterns that connect”
(according to the English anthropologist and linguist Gregory Bateson).

The sixth-century B.C.E. Ionian Greek philosopher and mathematician
Pythagoras was, arguably, the first person who called himself a
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“philosopher.” In particular, Diogenes Laertius, in his Lives of Eminent
Philosophers (Book VIII, Chapter 1: Pythagoras, 8) writes the following:

Sosicrates in his Successions of Philosophers says that, when Leon the
tyrant of Phlius asked him [namely, Pythagoras] who he was, he said, “A
philosopher,” and that he compared life to the Great Games, where some
went to compete for the prize and others went with wares to sell, but the
best as spectators; for similarly, in life, some grow up with servile
natures, greedy for fame and gain, but the philosopher seeks truth.

Moreover, Diogenes Laertius, in his Lives of Eminent Philosophers (Book
V, Chapter 1: Aristotle, 20) writes that, when Aristotle was asked what
advantage he had ever gained from philosophy, Aristotle’s response was
the following: “This, that I do without being ordered what some are
constrained to do by their fear of the law.” From Aristotle’s perspective,
philosophy—expressing a continuous and systematic quest for knowledge,
which is dialectically directed towards the ultimate knowledge—enables
one to understand the underlying order and harmony of the world and,
thus, to act rationally without coercion.

Philosophy being the most general approach to knowledge and truth, Plato,
in his Republic, aptly proposed a model of polity based on the concept of
the “philosopher king,” a theoretical ruler who combines philosophical
knowledge and temperament with political skill, power, and authority.
This political vision, being based on the supreme and noblest
epistemological, moral, and aesthetic values, and not on particular
economic/social interests, aims at the scientifically and morally optimal
organization and governance of human beings and at the guidance of
science and education by philosophy, by a ruling philosophical elite, and
not by self-interested individual social actors, or the capitalist class, or
irrational passions. Philosophy enables one to reason and argue in the most
abstract, the most comprehensive way and to consciously choose a value
system and, thus, a way of life and a type of humanity. Consequently, a
genuinely philosophical mindset is a necessary prerequisite for genuine
political leadership and statesmanship. As Plato has correctly argued,
politics separated from philosophy is a counterfeit of politics.

The constitutive and the regulative rules of a polity shape a dominant
ethos, which differentiates a genuine political community from any
coalition of self-interested actors; and genuine thought, that is, thought as
understood in the context of science and philosophy (which is a reflection
on science), is the source of correct and optimal rules. My thinking on
these issues shares the conviction of the philosopher Giuliano Di
Bernardo, who, in his books Liberalismo contro Totalitarismo and The
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Future of Homo Sapiens, argues for an updated variety of enlightened,
genuinely aristocratic (that is, spiritually aristocratic) totalitarianism. The
vertical and technocratic hierarchical system that we propose should not be
confused with other historical models, such as those of the tyrant, the
dictator, the monarch, and any similar models, because it is analogous to
the government of philosophers delineated by Plato in his Republic.

Scientific Totalitarianism: A Theme in Need of a Focus

The ancient Greek polis (city-state) had a unique, distinctive characteristic
on the basis of which and due to which the institution of the polis was
differentiated from other forms of organized collective behavior, and it
gave rise to the notions of political art, political virtue, and political
science. The unique, distinctive characteristic of the ancient Greek polis
consisted of a collective attempt to institute a community whose telos, or
existential purpose, was to live in harmony with the principle of truth, as
we read in Aristotle’s Nicomachean Ethics, X. From the aforementioned
philosophical perspective, we can talk meaningfully about “politics” and
“civilization” only when the ultimate goal of collective life is “truth,”
which, according to Plato and Aristotle, implies the imitation of true being,
that is, of that mode of existence which is free from corruption, alterations,
and annihilation (Plato, Republic, 1I, 1V, VII, and X; Aristotle,
Nicomachean Ethics, II-VI). This is the reason why logic and, especially,
the kind of knowledge that is represented by mathematics play a key role
in Plato’s and Aristotle’s thought.

In the context of Plato’s and Aristotle’s philosophical works, genuine
politics refers to an existential goal of the human being, and, therefore,
genuine politics is a collective struggle that is aimed at the truthfulness of
human existence. In other words, the telos of politics is to enable humanity
to exist authentically through and within a social system. This aspiration is
the core of classical Greek political thought.

In order to clarify the arguments that genuine politics consists of the
pursuit of truth and that truth consists of the imitation of true being, we
need to understand the meaning of “truth” (in Greek, “aletheia”) and
“reason” (in Greek, “logos”) in the context of classical Greek thought. In
terms of the Greek word “aletheia,” everything that exists is manifested as
an entity in the world, that is, the truth of anything/anyone is ultimately
determined by its/one’s participation in the logical constitution of the
world, and the Greek term “logos” refers to the disclosure of this fact. The
event of disclosure speaks about and declares the existence of an entity in
the world, and it refers to a conscious being that is aware of the event of
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disclosure. Hence, truth emerges from the relationship between a disclosed
entity and the viewer and agent of this disclosure; and “logos” is the event
of disclosure and the elucidation of the way in which disclosure takes
place.

The “existent” is disclosed through its form, or species, that is, through its
distinctive way of being. For instance, the form of a robot “says” to its
viewer that the given object is a robot (and not, for instance, a flower).
However, the Greek term “logos” refers not only to the individual form of
each being or thing that exists in the world, but also to the overall
configuration of the world, that is, to the way in which beings and things
that exist in the world relate to each other. This is the reason why the
Greek term “logic” derives from the Greek term “logos.” Furthermore,
according to ancient Greek aesthetics, the overall formation of the entities
that exist in the word has “kallos,” which means beauty, as we read in
Plato’s works Timaeus (29a—d, 47b—c), Republic (443d, 500c), Phaedrus
(246251, 247c—d), and Laws (734a—741a), as well as in Aristotle’s works
Physics (265a25), Politics (1289b25), and Nicomachean Ethics (1181b21).
The Greek noun “kallos” (beauty) is semantically related to the Greek verb
“kalo” (xald), meaning “attract” and “invite.” By viewing and
contemplating the way of the overall formation of the entities in the world,
ancient Greek philosophers identified the harmony and, hence, the beauty
of the world. Therefore, they called the universe “cosmos,” which, in
Greek, is semantically related to the Greek noun “cosmema,” meaning
“jewel,” “ornament,” and “embellishment.”

The “logos” of the entities that exist in the world consists of the way in
which they participate in the corresponding species/form and of the way in
which they relate to each other in the context of the cosmic harmony and
order. The “logos” of the cosmic entities that belong to the same
species/form is common to all of them, and it is incorrigible and eternal,
independent of the characteristics of particular entities. For instance, every
particular rose and every particular lion will perish, and, eventually, they
will be annihilated. But the form of a rose, namely, its “logos,” or the way
of its participation in existence, which makes it what it is (the given plant),
and the form of a lion, its “logos,” or the way of its participation in
existence, which makes it what it is (the given animal), are not susceptible
to corruption, but they are incorrigible and eternal. Moreover, the set of
the fundamental relations (i.e., the structure) in which every particular
plant and every particular animal participate (e.g., the way of a plant’s
sowing, vegetation, and blossoming, and the way of an animal’s birth,
development, and reproduction) is an integral, incorrigible, and eternal
whole. Hence, “logos” means participation in the corresponding (eternal
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and incorrigible) form that makes existents what they are as well as
participation in the formation of the entire cosmos; and this idea underpins
my conception of scientific totalitarianism in general as well as my
conception of a hierarchical, organic society in particular. As I have
already mentioned, it goes without saying that I reject every variety of
totalitarianism that is based on biological racism, chauvinism,? religion,
romanticism, and/or particular class interests. Moreover, I am aware of the
traumatic experiences left in Europe by attempts by essentially irrelevant
persons to pursue totalitarian politics. I advocate a concrete vision of
scientific  totalitarianism based on Plato’s political thought,
interdisciplinary mathematics, and epistemology.

True being, that is, the way of being eternal and incorrigible, is the event
of participation in the “logos,” and, therefore, it is clear what one must do
if he/she “seeks . . . to be immortal” (Plato, Symposium, 207d1-2): he/she
must imitate the “logos” of the relations of participation in the formation
of the cosmos. For instance, he/she must understand and organize society
as an event of participation in the order, the harmony, and the decency of
the relations that constitute the eternal cosmic beauty. This is the essence
of my conception of scientific totalitarianism in general as well as of my
conception of a hierarchical, organic society in particular.

3 Regarding chauvinism, in particular, it should be mentioned that, in the twentieth
century, it was reinforced by English, German, and American geopolitics (e.g., by
such geopoliticians as Halford John Mackinder, Karl Ernst Haushofer, and
Nicholas J. Spykman). It is worth mentioning that G. Nicolas and C. Guanzini
have used the evocative symbolism of the Second Horseman of the Apocalypse in
order to articulate their argument that even the most renowned and venerated of
geopolitical theorists and political geographers had “attempted to vindicate war
through teaching the love of the Mother Earth” which was most powerfully and
emotionally expressed in an aggressive, nationalist love of the Mother Country.
For more details, see: G. Nicolas and C. Guanzini, “Ancient History for the Future:
The Political Role of Geography,” Video English Version G. Parker, University of
Lausanne, Eratosthéne, 1993. Additionally, geopolitics has been used by particular
Western bureaucracies in order to undermine Russia’s imperial, multiethnic
tradition and structure, and, during the Cold War, geopolitics was also used as an
ideological weapon against the Soviet bloc and, generally, against the
cosmopolitan aspect of socialism. Finally, it should be mentioned that White
Russian émigrés (i.e., Russians who emigrated from the former Russian Empire in
the wake of the Bolshevik Revolution (1917) and the Russian Civil War (1917—
23), and who were in opposition to the Bolsheviks) developed a peculiar variety of
chauvinism and fascism by combining Western theories of geopolitics, mysticism,
and religious doctrines (the Russian intellectual Ivan Ilyin is a characteristic
representative of this ideological current).
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Chapter 5
Probability and Statistics

First of all, it should be clarified that, by the term “quantitative analysis,”
we mean the study of phenomena by means and on the basis of any type of
quantitative information. Such an inquiry takes place by applying suitable
methods that determine the nature of the available information and the
phenomena under consideration. Quantitative methods mainly include
methods that derive from mathematical analysis, mathematical
programming, probability theory, and statistics.

In fact, statistics emerged from the constant efforts of humankind to deal
with situations of uncertainty in which they lived. In these situations, the
element of luck always appeared as a key determining factor which
prevented the identification of the existence of systematicness in the
manifestations of various phenomena and in the formulation of relations
between them. Aristotle was the first philosopher to offer a systematic
account of “luck” and to include it as a significant topic in both physics
and ethics (Aristotle, Physics, 2:4—6, and Metaphysics, 7:7-9). A method
is called statistical if it relates facts and hypotheses of some kind. Hence,
statistics investigates and develops methods for evaluating hypotheses in
reference to empirical facts.

In general, luck is involved in all things where actors do not hold full
control over the outcome of action. One of the basic attributes of the
statistical method is the fact that it refers to properties of populations
instead of individual cases. Statistics examines a unit only in its capacity
as a member of a population. The statistical method can be applied in
order to solve any problem related to the definition of overall behavior,
based on individual observations expressed numerically. The concept of
luck is commonly used in statistics in order to display all the possible
outcomes given a very large sample and the probability of each outcome.
In science, “probabilities,” often called chances or stochastic processes,
are relative frequencies in series of events, or tendencies or propensities in
the systems that give rise to those events. By the term “frequency,” we
refer to the number of times each measurement occurs.

Probability theory is primarily concerned with the issue of uncertainty. In
fact, “probability,” usually denoted by p, is a quantitative measure of
uncertainty. It is a number between 0 and 1, where 0 indicates
impossibility and 1 indicates certainty. Assume that we take any very large
number, N, out of a series of cases in which an event, 4, is in question, and
that A happens on pN occasions (where 0 < p < 1). The probability of the
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event A is said to be p (the certainty of the corresponding proposition
increases as the number N of specimen cases selected increases).
Furthermore, the following corollaries and extensions may be added to the
aforementioned definition of a probability: (i) If the probability of an event
is p, then, out of N cases in which it is in question, it will happen pN
times, where N is any very large number (where 0 < p < 1). (ii) If the
probability of an event is p, then the probability of its failing is 1 — p.

Probability theory is based on set theory. By the term “experiment,” we
mean a process that leads to one of several possible outcomes. By the term
“outcome,” we mean an observation or measurement. The “sample space”
is the set of all possible outcomes of an experiment. An “event” is a subset
of a sample space—or, in other words, a set of basic outcomes. Thus, we
say that the event “occurs” if the corresponding experiment gives rise to a
basic outcome belonging to the event. Therefore, we obtain the following

formula:
Probability of event A = %,
where n(A) is the number of elements in the set of the event A, and n(S)
is the number of elements in the sample space S. For instance, roulette as it
is played in Las Vegas or Atlantic City consists of a wheel that has 36
numbers, numbered 1 through 36, and the numbers 0 and 00 (double zero).
Therefore, in this case, the sample space, S, consists of 38 numbers, and
the probability of winning a single number that you bet is P = 1/38.
When the sets corresponding to two events are disjoint (their intersection
is the empty set), then these events are called “mutually exclusive.”
The axiomatic definition of probability is the following: Let E be a space
of elementary events (i.e., the space of outcomes of experiments, or the
space of states of a system, since the state of a system can be construed as
the outcome of an experiment). The “probability of an event” A € E is
denoted by p(4), and it is defined as a single number that corresponds to
A and has the following properties:
(P1) p(A) 2 0;
(P2) for each pair of mutually exclusive events, 4, B € E, it holds
that
p(AUB) =p(4) +p(B);
(P3) p(E)=1 (i.e., the total probability, after adding all
possibilities, is equal to one).
Remark: For each A,B S E,p(AUB) =p(A) +p(B) —p(ANB); but,
in case A and B are mutually exclusive, it holds that p(A N B) = 0, so we
obtain (P2).
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By the term “conditional probability,” we mean the probability of event A
conditional upon the occurrence of event B. Assume that we investigate
the probability of an event A given that we know that an event B has
occurred, and that event B influences the probability of event A. The
“conditional probability” of event A given the occurrence of event B is
defined as the quotient of the probability of the intersection of A and B
over the probability of event B; symbolically:

P(ANB)
P(AIB) = 2522,

where P(A|B) denotes the probability of A conditioned on B, and we
assume that P(B) # 0. The aforementioned formula for the computation
of conditional probability is known as Bayes’s Law, since it was originally
formulated by the eighteenth-century English statistician and philosopher
Thomas Bayes. Notice that A is independent of B if P(A|B) = P(A); that
is, knowing that B occurred does not change the probability that A
occurred. Thus, according to Bayes’s Law, two events A and B are
independent of each other if and only if

P(ANB) = P(A)P(B).

Bayes’s Law provides a method of revising existing predictions or theories
(specifically, updating probabilities) given new additional evidence. In
fact, Bayes’s Law implies that the interpretation of any risk assessment
depends on an estimate of the base rate, and the corresponding base rate,
which is never known with complete certainty at the time of the
assessment, is a Bayesian “prior probability.”

Probability theory has several significant applications in the natural
sciences and in the social sciences. For instance, in genetics, probability is
a measurement tool that helps us to predict the chances of an offspring
being inherited with a particular trait of interest (assuming Mendel’s laws
of inheritance). The sum law helps us to find the probability of two or
more events occurring as long as they are mutually exclusive: the
probability of the occurrence of one event or the other, of two mutually
exclusive events, is the sum of their individual probabilities; that is, if A
and B do not share any outcome, then p(A U B) = p(4) + p(B). The
product law helps us to find the probability of two or more events
occurring as long as they are independent of each other: if A and B are
independent of each other, then P(AN B) = P(A)P(B) . Moreover,
probability theory helps us to estimate the chances of success or failure of
a business project, an investment, or product launch.

By the term “random variable,” we refer to a function from the outcomes
of an experiment to the set of real numbers. A “probability distribution
function” specifies the probabilities associated with the values of the
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corresponding random variable. The “expected value” of a discrete
random variable X is denoted by E (X), and it is defined as follows:
ECO = ) xp(x)
where x; denotes the ith value of the random variable X (i = 1,2,3,...),
p(x;) denotes the probability of x;, and the symbol ),  denotes the sum
of all products x;p(x;).
One of the most important methods that is used to discover, describe, and
explain “typical” behavior of mass data is the “arithmetic mean.” The
formula is
i=1X;
N
where X denotes the arithmetic mean, ), X; denotes the summation of
the values of the individual observations X; under consideration (i =
1,2,...,N), and N is the total number of items in the series that have been
summated. It is worth noticing that arithmetic means are often “weighted”
averages, in the sense that, when averaging values, it is sometimes
logically necessary to assign more importance to some than to others (by
multiplying each value with a suitable statistical weight), so that particular
values may be more influential in determining the “typical” value than
others. Formally, the weighted arithmetic mean of a non-empty finite set
of data {X,X,,.., Xy} with corresponding non-negative weights
{w,wy, ...,wy}is
7 N owiX; _ WX, + WX, + o+ wy Xy
iz Wi wy +wy + - Fwy
(the weights can be in the form of decimals, whole numbers, percentages,
etc.). For instance, if x,x,, x5, ... are the measured observations and
fi, f2, f3, ... are the corresponding frequencies, then the arithmetic mean is
fixa + foXxo + faxz + -
i+ttt
(this is the arithmetic mean of a frequency distribution). Moreover, notice
that a consumer price index (CPI) is typically calculated as a weighted
average of the price change of the goods and the services covered by the
index (in this case, the weights are meant to reflect the relative importance
of the goods and the services as measured by their shares in the total
consumption of households).
Weighted aggregative price index: Firstly, having chosen a base year, we
obtain the prices of a list of commodities and some measure of the
importance of each commodity that is relevant to the purpose of the index.
The importance may be measured by the quantity of each commodity sold,
consumed, or produced (other weights may be devised in special

X =

X =
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situations). The data used for weighting purposes must refer to the base
period. Secondly, we multiply each of the commodity prices by the
corresponding weight. Thirdly, we summate the so obtained values for
each time period. Fourthly, we divide each total by the base total, and we
multiply by 100 to reduce the index to percentage form. If we denote the
base year quantities used for weights by qo,qq, 94, -, q% , then the
aforementioned method of computing a weighted aggregative price index
is given by the following formula, which is known as the “Laspeyres Price
Index”:
Weighted aggregative price index
ral "ol e n-n
_ P19 + p}q? + p},q?l +-+ pilq?l % 100
Poqo + Poqo + Poqo + "+ Podo
Sum of (Price at observation period X Base quantity)

x 100

Sum of (Price at base period X Base quantity)
(do not be confused by the notations: the numerator is simply the total
expenditures for all commodities at the observation period using base
quantities, and the denominator is simply the total expenditures for all
commodities at the base period using base quantities).
Whereas the mean is the average value of a set of data, the “median” is the
middle value in a set of data. Hence, in order to find the median of a data
set, one must arrange the data from least to greatest, and find the data point
located in the middle: if there is an odd number of data, then the median is
the middle point in the array, but, if there is an even number of data in the
array, then the median is the average of the two middle data points in the
array. The “mode” is the value that appears most frequently in a set of
data.
As I have already mentioned, by the term “probability distribution,” we
mean a statistical function that describes all the possible values and
likelihoods that a random variable can take within a given range. A
probability distribution is called a “normal distribution,” or a “Gaussian
distribution,” if it is symmetric about the mean, showing that data near the
mean are more frequent in occurrence than data far from the mean (as
shown in Figure 5-1). In the normal distribution, its mean (average),
median (midpoint), and mode (most frequent observation) are all equal to
each other; and these values all represent the peak, or highest point, of the
distribution. In graphical form, the normal distribution appears as a “bell
curve,” as shown in Figure 5-1. In other words, the “normal curve” is bell-
shaped and perfectly symmetric (centered on the mean).
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Figure 5-1: A normal (or Gaussian) distribution (source: Wikimedia Commons:
Author: Thais Monteiro Peres;
https://commons.wikimedia.org/wiki/File: Curva_Gaussiana.png).
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One of the most important methods that are used to discover, describe, and
explain “risk” or “uncertainty” is the “standard deviation,” which is a
quantity expressing by how much the members of a database (i.e., the data
under consideration) differ from the arithmetic mean of the given
database. The formula of the standard deviation is:

where: firstly, we calculate the arithmetic mean X of the values X; (i =
1,2, ..., N) under consideration; secondly, we record the deviation of each
value X; from the arithmetic mean, namely, x; = X; — X ; thirdly, we
square these deviations (we compute x?); fourthly, we summate the
squared deviations and divide by N (thus finding the “variance” of our
data); fifthly, we extract the square root to obtain o (i.e.,
standard deviation = vvariance ). However, the aforementioned
formula for the standard deviation is used when N is the entire population
of the species or kind under consideration; if we do not have the entire
population, we use the following formula for the standard deviation:

(X - X)?
n—1
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where n is the size of the sample (i.e., the number of the point data that are
contained in the database that we use), X; is the ith point of the sample
(i =1,2,...,n), and X is the arithmetic mean of the sample (namely, of the
database that we use).

The normal curve’s standard deviation tells us what percentage of
observations falls within a specific distance from the mean. As shown in
Figure 5-1, when we have a normal curve, the area below the curve
contains 100% of all observations; approx. 68% of all observations fall
within one standard deviation from the mean; approx. 95% of all
observations fall within two standard deviations from the mean; and
approx. 99% of all observations fall within three standard deviations from
the mean.

When we have two sets of data and we want to find how strong a
relationship is between them, we use “Pearson’s correlation coefficient”
(PCC), also known as Pearson’s r. In other words, PCC calculates the
level of change in one variable due to the change in the other. When
applied to a sample of the variables x and y, PCC is commonly
represented by 7y,

Given paired data

{(x1, ¥1), v, (X3, Y1)}, consisting of m pairs, 75y, is defined as follows:

L B —D0i—)
P B o — 022 (0 — 9)?

where:

n is the sample size,

x; are the values of the x-variable in the sample,

X is the mean of the values of the x-variable,

y; are the values of the y-variable in the sample, and

¥ is the mean of the values of the y-variable.

PCC returns values between —1 and 1, symbolically,

-1<rn,<1,

where: 1 indicates a strong (actually, perfect) positive relationship, —1
indicates a strong (actually, perfect) negative relationship, and a result of
zero indicates no relationship at all. In general, a positive correlation
between two variables means that both the variables move in the same
direction, whereas a negative correlation between two variables means that
both the variables move in opposite directions. In the numerator of the
formula of correlation, we calculate how far away we are from the mean
and if we are above or below the mean, whereas, in the denominator of the
formula of correlation, we calculate only how far away we are from the
mean. Notice that, in the denominator of the formula of correlation, we
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take the square roots of some numbers being squared, because the square
root of a square is conceptually equivalent to the absolute value, and
“absolute value” means “distance.” In particular, in this case, the absolute
value tells us how far away we are from the corresponding mean value
(this process is known as “standardizing,” that is, dividing through by
magnitude).

For instance, in biology, the relation between independent or the predictor
variables and outcome or the dependent variable is explored using
correlation analysis. In this way, one can explain how the risk factors or
the predictor variables account for the possibility of the occurrence of a
disease or presence of a phenotype. The disease outcome or the dependent
variable is associated with biological factors (e.g., age and gender),
lifestyle variables, psychological variables, and genetic factors (genetic
mutations), and correlation tests help us to understand such “risk factors—
disease” relationships. Moreover, correlation is an important part of
statistical analysis in economics and social policy, and it helps us to
understand economic and social phenomena and trends.

Poisson process: A “general random process” (such as the temperature in
a room) is random but varies continuously with time, whereas a “Poisson
process” refers to a random process that is discrete (namely, a “random
point process”) and occurs at particular times (e.g., it may describe people
arriving at a bus stop, telephone users making telephone calls, etc.). In a
Poisson process, events are characterized by a constant mean rate (i.c.,
these events are random, but, over a certain period of time, they have a
known mean rate), and events happen independently (of each other). The
Poisson distribution is

yLT

Py(k) = ——

where: Py (k) denotes the probability, for the Poisson process X, that k
events happen in the time period of interest, A denotes the expected
number of events over the time interval of interest (so that A =
rate X time), and k!l = k- (k—1)+(k—2)-..-2-1. This distribution
was first introduced by the French mathematician and physicist Siméon
Denis Poisson (1781-1840). The mean value of the Poisson distribution
equals A; and the variance of the Poisson distribution also equals A.

For instance, suppose that you are fishing for 2 hours at a spot where on
average people catch 2.8 fishes per hour, and you want to know the
probability of catching 5 fishes. This is a random variable that is “Poisson

. . 5.65¢=56
distributed” with 4 = 2.8 X 2 = 5.6, so that Py(k = 5) = —

-1
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Chapter 6
Classical Euclidean Geometry, Analytic
Geometry, and Trigonometry

Geometry is the scientific study of the quantitative and the qualitative
properties of spatial forms and relations (the criteria for equality of
triangles provide instances of qualitative geometric knowledge, and the
computation of lengths, areas, and volumes exemplifies quantitative
geometric knowledge).
Around 300 B.C.E., Euclid published the definitive treatment of Greek
geometry and number theory in his thirteen-volume Elements, building on
the experience and the achievements of previous Greek mathematicians:
on the Pythagoreans for Books I-IV, VII, and IX, on Archytas for Book
VIII, on Eudoxus for Books V, VI, and XII, and on Theaetetus for Books
X and XIII. The axiomatic method used by Euclid is the prototype for the
entire field of “pure mathematics,” which is “pure” in the sense that we
need only pure thought, no physical experiments, in order to verify that the
statements are correct—that is, we need only to check the reasoning in the
demonstrations. ~ All  mathematical  theorems are conditional
statements—namely, statements of the form
If (hypothesis) then (conclusion).
Put simply, one condition (hypothesis) implies another (conclusion). In
particular, in a given mathematical system, the only statements that are
called “theorems” are those statements for which a proof has been
supplied. By a “proof,” we mean a list of statements that is endowed with
a justification for each statement, and it ends up with the conclusion
desired. The following are the six types of justifications allowed for
statements in proofs: (i) “by hypothesis . . .”; (ii) “by axiom . . .”; (iii) “by
theorem . . .”; (iv) “by definition . . .”; (v) “by step . . .”; (vi) “by rule . . .
of logic”; and a justification may involve several of the aforementioned
types.
In particular, Euclid articulated:
1. A set of definitions, such as the following:

e A point is that which has no part or magnitude (i.e., it does not
have a concrete size).
A line is length without breadth.
The ends of a line are points.
A straight line is a line that lies evenly with the points on itself.
A surface is that which has length and breadth only.
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The edges of a surface are lines.
A plane surface is a surface that lies evenly with the straight
lines on itself.

ii. A set of fundamental rules (axioms):

e Things that are equal to the same thing are equal to each other.

e Ifequals are added to equals, then the wholes are equal.

e If equals are subtracted from equals, then the remainders are
equal.

Things that coincide with each other are equal to each other.
The whole is greater than the part.

e Things that are double of the same things are equal to each
other.

e Things that are halves of the same things are equal to each
other.

iii. 4 set of fundamental propositions (postulates):

e Postulate 1: a straight line may be drawn from one point to any
other point. Given two distinct points, there is a unique straight
line that passes through them.

e Postulate 2: a terminated straight line can be produced
indefinitely.

e Postulate 3: a circle can be drawn with any center and any
radius.

e Postulate 4: all right angles are equal to each other.

e Postulate 5 (known as the Parallel Postulate): if a line segment
intersects two straight lines forming two interior angles on the
same side that sum to less than two right angles, then the two
lines, if extended indefinitely, meet on that side on which the
angles sum to less than two right angles.

According to Euclidean geometry, space is three-dimensional and
isotropic (i.e., it has the same value when measured in different
directions). This scientific conception of space clashes with several
mythical and folk perceptions of space, according to which space is
connected with a form of temporality, and it is unisotropic (for instance,
the “upward” and the “forward” directions are evaluated as superior to the
“downward” and the “backward” directions). The Euclidean perception of
space, combined with the concept of gravity, found its fullest expression in
Isaac Newton’s calculus and mechanics.

In view of Euclid’s geometric treatises and the subsequent development of
geometry as a scientific discipline, geometry is “an axiomatic in which we
ignore all representation, and in which the word ‘space’ designates a
structure, i.e., a system of axioms and deductions” (Saddo Ag Almouloud,
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“Demonstration in Geometry: Historical and Philosophical Perspectives,”
Quantitative Research Journal, vol. 8, Special Edition: Philosophy of
Mathematics, 2020, p. 562). In other words, in mathematics, by the term
“space,” we mean a non-empty set endowed with some mathematical
structure. In general, in mathematics, the term “structure” refers to a class
of mathematical objects described by axioms. Moreover, sometimes
mathematicians use the term “structure” in order to refer to the description
of the way in which an object could be reconstructed from simpler objects
of the same kind.

Euclidean Geometry

The two most basic geometric concepts are those of an angle and of a
straight line. An angle may be considered to be an amount of a rotation or
turning. In Figure 6-1, the line OA has been rotated about O in an anti-
clockwise direction, until it takes up the position OB. The angle through
which the line has turned is the amount of opening between the lines OA
and OB. If the line OA is rotated until it returns to its original position,
then it will have described one revolution. Angles are usually measured in
degrees, minutes, and seconds as follows: 60 seconds = 1 minute ,
60 minutes = 1degree , and 360 degrees = 1revolution . For
instance, an angle of 32 degrees 18 minutes and 3 seconds is written as
follows: 32°18'3"". A “right angle” is the %th of a revolution, and,
therefore, it contains 90°. An “acute angle” is less than 90°. An “obtuse
angle” lies between 90° and 180°. A “reflex angle” is greater than 180°.
“Complementary angles” are angles whose sum is 90°. “Supplementary
angles” are angles whose sum is 180°.

Figure 6-1: An angle.

Original Position

While we usually measure angles in degrees, we can also measure angles
in radians. Referring to Figure 6-2,
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. ) length of arc
angle inradians = —— Xk
radius of circle

so that 8 radians = % ol =10.

Figure 6-2: Measuring angles in radians.

length of

it

In geometry, the abstraction of a straight line can be attributed to
mathematical intuition. According to the ancient Greek mathematician
Euclid, an arbitrary straight line can be construed as a “length without
breadth” that is perceived as a whole. Furthermore, there are points on
every straight line, each point on the straight line corresponds to a real
number, and the straight line is complete. For this reason, it is known as
the arithmetic or geometric continuum. In fact, the ancient Greek
mathematicians’ awareness of the existence of real numbers was
developed with reference to geometric processes, in the sense that they
construed a real number either as a completed process of combining units
or monads (that is, as a rational number) or as an incomplete process of
measuring non-commensurable quantities (that is, as an irrational number).
Properties of angles and straight lines:

i.  The total angle of a straight line is 180°(i.e.,  radians).

ii. When two straight lines intersect, the opposite angles are equal, as

shown in Figure 6-3, where ZA = £C and 2B = £D.
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Figure 6-3: Opposite angles formed by intersecting straight lines.

iii.

B

If two parallel lines are cut by a transversal, then, as shown in
Figure 6-4: the corresponding angles are equal (i.e., a =, b = m,
¢ = p, and d = q); the alternate angles are equal (i.e., d = m and
¢ =1); and the interior angles are supplementary (i.e., d +1 =
180° and ¢ + m = 180°). Conversely, if two straight lines are cut
by a transversal, then the lines are parallel if one of the following
conditions is satisfied: (i) two corresponding angles are equal; (ii)
two alternate angles are equal; (iii) two interior angles are
supplementary.

Figure 6-4. Angles formed by two parallel lines cut by a transversal.

\

Types of triangles on the basis of their angles and their sides:

L
il.

An “acute-angled” triangle has all its angles less than 90°.

A “right-angled” triangle has one of its angles equal to 90°. The
side opposite to the right angle is the longest side, and it is called
the “hypotenuse.”
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iii.
iv.

V1.

An “obtuse-angled” triangle has one angle greater than 90°.

A “scalene” triangle has all three sides of different length.

An “isosceles” triangle has two sides and two angles equal. The
equal angles lie opposite to the equal sides.

An “equilateral” triangle has all its sides and angles equal. Each
angle of an equilateral triangle is equal to 60°.

Angle properties of triangles:

L
il.

iii.

The sum of the angles of a triangle is equal to 180°

In every triangle, the greatest angle is opposite to the longest side,
and the smallest angle is opposite to the shortest side. Moreover,
in every triangle, the sum of the lengths of any two sides is always
greater than the length of the third side.

When the side of a triangle is produced, the exterior angle so
formed is equal to the sum of the opposite interior angles. For
instance, in Figure 6-5, 260 = £A + £B.

Figure 6-5: Exterior angle.

iv.

NN

In an isosceles triangle, the perpendicular (drawn from the point
where the two equal sides meet) to the base bisects the angle
between the two equal sides. Moreover, it bisects the base of the
triangle.

Two triangles are said to be “congruent” if they are equal in every respect,
both with regard to their corresponding angles and with regard to their
corresponding sides (if that is the case, then their areas are equal). If one
side and two angles in one triangle are, respectively, equal to one side and
two similarly located angles in another triangle, then these triangles are
congruent. Moreover, if two sides and the angle between them in one
triangle are, respectively, equal to two sides and the angle between them in
another triangle, then these triangles are congruent. Given two right-
angled triangles, if their hypotenuses are equal to each other and one other
side in each triangle are also equal to each other, then these right-angled
triangles are congruent.
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Two triangles are said to be “similar” if they are equi-angular. Two
triangles are equi-angular if and only if their corresponding sides are
proportional (by “corresponding sides,” we mean the sides opposite to the
equal angles). For instance, given two triangles A ABC and A XYZ such
that £ZA = £X, 2B = 2Y,and £C = £Z, then

AB _ AC _ BC

— = — = — (and conversely).

xy  xz vz

Areas of triangles: The area of any triangle is:

area = % X base X height.

Triangles having equal bases and equal heights are equal in area.
Moreover, the areas of congruent triangles are equal.

Angle Bisector Theorem: The internal bisector of an angle of a triangle
divides the opposite side in the ratio of the sides containing the angle (the
converse is also true).

A “median” of a triangle is a line segment that joins a vertex to the
midpoint of the side that is opposite to that vertex. The three medians of a
triangle intersect at a point called the “centroid.” Notice that the area of a
triangle is divided into half by a median (hence the name).

One of the most important geometric theorems is the Pythagorean
Theorem, which states that, in every right-angled triangle, the square of
the hypotenuse is equal to the sum of the squares of the other two sides. As
mentioned earlier, the Pythagorean Theorem led Greek mathematicians to
prove the existence of irrational numbers. The Pythagorean Theorem can
be proved in an algebraic way, using the concept of a locus, as follows.
Pythagorean Theorem: Consider a right-angled triangle A ABC, whose
hypotenuse is ¢, and whose other two sides are a and b, as shown in
Figure 6-6. Then

a’ + b% = c?.

Proof: Given the triangle shown in Figure 6-6, we create four triangles
identical to it, and we use them in order to form a square with side lengths
a + b as shown in Figure 6-7. The area of this square is

A= (a+Db)(a+Db).

Figure 6-6: A right-angled triangle.
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Figure 6-7: Proof of the Pythagorean Theorem.

a b

b a

In Figure 6-7, inside the big square, the hypotenuses of the four identical
triangles form another smaller square, whose area is equal to c?. Each of

the four triangles has an area of a?b. In general, notice that, given an

arbitrary rectangle ABCD whose height is h, and whose base is b, its area
is equal to hb. Therefore, if we draw a diagonal from one vertex, say
diagonal AC, it will break the rectangle into two congruent, or equal,
triangles, and the area of each of these triangles is half the area of the

rectangle, that is, %. The area of all four of the triangles that are shown in

Figure 6-7 is equal to 422 = 2ab. Addin up the areas of the smaller
g q > g

square and of the four triangles, we obtain

A =c?+2ab.

Hence, given that, as we have shown, A = (a + b)(a + b), it holds that
(a+b)(a+b)=c?*+2abS a?+b>=c’nm

Quadrilaterals and Polygons: A “quadrilateral” is any four-sided figure.
Given that a quadrilateral can be split up into two triangles, the sum of its
angles is 360°.

A “parallelogram” has both pairs of opposite sides parallel. If the base of a
parallelogram is equal to b and its height is equal to h, then its area is
given by the following formula: A = bh. Parallelograms having equal
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bases and equal heights are equal in area. A parallelogram has the
following properties: (i) the sides that are opposite to each other are equal
in length; (ii) the angles that are opposite to each other are equal; (iii) the
diagonals bisect each other; (iv) the diagonals each bisect the
parallelogram.

A “rectangle” is a parallelogram with all its angles equal to 90°. If the
length of a rectangle is equal to [ and its width is equal to w, then its area
is equal to lw, and its perimeter is equal to 2] + 2w. A rectangle has all
the properties of a parallelogram, but in addition the diagonals are equal in
length.

A “rhombus” is a parallelogram with all its sides equal in length. It has all
the properties of a parallelogram, but in addition it has the following
properties: (i) the diagonals bisect at right angles; (ii) the diagonal bisects
the angle through which it passes. If the lengths of the diagonals of a

: . dixd
rhombus are d; and d,, then its area is A = %

A “square” is a rectangle with all its sides equal in length. If the length of
each side of a square is equal to a, then its area is equal to a?, and its
perimeter is equal to 4a. A square has all the properties of a parallelogram,
a rectangle, and a rhombus.

A “trapezoid” is a quadrilateral having only one pair of parallel sides (as
opposed to a parallelogram, which has both pairs of opposite sides
parallel). The parallel sides are called the “bases” of the trapezoid, while
the other two sides are called the “legs” of the trapezoid. If the bases
(parallel sides) of a trapezoid are equal to a and b, respectively, and if its

height is equal to h, then its area is equal to %h(a + b).

By the term “polygon,” we refer to any plane closed figure bounded by
straight lines. A “convex polygon” (e.g., Figure 3-1) has no interior angle
greater than 180°, whereas a “re-entrant polygon” has at least one angle
greater than 180°. In a convex polygon having n sides, the sum of the
interior angles is (2n — 4) right angles, and the sum of the exterior angles
is 360°.

Analytic Geometry and Trigonometric Functions

Analytic geometry signifies the introduction of coordinates into geometry in
a systematic way—specifically, by unifying aspects of algebra and aspects
of geometry. In analytic geometry, geometric theorems are proved using
coordinates, algebraic equations, and trigonometry; and analytic geometry is
based on the axiomatization of the set R of real numbers. Moreover, the
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development of analytic geometry through the algebraization of geometry set
the stage for the development of infinitesimal calculus.

The first pioneers of analytic geometry were the second-century B.C.E.
Greek astronomer and mathematician Hipparchus of Nicaea, who
introduced coordinates for the sphere (in the context of his studies of the
night sky), and the third-century B.C.E. Greek geometer Apollonius of
Perga, who introduced coordinates for the study of conic sections.

Ancient Greek mathematicians, such as Apollonius of Perga, were the first
to observe that circles, ellipses, hyperbolas, and parabolas result from the
intersection of a cone by an adequate plane. A cone is defined to be a
three-dimensional geometric shape that tapers smoothly from a flat
circular base to a point called the vertex (or apex). A circle is produced
when the cone is cut by a plane that is parallel to the base of the cone. An
ellipse is produced when the cone is cut by a plane that is not parallel to
the base of the cone or the side of the cone, and it cuts only one nappe of
the cone. A hyperbola is produced when the intersecting plane cuts both
nappes of the cone. A parabola is produced when the oblique section of the
cone is parallel to the slant height (the height of a cone from the vertex to
the periphery, rather than the center, of the base). In the Middle Ages, the
use of coordinates in mathematics and analytic geometry was further
analyzed and developed by the fourteenth-century French Catholic bishop,
philosopher, and mathematician Nicolas d’Oresme.

By the term “locus,” we mean a set of all the points that satisfy a specific
rule. Moreover, the path drawn by a point moving according to a given
rule is called the “locus of the point.” Thus, using the concept of a locus,
we can study geometric problems through algebra. In analytic geometry,
we put traditional (Euclidean) geometry on the Cartesian plane. René
Descartes has pointed out that “any problem in geometry can easily be
reduced to such terms that knowledge of lengths of certain straight lines is
sufficient for its construction” (René Descartes, “On Analytic Geometry,”
translated by David E. Smith and Marcia L. Latham, in 4 Source Book in
Mathematics, edited by David E. Smith, New York: Dover, 1959, p. 397).
In particular, according to Descartes, “just as arithmetic consists of only
four or five operations, namely, addition, subtraction, multiplication,
division, and the extraction of roots, which may be considered a kind of
division, so in geometry,” we can find required lines by merely adding or
subtracting other lines; or else, by working as follows (ibid, pp. 397-98):

. . . taking one line which I shall call unity in order to relate it as closely as
possible to numbers, and which can in general be chosen arbitrarily, and
having given two other lines, to find a fourth line which shall be to one of
the given lines as the other is to unity (which is the same as multiplication);
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or, again, to find a fourth line which is to one of the given lines as unity is
to the other (which is equivalent to division); or, finally, to find one, two,
or several mean proportionals between unity and some other line (which is
the same as extracting the square root, cube root, etc., of the given line).

Consider two points P(x;,y;) and Q(x,,y,) on the xy-plane and connect
them with a straight line segment as shown in Figure 6-8.

Figure 6-8: Slope and Distance.

T F(x2,Y2)

y | Ay=y2-y1
/— (rise)
l | | | | | » X

The x-coordinate of point P is x;, the x-coordinate of point Q is x,, and
the distance between x; and x, is x, — x;; in order to avoid the use of plus
and minus signs, we can use the absolute value |x, —x;|. The y-
coordinate of point P is y,, the y-coordinate of point Q is y,, and the
distance between y, and y; is y, — ¥;; in order to avoid the use of plus
and minus signs, we can use the absolute value |y, — y;|. Therefore, the
horizontal distance between points P and Q is x, — x;, and the vertical
distance between points P and @ is ¥, —y,. Now, consider the right-
angled triangle that is defined by the points P(x4,y;), Q(x,,¥,), and the
point R (the intersection between the horizontal side and the vertical side):
the three sides of this right-angled triangle are the hypotenuse PQ, the
horizontal side, which is x, — x,, and the vertical side, which is y, — y;.
The “slope,” or “gradient,” of the straight line segment PQ, denoted by
Mpyg, is the quotient of the “rise” over the “run,” comparing how much one
travels vertically (“up and down”) versus how much one travels
horizontally. Thus, it relates the steepness or inclination of the straight line
segment PQ to the coordinates; symbolically:
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lope — _rise _y, =y, Ay
Stope = Mee = run  x, —x, Ax
(see Figure 6-8; the Greek letter A is used to indicate change).
In Figure 6-8, the distance between points P and @, denoted by dpg, is
given by (and, indeed, is a version of) the Pythagorean Theorem.

Therefore, in Figure 6-8,

2 :

(dPQ) = (run)® + (rise)* & dpg = \/(xz —x1)%+ (¥, —y1)2
It can be easily verified that the midpoint of the straight line segment
joining points (x;,y;) and (x;,y,) is (%,%)
All points (x,y) in R? satisfying the equation y = mx + b form a straight
line, and m is the slope of the straight line. For the slope m of the straight
line passing through the points (x;,y;) and (x,,y,), we have:

i. Ifx; = x,, mis undefined (the line is vertical).

.. A -
ii. Ifxl;txz,thenmzA—y=M
X

X2=X1
Two non-vertical straight lines y; and y,, with slopes m; and m,,
respectively, are parallel if and only if my = m,(i.e., their slopes are
equal), and they are perpendicular if and only if mym, = —1 (i.e., the
product of their slopes is —1).
In order to find the equation of a non-vertical straight line, we work as
follows:
i.  we find a point (x;, y;) on the line;
ii. we find the slope m of the line;
iii. we write the equation of the line as follows:
y—y, =m(x —x;); this equation is called the “point-slope”
form of the equation of a line.
For instance, let us find the equation of the straight line passing through
the points (5, —0.5) and (10, 9.5). Firstly, we define the point (x,,y;) =
(5,—0.5) . Secondly, we find the slope of the required line: m =

% = 2. Thirdly, we find the equation of the required line: y — y; =

m(x—x;) =2y —(—0.5)=2(x—-5)=>y=2x—10.5.
Circle

As we can see in Figure 6-9, a circle with center O(v, w) and radius r is
the set of all points in the xy-plane whose distance from O is r (in Figure
6-9,0(v,w) = 0(2,—1),and r = 3).
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Figure 6-9: Circle.

If (x,y) is a point on the circle with center O (v, w) and radius r, then the
distance formula implies that
r=Jx—-v)?+@y-wieri=x-v)?+y-w?

which is the standard form of the equation of a circle with center (v, w)
and radius r. The circumference of a circle of radius r is C = 2nr, and the
area of a circle of radius r is A = nr?, where ™ =~ 3.14 is Archimedes’s
constant (the ratio of the circle’s circumference to its diameter).
Archimedes approximated 7 by using the fact that the circumference of a
circle is bounded by the perimeter of an inscribed polygon and the
perimeter of a circumscribed polygon. In particular, he used a 96-sided
inscribed polygon and a 96 -sided circumscribed polygon to find the
following approximation:

B4 <m<342

It is worth mentioning that the degenerate possibilities for a circle are the
following: a point or no graph at all.

The study of the circle underpins trigonometry. The term “trigonometry”
appeared for the first time in the book Trigonometria by Bartholomaeus
Pitiscus (1561-1613) in 1595, and it literally means measuring (and, more
broadly, studying) “trigons” (“trigon” being the Latin word for “triangle”).
The acknowledged founder of trigonometry is the ancient Greek
astronomer and mathematician Hipparchus of Nicaea (ca. 190—ca. 120
B.C.E.). Moreover, around 100 C.E., another Greek mathematician,
Menelaus of Alexandria, published a series of treatises on chords.
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Trigonometric Functions
In the context of analytic geometry, we can also study the basic
trigonometric functions on the unit circle (specifically, on a circle whose

center is (0,0) and whose radius r = 1).

Figure 6-10: The number circle.

A\

D

Consider a circle of unit radius, as shown in Figure 6-10, and let point A
(the right-hand endpoint of the horizontal diameter) be a reference point.
Let an anti-clockwise motion round the circle be a positive direction, and a
clockwise motion be a negative direction. A circle of unit radius with a
reference point and the direction of tracing specified is called the “number
circle.” Given an arbitrary point P of the number circle, there are infinitely
many arcs beginning at the point A and terminating at the point P. One of
these arcs is the shortest arc connecting the points A and P, and all the
other arcs are obtained from the shortest arc by adding or subtracting an
integral number of complete revolutions. Hence, every point P of the
number circle is associated with an infinite set of numbers that consists of
the values of all the arcs beginning at the point A and terminating at the
point P (the lengths of the arcs are taken with the plus or the minus sign
according as the motion from the point 4 to the point P is anti-clockwise
or clockwise, respectively).

The circumference of the circle of unit radius is equal to 2m. Therefore,
the lengths of all the arcs terminating at the given point P differ from one
another by a multiple of 2m, so that the general form of these quantities is
x + 2ma, where a € Z, and x is the length of the shortest arc connecting
the points A and P. Thus, for every real number x, there is a point P(x) of
the number circle such that the length of the arc AP is x, and every point P
of the circle corresponds to an infinite set of numbers of the form x +
2ra, where a € Z, and x is the length of one of the arcs connecting the
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points A and P. For instance, the point of reference, namely, A (Fig. 6-10),
corresponds to the namber 0, that is, A = A(0), and, since the length of the
circumference of the unit circle is 2m, it follows that g is the length of an

arc equal to one-fourth of the circumference. Hence, if we lay off an arc of
length equal to a quarter of the circumference from the point A in the

positive direction, then we obtain a point B = B (g), as shown in Figure
6-10. By analogy, we can find the point corresponding to —% by starting

from the point 4 in the negative direction and covering the path of length
3

g, thus arriving at the point D = D (— E)’ as shown Figure 6-10.

Assume that the center of the number circle coincides with the origin
0(0,0) of the rectangular coordinate system XOY, as shown in Figure 6-
11. Let x be an arbitrary real number. Then, on the number circle, we find
the point P(x) that corresponds to x. The ordinate of the point P(x) is
called the “sine” of the number x (denoted by sinx), the abscissa of the
point P(x) is called the “cosine” of the number x (denoted by cosx), the

ratio i;% is called the “tangent” of the number x (denoted by tanx), and

the ratio % is called the “cotangent” of the number x (denoted by cotx).

Figure 6-11: Trigonometric functions.
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Notice that the reference point A on the number circle corresponds to the
number 0, that is, A = A(0). Since the abscissa and the ordinate of this

point are 1 and 0, respectively, we have cos0 = 1, sin0 = 0, and tan0 =
sin0

0 0. The point B of intersection of the circle and the positive ray of
the axis OY corresponds to the number /2. Since the abscissa and the
ordinate of the point B are 0 and 1, respectively, we have cos (g) = 0 and
sin (g) = 1, whereas tan (g) is not defined. Similarly, as shown in Figure

6-11, given the coordinates of the points C and D, we realize that cosm =

Y4
1 -4
T
A K 1 P(g) 450 A
x 0l 1 X ¢ 30° ol E
Q
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—1, sinmt = 0, tanm = 0, cos (37”) =0, sin (37”) = —1, and tan (%n) is
not defined. The parametrization of the unit circle can be written as
follows:
(cosb, sinf)

where 0 < 6 < 2m.

The domain of y = sinx is (—oo,+), and its range is [—1,1]. The
function y = sinx is odd (and, therefore, it is symmetric about the origin),
its y-intercept is (0,0), and its x-intercepts are x = nm, where n is an
integer.

The domain of y = cosx is (—o0,+), and its range is [—1,1]. The
function y = cosx is even (and, therefore, it is symmetric about the y-
axis), its y-intercept is (0,1), and its x-intercepts are x = g + nm, where n

is an integer.
We can summarize the basic definitions and the basic formulae of

trigonometry as follows:
. . opposite side
Sine: sinf = pp—;
hypotenuse
. adjacent side
Cosine: cosf = ]—;
hypotenuse

opposite side
Tangent: tanf = “PP2222¢,
adjacent side

hypotenuse 1
Cosecant: cscf = —22"T02 —
opposite side sinf

hypotenuse 1

Secant:secd = ———— = —_—
adjacent side cos6

adjacent side __ 1

Cotangent: cotf = — = ;
opposite side tan

and the basic trigonometric identities:
sin?a + cos?a = 1 (this is an expression of the Pythagorean theorem in
terms of trigonometric functions);

1+ tan*a = —;
cos“a

1+ cot?a = —;
sin“a

sin(—a) = —sina,

cos(—a) = cosa,

sin (a + b) = sina - cosb * cosa - sinb,;

cos (a £ b) = cosa - cosb ¥ sina - sinb;
sina + sinb = 25in% (a+b)- cos% (a—b);
sina — sinb = 25in% (a—b)- cos% (a+b);
cosa + cosb = ZCOS% (a+b)- cos% (a—b);

cosa — cosb = —25in% (a+Db)- sin% (a—b);
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sin2a = 2sina - cosa;
cos2a = cos’a — sin’a;

L1 1-cosa
sin-a =+ ’—,
2 2

1 1+cosa
cos-a =+ ’—,
2 2

sin (a + m/2) = tcosa, and cos (a + n/2) = Fsina (the graphs of sine
and cosine have the same shape, but the only difference is a shift of y =
cosx to y = sinx by g units to the right).

The inverse trigonometric functions are denoted as follows: arcsinx =
sin"lx ( y =arcsinx & x =siny) , arccosx=cosx ( y=
arccosx < x = cosy) , arctanx =tan"lx ( y = arctanx & x =
tany), and arccotx = cot™1x (y = arccotx < x = coty).

In order to calculate the angle A subtended at the center of a circle of
radius 7 by a chord of length a, we use the cosine rule

Ao b? +c? —a?
= arccos >he
where b and c¢ are the sides of the angle A, and b=c =71 (ie., 4 is
bounded by two radii), a=chordlength , and A=

angle subtended at the center of the circle.
Ellipse

As we can see in Figure 6-12, an “ellipse” is the set of all points in a plane
the sum of whose distances from two fixed points (‘“foci”) is constant.
Foci: (—c,0) and (c,0). Notice that, if the two foci coincide, then we
receive a circle. The Greek word ellipse, literally meaning “omission,”
was first applied by Apollonius of Perga, because, in the case of an ellipse,
the conic section of the cutting plane makes a smaller angle with the base
than does the side of the cone.
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Figure 6-12: Ellipse.

The standard form of the equation of an ellipse with center at the origin
and foci on the x-axis is

By setting y = 0, we find that the x-intercepts are (—a, 0) and (a, 0). By
setting x = 0, we find that the y-intercepts are (0, —b) and (0,b). The
larger segment from (—a, 0) to (a, 0) is called the “major axis,” while the
“minor axis” is the segment from (0, —b) to (0, b). The endpoints of the
major axis are called the “vertices of the ellipse”; vertices: (—a, 0) and
(a,0).

If the foci are placed on the y-axis at (0, —c) and (0, ¢), then the standard
form of the equation of an ellipse is

2y

p2 | g2

In this case, the major axis is along the y-axis, the foci are (0, c) and
(0, —c), and the vertices are (0, a) and (0, —a).

Given the definition of an ellipse, the degenerate possibilities for an ellipse
are the following: a point or no graph at all.

In our solar system, many bodies revolve in elliptical orbits around a
larger body that is located at one focus. In the seventeenth century,
Johannes Kepler, based on Apollonius’s mathematical study of the ellipse,
articulated a rigorous explanation of planetary motions.

Moreover, regarding the ellipse, it should be mentioned that it has a
reflection property that causes any ray or wave that originates at one focus
to strike the ellipse and pass through the other focus. In terms of acoustics,
the aforementioned property implies that, in a room with an elliptical
ceiling, even a slight noise made at one focus can be heard at the other
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focus, but, if people are standing between the foci, then they hear nothing.
Such rooms are known as whispering galleries.

As regards architecture, it should be mentioned that ornamental arches are
often elliptical in shape; in other words, arches whose main purpose is
beauty and not strength are often elliptical in shape.

Hyperbola and hyperbolic functions

As we can see in Figure 6-13, a “hyperbola” is the set of all points in a
plane the difference of whose distances from two fixed points (“foci”) is a
positive constant (the Greek word hyperbola literally means
“extravagance”). Hence, the distances between the foci and a point on the
figure maintain a constant difference for a hyperbola and a constant sum
for an ellipse.

Figure 6-13: Hyperbola.

P(x,y)

P(x,y)
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Given the definition of a hyperbola, the degenerate possibilities for a
hyperbola are two intersecting straight lines.
The standard form of a hyperbola with center at the origin and foci on the

x-axis is
2 2
X
S m=1
a b2

By setting y = 0, we find that the x-intercepts are (—a, 0) and (a, 0). The
line segment joining these two points is called the “transverse axis.” The
endpoints of the transverse axis are called the “vertices of the hyperbola.”
By setting x = 0, we find that there are no y-intercepts. The line segment
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from (0, b) to (0, —b) is called the “conjugate axis.” In order to determine
the significance of b, we write

x2 2
L =1ay=

a? b2

hx [ @

a x2

2

As |x| tends to infinity, 1 — Z—z tends to 1, and, therefore, the graph of the
hyperbola approaches the lines
y = i%x.
These lines are called the “asymptotes of the hyperbola” (they are the
diagonals of a rectangle of dimensions 2a by 2b).

If the foci are placed on the y-axis at (0, —c) and (0, ¢), then the standard

form of the equation of a hyperbola is
2 2

y2_x?
2 ro b

and, in this case, the asymptotes are given by
y=4= % X.

Hyperbolic functions: Hyperbolic functions are analogues of the ordinary
trigonometric functions, but hyperbolic functions are defined using the
hyperbola rather than the circle. The hyperbolic functions are defined as
follows:

hyperbolic sine: sinhx = %(ex —e™),

hyperbolic cosine: coshx = %(ex +e™),

sinhx

hyperbolic tangent: tanhx =

coshx’
coshx

hyperbolic cotangent: cothx = —-—,

hyperbolic secant: sechx = C; and

oshx’
hyperbolic cosecant: cschx = 2
sinhx
Basic formulae of hyperbolic functions:
i cosh(—x) = coshx,
il. sinh(—x) = —sinhx,
iil. e* = sinhx + coshx,
iv. e * = coshx — sinhx,
v. tanh(—x) = —tanhx,
vi. cosh?x — sinh?x = 1,
vii. sech?x + tanh?x = 1,
viii. coth?x — csch?x = 1,
ix. cosh2x = cosh?x + sinh?x,

X. sinh2x = 2sinhxcoshx,
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Xi. sinh(x + y) = sinhxcoshy + coshxsinhy, and
Xii. cosh(x + y) = coshxcoshy + sinhxsinhy.

Just as the points (cost, sint) form the unit circle (defined by x? + y2 =
1), the points (cosht, sinht) form the right half of the unit hyperbola
(defined by x2 — y2 = 1), as shown in Figure 6-14.

Figure 6-14: Hyperbolic functions (source: Wikimedia Commons: Author: Marco
Polo; https://commons.wikimedia.org/wiki/File: Hyperbolic_functions.svg).
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In mechanics, hyperbolic functions are used in order to describe the shape
of electric lines freely hanging between two poles and any idealized
hanging chain or cable supported only at its ends and hanging under its
own weight. In particular, the “catenary” is a curve that describes the
shape of a flexible hanging chain or cable, and its equation in Cartesian

. . x af X X .
coordinates is y = acosh (Z) =3 (ea +e a). Moreover, catenaries and

related curves are used in the design of bridges and arches, so that forces
do not result in bending moments, and, in the offshore oil and gas
industry, the term “catenary” refers to a steel catenary riser (a pipeline
suspended between a production platform and the seabed that adopts an
approximate catenary shape).
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Parabola

As we can see in Figure 6-15, a “parabola” is the set of all points in a
plane that are equidistant from a fixed line (“directrix”) and a fixed point
(“focus”) not on the line (the word “parabola” derives from the Greek
terms “para,” meaning “beside,” and “bol€,” meaning “a throw,” and,
therefore, “parabola” literally means “para-beside”—that is, placing side
by side).

Figure 6-15: Parabola.
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The standard form of the equation of a parabola with directrix x = —p and
focus at (p, 0) is
4px = y2.

The line through the focus that is perpendicular to the directrix is called
the “axis of symmetry.” In this case, the axis of symmetry is the x-axis,
and the parabola opens to the right. The point on the axis of symmetry that
is midway between the focus and the directrix is called the “vertex,” and
the vertex is the turning point of the parabola. The standard form of the
equation of a parabola with directrix x = p and focus at (—p, 0) is

—4px = y?,

and, in this case, the parabola opens to the left.

Obviously, the axis of symmetry of a parabola may be the y-axis. If the
directrix is y = —p and the focus is at (0, p), then the standard form of the
equation of a parabola is

x* = 4py,
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and the parabola opens upward. If the directrix is y = p and the focus is at
(0, —p), then the standard form of the equation of a parabola is

x? = —4py,

and the parabola opens downward.

As regards the parabola in general, it should be mentioned that it has a
reflection property that causes any ray or wave that originates at the focus
and strikes the parabola to be reflected parallel to the axis of symmetry.
Thus, for instance, flashlights and searchlights use a parabolic reflector
with the bulb located at the focus. Additionally, due to the reflection
property of a parabola, any ray or wave that comes into a parabolic
reflector parallel to the axis of symmetry is directed to the focus point. For
this reason, radars, radio antennas, and reflecting telescopes operate
according to this principle. In astronomy, the parabola features in both the
construction of telescopes and in the motion of comets around the Sun.
Finally, due to their great strength, parabolic arches are used extensively in
bridges, cathedrals, and elsewhere in architecture and engineering,
especially in case we have equally spaced load.

Volumes and Surface Areas

By the term “volume,” we mean the amount of three-dimensional space
enclosed by a closed surface. The volume of any solid having a uniform
cross-section is equal to:

cross-sectional areaxlength of solid.

The surface area of any solid having a uniform cross-section is equal to:
curved surface+ends; namely:

perimeter of cross-sectionsXlength of solid+total area of ends.

The volume of a sphere with radius r is equal to

% rs,

and its surface area is equal to

4mr?,

The volume of a cylinder whose height is h and whose base is a circle with
radius 7 is equal to

nr?h,

and its surface area is equal to

2nrh + 2nr? = 2nr(h + 7).

The volume of a cone whose vertical height is h and whose base is a circle
with radius 7 is equal to

1
-mr?h,
3

and, if [ is its slant height, then its surface area is equal to
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mrl + mr?.
The volume of a pyramid whose height is A and whose base’s area is equal
to A is given by the following formula:

vV ==1an
3

The surface area of a pyramid is equal to the sum of the areas of the
corresponding triangles plus the area of the base.

Spherical Coordinates and Polar Coordinates

Until now, we have determined the position of a point P by the lengths of
its Cartesian (rectangular) coordinates. As I explained in Chapter 2, in the
Cartesian or rectangular coordinate system, we have three axes, x, y, and
z, which are perpendicular to each other, and we can define any point by
taking the number of units in the x-direction, the number of units in the y-
direction, and the number of units in the z -direction, through the
corresponding projections.

As shown in Figure 6-16, in the spherical coordinate system, we have
again three mutually perpendicular coordinates, r, 8, and ¢, where: the
radial line r is the shortest distance between the origin of the coordinate
system and the given point P, 8 (known as the “polar angle” or the
“inclination”) is defined to be the angle between the z-axis and the radial
line r, and ¢ (known as the “azimuthal angle” or the “azimuth”) is the
angle between the orthogonal projection of the radial line r onto the
reference xy-plane (which is orthogonal to the z-axis and passes through
the origin) and the x-axis (which is orthogonal to the z-axis and to the y-
axis).

As shown in Figure 6-16, the relation between the spherical coordinate
system and the rectangular coordinate system is the following:

We can convert spherical coordinates (7, 8, @) to rectangular coordinates
(x,, z), using the following formulae:

x = rsinfcose,

y = rsinfsing, and

zZ =rcosf.

Moreover, we can convert rectangular coordinates (x,y,z) to spherical
coordinates (7, 6, ¢), using the following formulae:

r=x2+y?+22

z z
0 = cos ! ——— = arccos ———, and
Vx2+y2+z2 x24y2422’
¢ =tan"'Z = arctanZ.
X X
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Figure 6-16: Spherical coordinates (source: Wikimedia Commons: Author:

Cristian Quinzacara;
https://commons.wikimedia.org/wiki/File: Coordenadas_esf%C3%A9ricas_01.svg).

Using the aforementioned methodology and reasoning regarding spherical
coordinates, we can define points in the two-dimensional polar coordinate
system, where (x,y) = (rcosq,rsing), as shown in Figure 6-17. For
instance, the equations of lines and conic sections can be expressed in
polar coordinates through the relation (x,y) = (rcosq, rsing).
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Figure 6-17: Two-dimensional polar coordinates (source: Wikimedia Commons:
Author: WillowW;
https://commons.wikimedia.org/wiki/File: Polar _coordinate_components.svg).
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Hence, the graph of the equation r = f(¢) in polar coordinates is the
same as the graph of the parametric equations (with parameter @) x =
f(@)cosp and y = f(¢)sing in Cartesian coordinates; and, conversely,
the graph of a given equation in x and y is the same as the graph of the
equation in 7 and ¢ obtained by substituting x and y with rcos¢ and
rsing, respectively.

A Note on the Line of Best Fit

A “scatter plot” is a type of mathematical diagram that uses Cartesian
coordinates, and it provides a visual and statistical means to test the
strength of a relationship between two variables. The “line of best fit” is a
(straight) line that is used to express a relationship in a scatter plot of
different data points, and it minimizes the distance between it and the data
under consideration, as shown in Figure 6-18. In Figure 6-18, we can see
that the general trend of the data points is going up to the right, indicating
a positive correlation. When we draw a line of best fit, we do not want to
draw it so high that all of the data points are below that line, nor do we
want to draw it so low that all of the data points are above that line, but we
want to draw a line of best fit that comes as close to those data points as
possible.
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In other words, a line of best fit, also known as a “trend line” or a “line of
regression,” is a line that best displays the trend of a group of points on a
scatter plot, and it is used to predict the behavior of data using the slope of
that line.

Figure 6-18: The line of best fit (source: Wikimedia Commons: Author: Amatulic;
https://commons.wikimedia.org/wiki/File:Normdist _regression.png).
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A basic way of approximating the line of best fit is to use a ruler and try to
draw that line in such a way that it comes as close to the given data points
as possible (as shown in Figure 6-18). Assume, for instance, that, given a
scatter plot, two points that lie on the line of best fit are A(1,—3) and

rise _ Y2—Yy1 __

B(7,5). Firstly, we have to find the slope of this line: m = —

Tun  Xp—xq

5_7(__13) = 2 = g. Now, we shall use the slope-intercept form, y = mx + b,

in order to find the equation of this line. Given that m = g, we obtain y =

%x + b, and we have to determine the value of b. Let us use the point
A(1,—3) in order to determine the value of b (of course, we shall find the
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same result if we use the point B(7,5) in order to determine b). When y =
—3, x = 1, and, therefore, we have:
y=ix+b=>-3=2()+b=>b=-=

Hence, in this case, the equation of the line of best fit is
4 13

y= gx - ?
Thus, using analytic geometry, we can find the line of best fit, which is an
intelligent guess or approximation on a set of data aiming to identify and

describe the relationship between given variables.
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Chapter 7
Vectors, Vector Spaces, Normed Vector
Spaces, and Metric Spaces

The discipline of mathematics that deals with matrices (covered in Chapter
3) and vectors (and, more generally, with vector spaces and linear
transformations) is called Linear Algebra. In this chapter, we shall
complete our study of the basic concepts of linear algebra, and we shall
study the basic principles of metric spaces and metric geometry.

Fields and Vectors

In mathematics, a “field” is an algebraic structure that has two binary
operations, usually called “addition” and “multiplication,” and both of
them are always commutative. Fields model number systems (since
numbers can be added or multiplied, and, therefore, subtracted and
divided, too, and various relationships hold true between them). A “field”
is a structured set

(F,0,1,+,)
that satisfies the following properties:
(F1) 0,1 € F,0 # 1, and + and - are binary functions (operations) on F.
(F2) Addition + satisfies the following identities:

L (x+y)+z=x+Q+2),

. x+y=y+x,

. x+0=x,

and, for every x, there exists some x’ such that x + x’ = 0.
(F3) Multiplication - satisfies the following identities:

i (xy)z=x-(y-2),

. x-y=y-x,

. x-1=x,

and, for every x, there exists some x"’ such that x - x" = 1.

(F4) Both addition and multiplication satisfy the identity
x(y+z)=x-y+x-z

Remark: The axioms of a field imply that any field F satisfies the
following:

i. For every x, there exists a unique x’ such that x + x’ = 0; and
then x" = —x (called the “additive inverse” of x). Moreover, for
every x # 0, there exists a unique x" such that x - x" = 1; and
then x”" = x~1 (called the “multiplicative inverse” of x).
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ii. x-0=0.

iii. x-y=0=>x=00ry=0.

iv. (=x) y=—(x-).

v. A field is a set F that is closed under the operations of addition

and multiplication.

Familiar examples of fields are the set Q of all rational numbers and the
set R of all real numbers. Notice that the set Z of all integers is not a field,
because not every element of Z has a multiplicative inverse (in fact, only 1
and —1 have multiplicative inverses in Z).
A “scalar” is a quantity that can be specified by determining only its
magnitude. However, the quantities that are specified by determining both
magnitude and direction are called “vectors.” In other words, a “vector” is
a quantity that has both a direction and a magnitude of length; therefore, it
is graphically denoted by an oriented line segment (“arrow”). In physics,
vectors are very useful, because they can visually represent position,
displacement, velocity, and acceleration. Moreover, vector graphics are
used in computers, since they can be scaled to a larger size without losing
any image quality.
If the coordinates of a point P in the coordinate plane are (x,y), and if we
denote the origin of the coordinate system by 0(0,0), then a vector OP is
denoted by 0P, since the length OP represents the magnitude, and the
arrow represents the direction, as shown in Figure 7-1.
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Figure 7-1: A vector in the xy-plane and its components (source: Wikimedia
Commons: Author: JozumBjada;
https://commons.wikimedia.org/wiki/File:Vector_in_2D space_and_its_decompos

ition.png).

The column vector (matrix) corresponding to 0P is

x
()
Since the coordinates of point P are (x, y), the length from 0(0,0) to P is
v/ x% + y?, according to the Pythagorean Theorem. Notice that, frequently,
we do not need to use arrows in order to indicate that letters represent
vectors (in particular where there is no likelihood of confusion).
The operations between vectors are based on matrix algebra. For instance,
given two vectors 04 = (Z) and OB = (Z),
their sum is a vector OC such that
— — — 1% T 14 +7r
OC=04+0B = (q)+(s)= (qH).
In general, we can define the following vector operations:
Vector addition: U+ ¥ = (u; + vy, Uy + vy, ..., U, + v,). For instance,
given two vectors U and ¥ in R2, draw U (with its tail, that is, initial point,
anywhere), and then draw ¥ with its tail at the head (that is, the terminal
point) of . Then % + ¥ is defined to be that vector that goes from the tail
of U to the head of ¥.
Scalar  multiplication: ki = (kuy, ku,, ..., ku,) where: U =
(ug, Uy, ..., Uy,) is a vector in R™, and k is a real number (scalar). For
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instance, given a vector U, 2 U is a vector pointing in the same direction as
U and twice as long as 1, whereas —1.51 is a vector pointing in the
opposite direction from % and 1.5 times as long as u. Two vectors are
“parallel” if one of them is a scalar multiple of the other.

Negation: —u = (—1)u = (—u,, —Uy, ...,—u,) . To subtract vectors,
switch the direction of the vector that is being subtracted, arrange the two
vectors from “head to tail,” and draw a resultant vector from the tail of the
first vector to the head of the second vector; symbolically:

U—v=U+ (-7).

Dot Product (or Scalar Product or Inner Product):

UV =uv + Uy + o+ Uy, = 2y w;v; (e, the Euclidean inner
product of two vectors i and ¥ in R™ is the real number determined by
multiplying the correspondent components of i and ¥ and then summing
the resulting products), where: U = (uy, Uy, ..., Uy,) and ¥ = (v4, Uy, ..., )
are vectors in R™.

Norm (Length): ||ull = Vi - i = Ju? + u? + -+ u2

(specifically, the norm of a vector is the distance of the vector from the
origin), where: U = (U, Uy, ..., Uy,) is a vector in R*®. When we divide a
vector by its norm, we turn it into a “unit vector,” and this process is called
“normalization.”

Notice that, as a result of the Cauchy—Schwarz—Bunyakovsky inequality,
the absolute value of the dot product of two vectors is less than or equal to
the product of their lengths; symbolically:

Izl = |- vl

with equality if and only if there is a scalar A such that & = AV or if one of
the vectors is zero. This inequality can be easily proved as follows
(method of C. C. Pugh): Notice that, VA € R, the dot product

AU+ D) AU+ D)

is always greater than or equal to zero; and consider the following
polynomial of A:

(AU + V) - AU + D) = 22|[ul|? + 24 - D) + ||19]|2.

This polynomial (which is of the form ad? 4+ bA + ¢) must always be
greater than or equal to zero, and, thus, it must have a non-positive
discriminant, meaning that (4-¥)2 < ||[Ull?lIPl|? ; quod erat
demonstrandum.

The dot product is an operation on vectors that enables us to find the angle
between two vectors, and, when we talk about the angle between two
vectors, we are picturing the vectors with their tails at the same point.
Thus, if § is the angle between two vectors U and ¥, then the dot product
u-v = lullllvllcosd,
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where ||1|| denotes the norm of i, and ||¥|| denotes the norm of ¥, as
shown in Figure 7-2.

Figure 7-2: The dot product of two vectors (source: Wikimedia Commons: Author:
Mazin07; https://commons.wikimedia.org/wiki/File:Dot Product.svg).
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Cross Product of two vectors in a 3-dimensional space: Consider two
vectors & = (uy, Uy, Us) and B = (v4, v,, v3), and let 7, ], and k be the unit
vectors of the three coordinate axes, respectively. Then the cross product
of U and 7 is a vector given by the following determinant:

5
™

UXV = =

u |1 Uz U3 _|
V1 VU U3

U; us

q_|u1 Uz
Uy VU3

> |u1 U,
Uy Vs

vy Uy

|k =

(Uzv3 — Uz V)T — (W3 — Uzv)] + (W v, — Uy K.

The geometric significance of this operation is that, if 8 is the angle
between U and ¥ with 0 < 6 < m, then

u x v = [[ullll¥ll (sind),

where 71 is a unit vector perpendicular to the plane containing U and ¥
(with your right hand, point your index finger along vector U, and point
your middle finger along vector ¥; then 71 goes in the direction of your
extended thumb), as shown in Figure 7-3. Obviously, if the vectors 1 and
U are parallel (i.e., if the angle 0 between them is either 0° or 180°), then
U X ¥ is equal to the zero vector.
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Figure 7-3: The cross product of two vectors (source: Wikimedia Commons:
Author: Svjo; https://commons.wikimedia.org/wiki/File: Cross-product-

povray.png).
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The magnitude of the cross product (|i X ¥|) can be interpreted as the
positive area of the parallelogram having i and ¥ as its sides. Whilst the
resultant of the dot product of two vectors i and ¥ is a scalar quantity, the
cross product of two vectors 1 and ¥ is a third vector whose direction is
perpendicular to both % and ¥ (the direction is given by the
aforementioned right-hand rule).

Notice that we can write the equation of a straight line in three dimensions
using vector notation as follows: Let d and b be the radius (or position)
vectors of two points A and B, respectively, with respect to some origin.
Then the condition for an arbitrary point P with radius vector 7 to lie on

the straight line going through A and B is that the vectors # — @ and b — @
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be parallel, that is, 7 — d = /1(1_5 — d); and, therefore, if A is regarded as a
parameter, then the equation of the straight line takes the form
F=d+A(b-a).

The parameter A can be eliminated by taking the cross product of the
aforementioned expression with (B - d), thus obtaining
(F—@)x(b—d)=0=7x(b—d)=dxb.

By analogy, we can write the equation of a plane in vector form as
follows: Let d, B, and C be the radius vectors of three given points 4, B,
and C, respectively. In order to find the equation of the plane going
through these three points, we think as follows: since the vectors 7 — d,
b — d, and ¢ — @ are coplanar, the required equation is
F—d=Ab—a)+u-a),

where A and y are parameters. In order to eliminate the parameters A and
u, we firstly take the cross product of the aforementioned expression with

¢ — @ and then the dot product with b — d, thus obtaining
[(F—a@) x (@—ad)]-(b—a)=0.

Vector (or Linear) Spaces

The most abstract definition of a vector is that a vector is an element of a
“vector (or linear) space,” which, in turn, can be defined as follows: let U
be a set endowed with two operations: addition and scalar multiplication,
defined in the following way:

+: U XU - U defined by (w,v) EUXU »>u+veUforaluvel,
that is, U is “closed under addition”;

-1 kXU - U defined by (k,u) EKXU->k-u€eU for every k €K
(where K is a field, such as R) and for every u € U, that is, U is “closed
under scalar multiplication.” Of course,0 € U, since, for every u € U,
(-Du e U, and, therefore, u—u €U =0€U. As a result of the
aforementioned definition, we say that U under the operations of +
(addition) and - (scalar multiplication) forms a “vector space” (or “linear
space”) over the field K; and, therefore, a “vector” can be defined as an
element of such a U.

For instance, we can prove that, if

V ={ax?+ bx +cla,b,c ER},

then V is a vector space over R as follows:

Step 1: 0=0x2 +0x+ 0 € V.

In other words, 0 € V.

Step 2: Let
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v, = ax?2+bix+¢
{vz =ax2+byx+c,
Then v; + v, = (a; + a,)x? + (b + by)x + (¢; + ¢,) EV.
In other words, V is closed under addition.
Step 3: Letv = ax? + bx + c witha,b,c € R.
Then kv = (ka)x? + (kb)x + (kc) € V.
In other words, V is closed under scalar multiplication.
Therefore, V = {ax? + bx + c|a,b,c € R} is a vector space over R. In
other words, the set of all real quadratic polynomials forms a vector space
over R.
On the other hand, we can prove that a sphere S is not a vector space as
follows: let v be a vector belonging to the sphere S. If we multiply v by an
adequate number k, then kv does not belong to S any more (it “pierces”
the sphere). Hence, a sphere is not a vector space (it is not closed under
scalar multiplication). This example helps us to understand why no
bounded set, in general, is a vector space.
Linearly Independent Vectors: Let V be a vector space over K. The vectors
V1, Vy, ..., Uy of V are “linearly independent” if and only if every time

kv, + kv, + -+ kv, =0k, =k, ==k, =0.
. _ (1 0 _ (0 1 _(0 O
For instance, the vectors v; = (0 0), v, = (0 0), vy = ( 1 O)’ and

_(0 0 . . .
v, = ( 0 1) are linearly independent, since

kv, + kv, + -+ kv, =0
ki O 0 k 0 0 0 0 00
= (01 0)+(0 02)+(k3 0)+(0 k4) =(o o)
:(I': ii):(g 8):k1=k2=k3=k4=0.

Linearly Dependent Vectors: Let V be a vector space over K. The vectors
V3, Vy, ..., Uy of V are “linearly dependent” if and only if kv, + k,v, +
«++ k,v, = 0 for some k; # 0, wherei = 1,2, ..., n.

For instance, the vectors v; = (0,1), v, = (1,0), andv; = (1,1) are
linearly dependent.

Basis: Let V be a vector space over K. The vectors v, vy, ..., v, form a
“basis” of V if and only if these vectors are linearly independent and
generate (or span) V; that is, every vector of V must be expressed in terms
of vy,v,,...,v,. For instance, if V = {a + bx + cx?|a,b,c € R}, then
v, =1, v, = x, and v; = x? form a basis of V, because: (i) v;, v,, and v3
are linearly independent, since no vector from {1, x, x2} can be written in
terms of the other vectors; and (ii) {1, x, x2} generate V, since, for any v €
V, it holds that v = k + lx + mx? = k - 1 + lx + mx?. Every (non-zero)
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vector space over a field K has at least one basis (actually, it has many
different bases). We shall see that all bases of a finite-dimensional vector
space have the same length (i.e., the same number of elements), and this
length is said to be the “dimension” of the corresponding vector space.

A list of vectors (v, ..., v,) is linearly independent if and only if every
vector v € span(vy, ..., v,), that is, every vector belonging to the vector
space spanned by (vq,..,v,), can be uniquely written as a linear
combination of (vy, ..., v,): If (v4, ..., v,) is a linearly independent list of
vectors, then, for the sake of contradiction, suppose that there are two
ways of writing v € span(vy,...,v,) as a linear combination of
(vq, -, 1), SAY

v ==Fkv; +-+ k,v,, and

v=Fkiv + -+ k.

Subtracting these two equations by parts, we obtain 0 = (k; — ky)v; +
4+ (k, — k;,)v, . Thus, every vector belonging to the vector space
spanned by the linearly independent list of vectors (v, ...,v,) can be
uniquely written as a linear combination of (v, ...,v,). Now, we shall
prove the converse: Suppose that, for every v € span(vy, ..., v,), there are
unique Ky, ..., k,, € F (where F is a field) such that v = kv, + -+ k,v,,.
Then the only way in which the zero vector v = 0 can be written as a
linear combination of v, ..., v, is with k; = --- =k, = 0, and this fact
implies that (v, ..., v,,) are linearly independent.

IfV is a finite-dimensional vector space, and if (v, ..., v,,) is a linearly
independent list of vectors that spans V, then, given any list (wy, ..., w,,)
that also spans V, it holds that m < n. Notice that a list of vectors is
linearly independent if and only if removing any vector from the list yields
a list whose span is strictly smaller than that of the original list, and,
therefore, a linearly independent list is minimal for its span (such a list
does not have any linear redundancies). On the other hand, a spanning set
for a vector space V is generally a list of vectors in V such that every
vector of V' is in the span of the list, so that the last proposition means that
spanning sets have to be at least as large as linearly independent sets
(“bases”). Indeed, this proposition can be verified as follows: Consider an
arbitrary list of vectors A, = (Wy, ..., w,,) such that V = span(4,). At the
kth step of the procedure, construct a new list 4, by replacing some vector
wj, with the vector vy such that A still spans V. Repeating the same
process for every v,, we obtain a new list A, of length n that contains
each of the vectors vy, ..., v, and, therefore, m < n.

Using the last proposition, we can prove that every vector space V has the
following invariant property: the number of vectors in every basis of IV
remains the same (and, thus, this number is said to be the “dimension” of
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V, and it is denoted by dim(V)). Indeed, if (v, ..., v,,) and (wy, ..., wy,)
are two bases of /, then, due to the last proposition, we have m < n, since
(vq, ..., V) is linearly independent (given that we assumed that it is a
basis of V), and n < m, since (wy, ..., w,,) is linearly independent (given
that we assumed that it is a basis of V); and, therefore, m = n.

By the definition of the direct (or Cartesian) product of two sets, it can be
easily verified that, if X;,X,, ..., X,, are finite-dimensional vector spaces
over the same field, then X; X X, X ... X X,, is finite-dimensional and
dim(X; X X, X ... x X)) = dim(X;) + dim(X,) + --- + dim(X,,).

Let A and B be non-empty subsets of a vector space V. The “sum” of A
and B, denoted by A + B, is the set of all possible sums of elements from
both sets: A+ B ={a + bla € A,b € B}.

By the definition of a basis of a vector space, it can be easily verified that,
if X and Y are two subspaces of a vector space V over a field F, and if By
is a basis of X and By is a basis of Y, then By U By is a basis of X + 7.
Notice that the union By U By may contain linearly dependent elements,
and, therefore, if X and Y are subspaces of a vector space V, then

dim(X +Y) =dim(X) + dim(Y) —dim(X nY).

Direct sum decompositions: Let U and W be subspaces of a vector space
V. Then V is said to be the “direct sum” of U and W, and we write V =
UPW, if and only if V=U+W={v=u+wlueU,we W} and
U nW = {0}. In other words, the “direct sum” is a way of adjoining two
(or more) vector spaces in order to obtain a larger vector space, and the
condition that U N W = {0} implies that every such v € V has a unique
expression as v = u + w with u € U,w € W. Hence, given two subspaces
U and W of a vector space V,V = U @ W if and only if, for every v € V,
there exist unique vectors u € U and w € W such that v = u + w.

Norms and Normed Vector Spaces

When we study vector spaces, we must keep in mind that the term “space”
signifies a collection of vectors that interact in a certain way, which is
determined by the corresponding structure (e.g., by a set of operations, by
a norm, etc.). We can define a norm in an abstract way as follows: given a
vector (or linear) space X over R, a “norm” ||-|| for X is a function on X
that assigns to each element a real number (symbolically: ||-[: X = R)
satisfying the following properties:
for every x € X:

i x|l =0,

ii. |lx|l =0ifandonlyifx =0,

iii. ||kx|| = |kll|x|| for any scalar k, and,
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for every x,y € X,

iv. |lx+ vl < llx|l + |lyll (the triangle inequality, implying that the
shortest path between two points is a line segment; equality holds
whenever one of x and y is a non-negative multiple of the other).

A vector (or linear) space that is equipped with a norm ||-|| is denoted by
(X, |I'[l) and is called a “normed vector space” (or “normed linear space”).
Different norms can be defined on the same vector space, thus giving rise
to different normed vector spaces.

Example 1: (R, |]). The set of real numbers (R) is a normed vector space
with norm given by the absolute value (or modulus), that is,

Il = ],

and we call this the “usual norm” for R.

Example 2: (R™, ||-||). The set of ordered n-tuples of real numbers (R™) is
a normed vector space with norm ||-||, defined as follows:

for any real vector x = (kq, ks, ..., k),

lxlly = Iy |2 + Thepl? + o + [ky |2,

and we call this the “Euclidean norm” (notice that, in this case, the only
norm property that provides any difficulty to verify is the triangle
inequality; we can show that ||x||, satisfies the triangle inequality by using
the Cauchy—Schwarz—Bunyakovsky Inequality and the Minkowski
Inequality).

Example 3: (R™, ||:||,). The set of ordered n-tuples of real numbers (R™) is
a normed vector space with norm ||-||; defined as follows:

for any real vector x = (kq, ks, ..., k),

llxlly = 1ky | + 1ol + - + Ky .

Example 4: (R™, |||l). The set of ordered n-tuples of real numbers (R™)
is a normed vector space with norm ||+||, defined as follows:

for any real vector x = (kq, ks, ..., k),

[lx|le = max{|k;|,wherei=1,2,...,n},

and we call this the “supremum (or uniform) norm” for R™.

Example 5: (B(X), ||I'll). For any non-empty set X, we denote by B(X)
the set of bounded real functions on X. Notice that a function f on some
set X with real values is said to be “bounded” if the set of its values is
bounded—that is, if there exists a real number M such that, for every x €
X, it holds that |f(x)| < M.

B(X) is a real vector space under the pointwise definitions of addition and
scalar multiplication. Moreover, B(X) is a normed vector space with norm
|| defined by

Iflleo = sup{lf(x)|, where x € X},

and we call this the “supremum (or uniform) norm” for B(X). Notice that
Example 4 is the special case when X = {1,2, ..., n}.
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Example 6: 1,-space, also known as the “Hilbert (sequence) space.” This is
a generalization of the Euclidean n-space. The set [,, whose elements are
sequences of scalars (real numbers) x = {kq,k,, ..., Ky, ...} such that
Y|k, |? is convergent, is a real vector space under the pointwise definitions
of addition and scalar multiplication, and it is a normed vector space with
norm ||-||, defined by
llxll; = VEZ1lkil?;
where the only norm property that provides any difficulty to verify is the
triangle inequality, and we can show that ||x||, satisfies the triangle
inequality by using the Cauchy—Schwarz—Bunyakovsky Inequality and the
Minkowski Inequality.
In an arbitrary normed vector space (X, ||||), the set

S5(0;1) = {x € X such that ||x|| = 1}
is called the “unit sphere”; the set

B[0;1] = {x € X such that ||x|| < 1}
is called the “closed unit ball”’; and the set

B(0; 1) = {x € X such that ||x|| < 1}
is called the “open unit ball.” In Figure 7-4, we consider the shape of the
unit sphere in several coordinate space examples: (a) in (R?, ||-]|,), where
5((0,0);1) = {(k, D) such that k? + 12 = 1} (i.e., here, we have the
graph of \/x2 + y2? = 1, which is the unit circle); (b) in(R?, |||l ), where
S((0,0); 1) = {(k, 1) such that max{|k|, |l|} = 1} (i.e., here, we have the
infinity-norm for two elements, which is the maximum value of the two
elements, and we require that it is equal to one, so that we end up with the
square with the corners at (1,1), (1, —1), (=1, —1), and (—1,1)); and (c)
in (R%,|Ill,), where S((0,0);1) = {(k, ) such that |k| +|l| = 1} (i.e.,
here, we have the one-norm for two values, which is the sum of their
absolute values, and we require that one is the magnitude, and, therefore:
in the first quadrant, we have the graph of the equation y = 1 — x; in the
second quadrant, we have the graph of the equation y = 1 + x, since x is
negative there, and we change the sign; in the third quadrant, we have the
graph of the equation y = —x — 1; and, in the fourth quadrant, we have
the graph of the equation y = x — 1).
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Figure 7-4: The shape of the unit sphere in: (a) (R%, |||l,), (&) (R?, ||‘|le0), and (c)
R, [Ill)-

dh
NI

(a) (b) (c)

Linear Transformations

Linear transformations are transformations (functions) that preserve the
operations of vector addition and scalar multiplication. Thus, a
transformation T is “linear” if and only if

i T@ +v) =T@{@) + T(¥) and

ii. T(cii) = cT(d), where c is a scalar quantity.
Remark: If T is a linear transformation, then T(6) =0.
Example 1: Recall that, when we multiply an m X n matrix by ann X 1
column vector (which is an element of R™), we receive an m X 1 column
vector (which is an element of R™). If A is any m X n matrix, then the
mapping T: R™ — R™ which is matrix-vector multiplication

T(X) = AX

is a linear transformation. In fact, every linear transformation can be
expressed as a matrix transformation.
FExample 2: Projection is a linear transformation. In particular, in R?, a
projection is a linear transformation T: R? » R2, which takes every vector
in the plane into a vector in the plane. The “vector projection” of ¥ onto U
is denoted by proj;¥ , and it is defined as follows:

L (DU

projzv = (W) u
where the operator * denotes the dot product, and ||| is the length of .
This formula indicates that the new vector is going in the direction of U
(notice that the vector projection is the vector produced when one vector is
resolved into two component vectors, one that is parallel to the second

vector and one that is perpendicular to the second vector). The “scalar
projection” of of ¥ onto U is equal to
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v; = ||¥ ||cosh
where 6 is the angle between ¥ and U (notice that the scalar projection is
the length of the vector projection); and recall that cos@ = IIﬁTI-IIILﬁ T

Example 3: Rotation is a linear transformation. In particular, in R?, we
write Roty: R? —» R? for the linear transformation that rotates vectors in
R? counter-clockwise through the angle 8 about the origin of the Cartesian
coordinate system. Its matrix is
(cos@ —sin@)
sind  cos6
and, to perform the rotation on a plane point with standard coordinates
¥ = (x,y), it should be written as a column vector and multiplied by
Roty: R? > R2, namely:
L (cosf —sin@\ (X xcosf — ysind
ROtg'U:(, )():( K )
sin@  cosf /\Y xsinf + ycos6
The kernel of a linear transformation: The “kernel” (or “null space”) of a
linear transformation is the subset of the domain that is transformed into
the zero vector. In formal notation, the kernel of a linear transformation
T:V - W is denoted by ker(T), and it is the set of all input vectors ¥ € V
such that T(¥) = 0. The kernel is a measure of injectivity. In fact, since
the kernel consists of the elements sent to 6, the dimension of the kernel
tells us how much the corresponding linear transformation shrinks the
source space into the target space. Hence, a linear transformation is
injective if and only if its kernel is trivial, that is, if and only if its kernel is
the singleton of 0.
Eigenvectors and eigenvalues: In linear algebra, we often need to know
which vectors have their directions unchanged by a linear transformation.
An “eigenvector” (or “characteristic vector”) is such a vector. Hence, an
eigenvector ¥ of a linear transformation T is merely scaled by a constant
factor A when the linear transformation is applied to it; symbolically,
T(¥) = A¥ . The corresponding “eigenvalue” (or “characteristic value”) is
the multiplying factor 1. In other words, if T is a linear transformation
from a vector space V over a field F into itself and ¥ is a non-zero vector
in V, then ¥ is an eigenvector of T if T(¥) is a scalar multiple of ¥, that is,
T(¥) = AV where A is a scalar in F, and then A is said to be the eigenvalue
associated with ¥.
Let A be an n X n matrix, and let X € R" be a non-zero vector for which
AX = AX
for some scalar A. Then A is said to be the eigenvalue of the matrix 4, and
X is said to be an eigenvector of A associated with A. If this is the case,
then
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AX—2X=0A-ADX=0
where [ is the corresponding identity matrix. Therefore, when we have to
find eigenvectors, we have to find the non-trivial solutions to this
homogeneous system of equations. The expression (determinant)
det(A — A
is a polynomial called the ‘“characteristic polynomial” of A; that is, it
contains the eigenvalues as roots, and it is invariant under matrix
similarity. In other words, the solutions to the “characteristic equation”

det(A—Al)=0

are the eigenvalues.
For instance, let us find the eigenvalus of the matrix

_(2 2
a=(5 2)
and then let us find the corresponding eigenvectors.

In order to find the eigenvalues of A, we have to find those A for which
det(A — AI) = 0. In this case,

det(A — Al) = det ((é _21) _A(é (1))>

2 2 A0 2—-2 2
= det((s )= A)) =I5 L
=Q2-D(-1-2)—-10=22-21—-12
meaning that the eigenvalues of A are the solutions to the quadratic
equation A2 — A — 12 = 0, namely, ; = —3 and 4, = 4.
Case I: Let A = —3. Then
Ax = Ax = Ax = —3x. 1)
If we write
X1
x = (xz)’

then, given the definition of matrix A, we obtain:

(2 2N\ (X1 _ (2% + 2x,
Ax = (5 —1) (xz) - ( 5x; — X, ) 2)
Moreover,
_ —3x1
-3x = (37 3

Because of equation (1), (2) is equal to (3), and, therefore, we get
(Zx1 + 2x2) _ (—3x1)
5%, —x, )~ \—3x,

2
2xy + 2x, = =3x; > 5x; = —2x, =2 x; = — X2,

meaning that

and
5x; —x, = —=3x,.
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This result means that there are infinitely many solutions to the equation
Ax = —3x, but they all satisfy the condition that the first entry x; is —%
times the second entry x,. All the solutions to this equation have the

following pattern:
(—Zét) =t (—25)

where t is any real number. The non-zero vectors x that satisfy equation
(1) are the eigenvectors associated with the eigenvalue A = —3. One such
eigenvector is

vy = (—25)

and every other eigenvector associated with the eigenvalue A = =3 is a
scalar multiple of ¥, that is, ¥; spans this set of eigenvectors.
Case II: Let A = 4. Then, in a similar way, we can find eigenvectors
associated with the eigenvalue 1 = 4 by solving the equation

Ax = 4x,
which implies that
2x; + 2%\ (4%,

( 5x; — X, ) - (4x2)
meaning that
2x1 + 2x, = 4x; = x1 = Xy,
and
5x; — x, = 4x,.
This means that the set of eigenvectors associated with the eigenvalue A4 =
4 is spaned by the vector

7, =(}).

1
Isomorphisms: Let U and V be two vector spaces over the same field K.
Then a linear transformation T: U — V is called an “isomorphism” if and
only if T is one-to-one and onto; and, in this case, the vector spaces U and
V are said to be “isomorphic.” In general, in mathematics, an
“isomorphism” is a bijective function (one-to-one -correspondence)
between two structures that preserves the operations of the structures.
If V}, is an n-dimensional vector space over R with basis {vy, v, ..., v},
then let us define a mapping f: ;, > R" by
flav; + -+ a,v,) = (aq, ..., a,).
Then it can be easily shown that f:V,, - R" is linear, one-to-one, and
onto. Hence, an n-dimensional vector space I}, over R is isomorphic to
R™.

Hyperplanes
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Notice that, in a three-dimensional space, a plane is given by a linear

equation such as ax +by+cz+d =0 where a, b, and c are the

components of the normal vector 7 = (a, b, ¢), which is perpendicular to

the plane or to any vector parallel to the plane. Moreover, in a three-

dimensional space, a straight line can be specified as the intersection of

two planes, and, thus, it is given by two such linear equations; specifically:

{(x,y,2) € R®|a;x + by + ¢,z = dyandayx + b,y + ¢,z = d,}.

Given a non-zero vector 1 = (a, b, ¢) and a point p; = (x,¥4,2,), if p =

(x,v,z) is an arbitrary point of R3, then, expanding the “scalar equation,”

we obtain

O=alx—x)+bly—y)+c(z—2) =ax+ by +cz— (ax, +

by, +cz),

and, by setting ax; + by, + cz; = d, we obtain the “linear equation”

ax + by + cz = d. Conversely, if (x;,y;,z,) lies on the plane with linear

equation ax + by + cz = d, where d = ax; + by, + cz;, then we obtain

the scalar equation a(x — x;) + b(y —y,) + c(z — z;) = 0. Each can be

written as a vector equation:

the scalar form can be written as 0 = 7+ (p — p,), and

the linear form can be writtenas - p = 71 * p;.

Both equations describe the plane in R3 through the point p; and with

normal vector 7.

Generally, a k-dimensional plane, usually called a “hyperplane,” in an n-

dimensional space is the geometric locus of the points whose coordinates

satisfy a system of n — k linear equations, such as:
A11X1 + QX + o+ X, +b; =0
1%y + AppXy + o+ aypX, + by, =0 )

Ap—k,1X1 + Ap—k,2X2 + et Ap—knXn + bn—k =0

provided that these equations are consistent and independent. Each of

these equations represents an (n — 1)-dimensional hyperplane, and all

together determine the common points of n — k hyperplanes. Hence, a k-

dimensional hyperplane is determined by the intersection of n—k

hyperplanes of dimension n — 1.

An important property of a k-dimensional hyperplane is the fact that it is a

k -dimensional space. For instance, a 3-dimensional hyperplane is the

ordinary 3 -dimensional space. Therefore, we can generalize results

concerning n-dimensional spaces to (n + 1)-dimensional spaces.

If equations (1) are consistent and independent, then, by simple algebraic

techniques, we can choose k out of the n variables x; and express the

remaining n — k variables as functions of these, namely:
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X1 = C11Xqy + CiXp + -+ Cpexge + dy
Xps2 = C21X1 + €% + -+ Copx + d,

Xn = Cn-aX1 + CpogaXa + -+ CpppeXi + dni
where the variables x;, x5, ..., x; admit arbitrary values, and the rest of the
x;’s are determined by these. Hence, the position of a point in a k-
dimensional hyperplane is determined by k coordinates.

Spherical Geometry and Hyperbolic Geometry

Using analytic geometry, we can define a “solid sphere” with center
(%0, Yo, ) and radius r as a solid bounded by a surface given by the locus
of all points (x,y,z) such that (x — x0)? + (y — y)? + (z — z5)? = r2.
The straight line that joins any point of this surface with the center is
called a “radius,” and a straight line drawn through the center and
terminated both ways by this surface is called a “diameter.”

Moreover, the equation of the surface of a solid sphere with center C and
radius a can be expressed in vector form as follows: Let O be the origin of
the Cartesian coordinate system. Let € be a vector such that its tail is 0, its
head is C, and its magnitude is OC. Let P be an arbitrary point on the
surface of the solid sphere, and let 7 be a position vector whose magnitude
is OP (i.e., it indicates the location of a point on the surface of the solid
sphere with respect to the origin of the Cartesian coordinate system).
Obviously, CP = a (the radius). Then the vector equation of the surface of
a solid sphere is

|7 — ¢|* = a?,

and, thus, a point P lies on the solid sphere if and only if its position vector
7 satisfies this condition.

The section of the surface of a solid sphere made by any plane is a
“circle.” The section of the surface of a solid sphere by a plane is called a
“great circle” if the plane passes through the center of the solid sphere, and
it is called a “small circle” if the plane does not pass through the center of
the solid sphere. Hence, the radius of a great circle is equal to the radius of
the corresponding solid sphere, and the radius of a small circle is less than
the radius of the corresponding solid sphere. See, for instance, Figure 7-5.
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Figure 7-5: A great circle passing through two points (source: Wikimedia
COMMONS: Author: HaFEr48;
https://commons.wikimedia.org/wiki/File: Great_circle_passing through two_poin

15.5vg).

Through the center of a solid sphere and any two points on the surface, we
can draw a plane, and, in fact, this plane is unique, unless the two points
are the extremities of a diameter of the solid sphere, in which case
infinitely many such planes can be drawn. Therefore, only one great circle
can be drawn through two given points on the surface of a solid sphere,
unless the points are the extremities of a diameter of the solid sphere.
When only one great circle can be drawn through two given points, the
great circle is uniquely divided at the two points, and the shorter of the two
arcs is said to be the “arc of a great circle joining the two points,” such as,
for instance, the arc AB in Figure 7-5.

The “axis” of any circle of a solid sphere is that diameter of the solid
sphere which is perpendicular to the plane of the circle, and the extremities
of the axis are called the “poles” of the circle. The poles of a great circle
are equidistant from the plane of the circle, whereas the poles of a small
circle are not equidistant from the plane of the circle. But a pole of a circle
is always equidistant from every point of the circumference of the circle.
The arc of a great circle that is drawn from a pole of a great circle to any
point in its circumference is a quadrant (a quarter of a circle). The angle
subtended at the center of a solid sphere by the arc of a great circle joining
the poles of two great circles is equal to the inclination of the planes of the
great circles. The angle between two great circles is defined as the “angle
of inclination of the planes of the circles.” Two great circles bisect each
other.
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Assume that the the arcs of great circles join a point P on the surface of a
solid sphere with two other points 4 and B on the surface of the solid
sphere, which are not at opposite extremities of a diameter, in such a way
that each of these arcs is equal to a quadrant. Then P is a pole of the great
circle through A4 and B.

The great circles that pass through the poles of a given great circle are said
to be “secondaries” to the given great circle. The angle between any two
great circles is measured by the arc that they intercept on the great circle to
which they are secondaries.

Assume that, from a point P on the surface of a solid sphere, there can be
drawn two arcs of great circles, so that they are not parts of the same great
circle, and the corresponding planes are at right angles to the plane of a
given circle (i.e., the line in which they intersect is perpendicular to the
plane of the given circle, and, therefore, it is the axis of the given circle).
Then that point P is a pole of the given circle.

In summary, on the surface of a solid sphere, the “lines” can be interpreted
as geodesics: a “geodesic” is the shortest path between two points on a
curved surface (i.e., the equivalent of a Euclidean straight line in the
context of spherical geometry); like, for instance, on the surface of the
Earth (e.g., airplanes, wishing to minimize the time that they spend on the
air, do not follow Euclidean straight lines, but they follow shortest curves
known as geodesics). In spherical geometry, ‘“great circles,” or
“geodesics,” are intersections with planes through the center of the sphere.
Thus, it is not unconditionally true that, given any two points, there is a
unique line through them, because, if one chooses two points on the
surface of a solid sphere that are opposite, or “antipodal,” then there is a
whole family of great circles that go through them.

Suppose that the angular point of a solid angle is made the center of a solid
sphere. Then the planes that form the solid angle cut the solid sphere in
arcs of great circles, and the figure that is formed on the surface of the
solid sphere is called a “spherical triangle” if it is formed by the meeting
of three plane angles, that is, if it is bounded by three arcs of great circles,
as shown, for instance, in Figure 7-6. The three arcs of great circles that
form a spherical triangle are called the “sides” of the spherical triangle,
and the angles formed by the arcs at the points where they meet are called
the “angles” of the spherical triangle. The angles of a spherical triangle are
the inclinations of the plane faces that form the solid angle.
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Figure 7-6. Great circles and a spherical triangle.

On the plane, the sum of the interior angles of any triangle is exactly
radians (i.e., 180°). However, on the surface of a solid sphere, the
corresponding sum varies, but it is always greater than m radians. If the
angles at each vertex of a spherical triangle are «, §, and y, then the
positive quantity
E=a+f+y—m

is called the “spherical excess” of the triangle. If r is the radius of the solid
sphere on which a spherical triangle resides, and if the angles are
measured in radians, then the area of a spherical triangle is equal to r2E,
where E is the spherical excess, defined above; and, in degrees, the
formula for the area of a spherical triangle is 7r2E /180°.
The radius is the distance from the center of the solid sphere to any point
on its surface. Thus, given a solid sphere with center (x,,y,,2,) and
radius r, the distance from its center to an arbitrary point (x,y,z) on its
surface is r = \/(x —%0)>+ (Y —yo)? + (z—2y)> . However, the
shortest distance between two points on the surface of a solid sphere is the
so-called “great-circle distance”: the shortest distance between point a =
(ay,a,, a3) and point b = (by, b,, b3) on the surface of a solid sphere of
radius r > 0 is part of the great circle lying in a plane that intersects the
surface of the solid sphere and contains the points a = (a,, a,, a;) and
b = (by, by, b3) as well as the center of the solid sphere. In particular, if
a = (a4, a,,a3) and b = (by, b,, b3) are points on a sphere of radius r > 0
centered at the origin of Euclidean 3-space, then the distance from a to b
along the surface of the sphere is

d(a,b) = r-arccos (a b

r2

a,b, + a,b, + a3b3)

)IT'CI.TCCOS( >
r
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as can be easily seen by considering the plane through a, b, and the origin.
If 6 is the angle between the vectors a and b, then a - b = r?cosf, and the
short arc joining a and b has length 6.

On the surface of the Earth, lines of longitude, also called meridians (i.c.,
lines running North-South that measure angular distance from the Prime
Meridian, i.e., they measure distance East-West), and lines of latitude, also
called parallels (i.e., lines running East-West that measure distance from
the Equator, i.e., they measure distance North-South), are used as
reference points, as shown in Figure 7-7 (zero degrees latitude is the line
designating the Equator; and zero degrees longitude is known as the
Greenwich Prime Meridian). Meridians coincide with points of the same
longitude, and parallels coincide with points of the same latitude. By the
term “great circle,” we mean the largest circle that circumnavigates the
Earth and is centered at the center of the Earth. A great circle divides the
Earth in half, and, thus, the Equator is a great circle, but no other latitudes.
All lines of latitude, except for the Equator, are “small circles.” All lines of
longitude are “great circles.” The shortest distance between any two points
on the Earth’s surface lies along a great circle.

Figure 7-7: Latitude and Longitude on the Globe (source: Wikimedia Commons:
Author: Peter Mercator;
https://commons.wikimedia.org/wiki/File: Latitude _and_longitude_graticule on_a
_sphere.svg).

First of all, we know that the circumference of a circle is given by the
formula € = 2nr, and an arc length is a fraction of a circle; and such a

. 0 .
fraction is equal to 3e0" Hence, the formula for the computation of an arc

length is
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0
l = 3500 X 2mr. (1)

When we have to find the distance between two points on the Earth’s
surface, we use formula (1) with the angle 8 being the angular distance
from the center of the Earth. The radius of the Earth is approximately
6,371km. Therefore: the formula for finding the distance between two
points with the same longitude is

Angular distance
d(x,y) = 360° X 21w X 6,371km

where the angular distance is the angle between the two points relative to
the center of the Earth; and the formula for finding the distance along a
parallel between two points with the same latitude is

Angular distance
d(x,y) = 360° X 21 X 6,371km X cosO

where 6 is the latitude, and the angular distance is the angle between the
two points relative to the center of the small circle of the parallel on which
they are located.

The two most common non-Euclidean geometries are spherical geometry,
also known as Riemannian geometry (named after the German
mathematician Bernhard Riemann), and hyperbolic geometry, also known
as Lobachevskian geometry (named after the Russian mathematician
Nikolai Ivanovich Lobachevski). I have already clarified the following:
Euclidean geometry exists on surfaces that have constant zero curvature,
and, in Euclidean geometry, Euclid’s parallel postulate holds (i.e., through
any given point not on a line, passes exactly one line parallel to that line in
the same plane), and the sum of angles of a triangle is always equal to
radians (180°); whereas Riemannian geometry (that is, geometry on the
sphere or on the ellipsoid) exists on surfaces that have constant positive
curvature, and, in Riemannian geometry, there are no parallel lines
(instead, there exist geodesics, which intersect each other), and the sum of
angles of a triangle is always strictly greater than 7 radians (180°). On the
other hand, Lobachevskian geometry (i.e., hyperbolic geometry), which is
based on hyperbolic functions, exists on surfaces that have constant
negative curvature, and, in Lobachevskian geometry, there exist infinitely
many lines that pass through a point P and are parallel to a given line, as
indicated in Figure 7.8: in fact, there is a pair of lines through P parallel to
a given line [ that form an angle, and every line through P and in the
interior of this angle is parallel to [. Moreover, in Lobachevskian
geometry, the sum of angles of a triangle is always strictly less than
radians (180°), as indicated in Figure 7.9 (whereas Riemannian geometry
is characterized by “fat triangles,” Lobachevskian geometry is
characterized by “thin angles”).
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In geometry, we must have in advance not only the concept of space but
also the very fundamental concepts for constructions in space; and, indeed,
geometry gives them nominal definitions, and geometric axioms provide
the means which are necessary in order to determine them. Our choice
among the different geometries is based, on a case-by-case basis, on
experimental facts and practical needs.

The geometry of the surface of a solid sphere is a non-Euclidean geometry
focused on the coordinate representation of the sphere, namely, on the
equation

x2+y?+ 22 =k,

and the transition from spherical geometry to hyperbolic geometry is based
on a small but crucial modification. In particular, hyperbolic geometry is a
non-Euclidean geometry focused on the following equation:

x2+y?—2z2 =k,

so that: for k = 0, this equation yields a cone (x2 + y? = z?); fork = 1,
this equation yields a hyperboloid (i.e., what we get when we rotate a
hyperbola around the z axis); and, for k = —1, this equation yields another
hyperboloid (with two branches, one opening upward, and the other
opening downward), and, in fact, this hyperboloid is considered to be the
most important hyperbolic analogue of the sphere (it best captures
Lobachevski’s thought). Hence, according to the Italian mathematician
Eugenio Beltrami (1835-1900), the hyperbolic plane is the surface x2 +
y? — z%2 = —1, and, in this geometry, the analogues of “straight lines” are
obtained by taking a plane through the origin (as we did in the case of
spherical geometry) and cutting the aforementioned surface with such a
plane, thus obtaining hyperbolic lines.

Figure 7.8: Parallel lines in hyperbolic geometry.

A
v
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Figure 7.9: Triangles in hyperbolic geometry.

Metrics and Metric Spaces

In a vector space Vj,, over the field of real numbers, we can define the
distance between points x = (@, @y, ..., &) and y = (B4, B2, ---, Bn) bY
1

k== @-pf

and, thus, obtain the n-dimensional Euclidean space R".

A “norm” measures the size of a single thing (specifically, the length of a
vector, as measured from the origin), but a “metric” (or “distance
function”) is a more general concept and mesures distances between pairs
of things (specifically, the distance between two arbitrary points). A
“metric,” or “distance function,” on an arbitrary set X is a real-valued
function d defined on X X X that has the following properties for all x, y,
and z:

MDD d(x,y) =2 0;d(x,y) =0 x=y;

(D2) d(x,y) = d(y,x);

D3)d(x,y) <d(x,z) +d(z,y).

Properties (D1), (D2), and (D3) are known, respectively, as the “positive
definite” property, the “symmetric property,” and the “triangle inequality.”
In other words, a metric on X is a real-valued function that is positive
definite and symmetric and satisfies the triangle inequality. If we allow
d(x,y) =0, then the metric is sometimes called “semi-metric” or
“pseudometric.” A set X endowed with a metric is called a “metric space.”
The systematic study of metric spaces (spaces with a metric) was initiated
by the French mathematician Maurice Fréchet in the 1900s.

For instance, given two typical points p = (p;,p,) and q¢ = (q4, q,) of R?,
the Euclidean metric is given by

de (0, q) = (P1 — 41)% + (P2 — 92)2.
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The Euclidean metric on R" is defined by

dg(p,q) = [Z;(pi - Qi)z]%

(the only metric property that provides any difficulty to verify is the
triangle inequality; we can show that dp(p,q) satisfies the triangle
inequality by using the Cauchy—Schwarz—Bunyakovsky Inequality and the
Minkowski Inequality).
It is possible to define more than one metric on the same set X, and, in
general, different metrics define different metric spaces on X. Two
metrics, somewhat different from dj, on R™ are the following:
d.,(p,q) = max{|p; — q;|,i = 1,2, ...,n}, and
ds(p,q) = Xizilpi — qil.
For any non-empty set X, the “discrete metric” is defined by
lifx+y
d(x,Y) - {0 lfx — ya
which specifies that the distance from a point to itself is equal to 0, while
the distance between any two distinct points is equal to 1. Notice that a
metric space is called “discrete” if and only if each x € X is an “isolated
point,” meaning that there exists a neighborhood of x that does not contain
any other points of X. It is clear that the discrete metric on any non-empty
set defines a discrete metric space.
All norms are metrics, but normed vector spaces have a richer structure
than general metric spaces. If you have a norm, then you can define a
metric by saying that the distance (metric) between vectors U and ¥ is the
size of U — ¥, namely:
d(@,v) = |l — vl

which is the metric induced by the corresponding norm.
Let (X,d) be a metric space. The “open (metric) ball” of radius r > 0
centered at a point p € X is usually denoted by B,.(p), and it is defined by

B.(p) = {x € X|d(x,p) <7}
(i.e., a subset of points in X that satisfy d(x,p) < r). The “closed (metric)
ball” is usually denoted by B, [p], and it is defined by

B.[p] = {x € X|d(x,p) <7}
(i.e., a subset of points in X that satisfy d(x,p) < ).
In a metric space (X, d), the “(metric) sphere” of radius r > 0 centered at
apoint p € X is usually denoted by S,.(p), and it is defined by

Sr(p) = {x € X|d(x,p) =1}
(i.e., a subset of points in X that satisfy d(x,p) = ).
For instance, in R3, a ball is a three-dimensional (“solid”) figure bounded
by a sphere, which is a two-dimensional figure (i.e., in R®, a two-
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dimensional sphere is the surface of a three-dimensional ball; and a three-
dimensional ball is also called a “solid sphere”). The 0-sphere is the pair
of points at the ends of a line segment, which can be construed as the 1-
ball (i.e., an 1-ball is a line segment). The 1-sphere is a circle, that is, the
circumference of a disc, which can be construed as the 2-ball (i.e., a 2-ball
is a disc). The 2-sphere is the boundary of a 3-ball in R3.

In terms of metrics, in Figure 7-4 (a), (b), (c), we see the unit sphere in
(R?,dj), (R%,d,,), and (R?, dy,), respectively.

A ball of n dimensions is called an n-ball, and it is bounded by an (n —
1)-sphere (i.e., a sphere of (n — 1) dimensions is the boundary of a ball of
n dimensions). Thus, an n-dimensional closed ball is determined by n + 1
independent variables: the n coordinates of its center, and its radius. For
instance, in the n-dimensional Euclidean space (R", dg), a closed ball of
center (ay, ..., a,) and radius 7 is analytically expressed as

(1 — al)z ot (X, - an)z <r?

while the corresponding sphere is

(c; —a)?+ -+ (x, —a,)? =712

Notice that a geometry of three-dimensional closed balls may be regarded
as a four-dimensional geometry, so that a three-dimensional closed ball
may be regarded as a point of a four-dimensional space.

Let (X, d) be a metric space, and let x € X. A subset A of X is said to be a
“neighborhood” of x with respect to the metric d if and only if there exists
an € > 0 such that B,(x) S A, that is, if and only if A contains an open
ball of radius € centered at x. Hence, given a metric space (X, d), a subset
A of X is said to be “open” in (X, d) if and only if, for every p € A, there
exists an € > 0 such that B;(p) S A4; that is, a set is “open” if and only if it
is a neighborhood of each of its points. The name “open ball” is justified
by the fact that it can be easily verified that an open ball is an open set
according to the aforementioned definition. Moreover, by the definition of
an open set, it can be easily verified that, in an arbitrary metric space
(X,d), the union of any collection of open sets is open, and the
intersection of any finite collection of open sets is open. An infinite
intersection of open sets may result in a non-open set. For instance,

No—q (— = l) = {0} is an infinite intersection of open sets that results in a
nn

non-open set, the singleton of zero.

Let A be a subset of a metric space (X, d). Consider the “complement” of
A with respect to X, also known as the “set difference” of X and A,
namely, X — A = A~, consisting of the elements of X that do not belong to
A. By De Morgan’s laws, the complement of the union of two sets is the
same as the intersection of their complements; and the complement of the
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intersection of two sets is the same as the union of their complements.
Thus, we can define a “closed” subset of a metric space (X,d) as the
complement of an open subset of (X, d). In other words, a subset A of a
metric space (X,d) is said to be “closed” in (X,d) if and only if its
complement, namely, X — A = A~, is open in (X, d). By the definition of a
closed set and the above properties of an open set, we can easily verify the
following properties of a closed set (by applying De Morgan’s laws): in an
arbitrary metric space (X, d), the union of any finite collection of closed
sets is closed, and the intersection of any collection of closed sets is
closed. An infinite union of closed sets may result in an open set. For

instance, Uy—, [l, 1- %] = (0,1).

n
Notice that, given an arbitrary metric space (X, d), the sets X and @ are
considered to be both open and closed in (X, d).
We can formulate an alternative definition of a closed set in a metric space
using the concept of an accumulation point (see also Chapter 2). Let (X, d)
be a metric space, let A € X, and let a € A. Then a is an “accumulation
point” (or a “cluster point” or a “limit point”) of A4 if and only if, for every
e>0,An(B.(a) —{a}) # O; that is, if and only if, for every € > 0,
there is at least one point of A, other than a itself, within distance € of a.
Hence, a subset A of a metric space (X, d) is “closed” with respect to the
metric d if and only if every accumulation point of 4 is a member of A.
Moreover, the closure of any subset A of an arbitrary metric space (X, d)
is closed in (X, d) (the closure of A is the set consisting of all the points of
A together with all the accumulation points of A).
In a discrete metric space, every subset is both open and closed. Recall
that the discrete metric says that d(x,x) = 0, and d(x,y) = 1 whenever
x # y. In a discrete metric space, consider an open ball of radius 0 < r <
1, namely, By;<; (x). Then, due to the definition of the discrete metric,
Bo<r<1(x) contains only the point at which it is centered, that is,
By<r<1(x) = {x}. Thus, in a discrete metric space, any point x in a set A
has an open ball containing it (since we can always construct an open ball
that only contains x), but, in this case, all sets are open, and, therefore,
their complements are also open, while they are also closed as
complements of open sets.
Given a metric space (X,d) and a non-empty subset A of X, the
“diameter” of A is given by
diam(A) = sup{d(x,y)|x € A,y € A},
and, therefore, a set A is “bounded” if and only if diam(A) < oo. If A €
B, then diam(A) < diam(B). If A contains only one element, then
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diam(A) = 0. If (X,d) is a metric space, then we can define the
“bounded metric” d;, for X generated by d as follows:

d(x.y) .
dy(x,7) = Tyes or dy (x,y) = min{1,d(x, )}

Obviously, every non-empty subset of a bounded set is bounded.
Moreover, it is easily checked that the union of two bounded sets is
bounded.
For an arbitrary ball B, (a) of radius r, it holds that
diam(Br (a)) < 2r.
A simple example of a metric space where the diameter of a ball is not
equal to twice the radius is the following: Consider the discrete metric d
on a set X, that is,

0,if x=y
d(xy) = {1, if x#y
and consider the ball of radius r = % centered at x. Then B,.(x) = {x}, and,
since, by definition, diam(A) = sup{d(a, b)|a, b € A} for any set 4, the
diameter of B,.(x) = {x} is equal to zero.
Moreover, it is evident that, if a point x does not belong to an open ball
B,.(a), then d(x, Br(a)) >d(a,x)—r.
In a discrete metric space, every set is bounded, since, in a discrete metric
space, we have only two distances, namely, 0 and 1, and, therefore, if we
take any two points x and y in a discrete metric space, then the distance
d(x,y) is always less than 2, symbolically, d(x,y) < 2.

Continuity and uniform continuity: Given metric spaces (X,d;) and
(Y,d,), a mapping (function) f: X — Y is said to be “continuous” at a
point x, € X if and only if, given € > 0, there exists a § > 0 such that

d, (f(x),f(xo)) < & whenever d, (x,x;) < § and x, € X.

Geometrically, the aforementioned definition of the continuity of the
mapping f at x, means that f(x) belongs to the open ball B, (f (xo)) in
the metric space (Y, d,) when x belongs to the open ball Bs(x,) in the
metric space (X,d;). Equivalently, we can say that f is (d,,d,) -
continuous at x, € X if and only if, whenever (x;) is a sequence in X for
which

dy
X = X as k = o,
then the sequence
FO0) S ) ask = .
Hence, a function f is continuous at a point x;, if and only if the range of f
over the neighborhood of x, shrinks to a single point f(x,) as the width of
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the neighborhood around x, shrinks to zeo. Intuitively, “continuous” at a
point means “joined” at that point, and the continuity of a function means
that the function has a gapless graph. If f is continuous at every point of a
subset 4 in X, then we say that f is continuous on A.

We say that a mapping (function) f: X — Y is “uniformly continuous” on
X if, for every € > 0, there exists a § > 0 such that d, (x,y) < § implies
that d, (f ), f (y)) < &. “Uniform continuity” is a stronger condition
than “continuity,” because “continuity” is defined at a point x,, whereas
“uniform continuity” is defined on a set X: in case of “continuity,” the
point x, is part of the definition’s data, and it is kept fixed, just as f itself,
whereas “uniform continuity” requires the existence of a single § > 0 that
works for the whose set X, and not only in a neighborhood of x,. For a
function to be continuous, we can check “one x at a time,” so that, for
each x, we pick an € and then we define a § that depends on both x and &
so that d, (f(x),f(y)) < & whenever d;(x,y) <& ; but, if we want
uniform continuity, then we must choose an ¢ and then define a § that is
good for all the x values under consideration. Thus, uniform continuity
implies continuity (since uniform continuity is a global property), but not
all continuous functions are uniformly continuous (continuity is a local
property).

Example 1: The function f: R — R defined by f(x) = x? is continuous
but not uniformly continuous. Firstly, we can prove that f(x) = x? is
continuous at x € R as follows: Let € > 0. Then a § > 0 must be found
such that |x — x| <6 =|f(x) — f(xy)| <& for x,x, ER. In other
words, by definition, f(x) is continuous at x = x, if, for any real number
€ > 0, we can find a real number § > 0 such that x € (x, — §,%x, + §) =
[f(x) — f(xo)| < €. Forx € (x; — &, x, + &), we have that

[x —xo] < 8= x| <|xo| + 6,

and

If () = f(xo)l = Ix? —xg] =[x + x0) (x — x0)| = |x + %] |x — x0] <
(x| + |x0 D6 < 8(2lxo| + 6).

Hence, for any € > 0, if we choose & such that §(2|x,| + §) < €, then the
condition of continuity of f(x) = x? at x, is satisfied. Now, we shall
prove that we cannot establish the uniform continuity of f(x) = x? on R,
by reducto ad absurdum. For the sake of contradiction, suppose that
f(x) = x? is uniformly continuous over R. Then, by definition, for every
£ > 0, there exists a § > 0 such that |x — y| < § = [x? — y?| < ¢. But,

if, say, € = 1, then, if such a 6 existed and y = x + g, we would obtain

2
xz—(x+§) |<1foralle]R,
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2
which would mean that |x6 + %| < 1 for any real number x, which is not

true for sufficiently large values of x; quod erat demonstrandum.
Example 2: We can prove that the function f(x) = +/x defined on [0, ©)
is uniformly continuous as follows: Let € > 0, |x — y| < &, and § = £2.

Then we  have: |f(x)—f)| = |\/§—\/§| = “\/E—\/ﬂz <
\/|\/§ + ﬁ”ﬁ— \/ﬂ = /|x — y| <6 = &, and, therefore, we have a

6 that satisfies the definition of uniform continuity; quod erat
demonstrandum.

Isometric embeddings, isometries, and embeddings with distortion: Given
two arbitrary metric spaces (X,d;) and (Y,d,), a mapping f: X - Y is
called an “isometric embedding” if and only if

dy(f (@), f(¥)) = dy (x,y) forall x,y € X. (1)
In other words, if the distance between the transformed versions of two
points (“image”) is the same as the distance between the original two
points (“pre-image”), then such a transformation is said to be an “isometric
embedding.” An isometric embedding is an injective mapping that
preserves the distances between elements exactly, but it is not necessarily
surjective. If an injective mapping preserves the distances between
elements exactly, thus satisfying condition (1), and if it is surjective, then
it is said to be an “isometry.” Notice that, if f: X — Y is an isometry, then
the inverse mapping f~1: Y — X is an isometry of Y onto X. Therefore, an
isometry is an isomorphism for metric spaces. In fact, if two metric spaces
are isometric, then, as metric spaces (that is, as regards their metric
structure), they are structurally identical.

A mapping T: R™ — R" that maps every point p € R" to p + a for a fixed
a € R™ is called a “translation.” Moreover, notice that an orientation
preserving linear mapping T: R™ — R"™ that carries a set

{e1, ey, ..., e}

of orthogonal unit vectors at 0 to another set

{ei, ey ..., e}

of orthogonal unit vectors at 0 in such a way that

T(e;) = e,

where i = 1,2, ...,n, is called a “rotation” (about 0). It is easily verified
that translations and rotations are isometries.

Given two arbitrary metric spaces (X,d;) and (Y, d,), a mapping f: X —
Y is an “embedding with distortion a” if there exists a constant r > 0 such
that, for all x,y € X,
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r-di(x,y) < do(f (0, f() < ar - dy (x,). 2
More precisely, the distortion of an embedding f is the infimum of all
such that f satisfies condition (2). The scaling by r, in condition (2),
implies that we only care about approximately preserving the ratio
between distances. Thus, isometric embeddings are embeddings with
distortion equal to 1.

In general, given a metric space, consider the problem of finding a host
metric space from within some class of “simpler” and “more convenient”
metric spaces into which the original metric space can be embedded while
preserving pairwise distances as much as possible. This is a key and
fundamental problem in the theory of algorithms in general and in the
algorithmic study of metric spaces in particular, since this process of
simplification and approximation can provide the researcher with a new
set of efficient algorithmic tools. In order to quantify the extent to which
an embedding (generally, an injection between metric spaces) preserves
distances (and, thus, the extent to which it is structurally faithful and
informationally accurate), we consider the (multiplicative) distortion. In
particular, if f is an embedding from the metric space (X, d,) into another
metric space (Y, d;), then we define:

expansion(f) = supyyex %)’f/)@))
| B d,(x,y)
contraction(f) = supy yex d(f(x—)f(y))

(where x # y), and then distortion(f) is defined as the product of
expansion(f) and contraction(f), symbolically:

distortion(f) = expansion(f) X contraction(f)
(notice that the lowest distortion we can hope for is 1, in which case all
distances are preserved exactly, and the embedding is called isometric).
Low-distortion embeddings have been used in several computer science
applications.

Connectedness: The intuitive meaning of a metric space X being
connected is that it constitutes one piece, meaning that it cannot be
represented as the union of two separated sets A and B. As I have already
mentioned, two sets A and B are said to be disjoint if their intersection is
the empty set. However, there is a stronger condition on A and B than
disjointness, and this condition is known as “separation.” By “separated
sets” A and B, we mean that Cls(A) NB =@ and A N Cls(B) = @, where
Cls denotes “closure”: each set is disjoint from the other’s closure
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(obviously, any two separated sets are automatically disjoint). Hence,
separated sets not only do not overlap but do not even touch each other.
For instance, let us consider the metric space R of all real numbers
endowed with the usual metric d(x,y) = |x — y| for all x, y € R. The sets
A =(-1,0), B ={0}, and C = (0,1) are pairwise disjoint. But Cls(4) N
B =[-1,0] n {0} = {0} # @, and, therefore, the sets A and B are not
separated. Similarly, it can be shown that the sets B and C are not
separated. However, Cls(A)NC=[-1,0]n(0,1)=0 , and AN
Cls(C)=(—1,00n[0,1] =@, and, therefore, the sets A and C are
separated in this metric space.
Notice that, given two non-empty sets 4, B S (X,d), where (X,d) is a
metric space,

dist(A,B) = inf{d(x,y)|x € A,y € B}
meaning the minimum distance between the elements in sets A and B. The
condition of separation is not as strong as requiring that the distance
between separated sets should be positive. For instance, the distance
between the separated sets [0,1) and (1,2] is zero.
A set (or a metric space) is “connected” if and only if it is not possible to
be represented as the union of two separated sets A and B. By a “domain,”
we mean a non-empty connected open set in a metric space; and a
bounded domain together with all its boundary points is said to be a
“region.” If a set (or a metric space) is not connected, then it is said to be
“disconnected.” For instance, the hyperbola H = {(x,y) € R?|x? — y? =
1} is disconnected, since the sets H; = {(x,y) € H|x > 0} and H, =
{(x,y) € H|x < 0} form a disconnection of H.
The real line R is connected, as it can be easily shown by invoking the
Dedekind Cut Axiom: Suppose that R = U UV, where U and V are two
non-empty sets such that U N V = @. Without loss of generality, let u € U,
veV,andu <v. LetX = {u; € Uly; < v} and s = sup(X). Then s may
or may not belong to U. If s does not belong to U, then s € Cls(U). If s €
U, then s < v, so that all points between s and v belong to V, and s is a
limit point of U. Hence, either Cls(U) NV #= @ or U N Cls(V) # @, quod
erat demonstrandum.

Complete metric spaces: Let u, be a sequence in which the difference
between any two terms becomes arbitrarily small as the index of the term
increases. As I mentioned in Chapter 2, such a sequence is called a
“Cauchy sequence.” In formal notation, a sequence u,, in a metric space
(U, d) is a Cauchy sequence if and only if, for every € > 0, there exists an
integer N such that d(u,, u,,) < € for all n,m = N. Recall that, in the
context of the real number system, every convergent sequence is a Cauchy
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sequence, and every Cauchy sequence converges. However, a Cauchy
sequence may not converge in the field Q. For instance the square root
algorithm for the approximation of V8 gives the following sequence of
rational numbers: 2,2.8,2.82,2.828,2.8284, ... This is a Cauchy sequence,
but it does not converge in the field of rational numbers, since V8 & Q.
The definition of a Cauchy sequence is importat for the study of metric
spaces because it is based on the concept of a metric (distance function). A
metric space M is called “complete” if every Cauchy sequence of points in
M has a well-defined limit that is also in M. In other words, a metric space
(X,d) is said to be “complete” if every Cauchy sequence in (X,d)
converges to a point of X. A normed vector space that is complete as a
metric space is called a “Banach space” (named after the Polish
mathematician Stefan Banach). Notice that R with the usual norm is
complete (this completeness property derives from the fact that any subset
A of R that is bounded from above has a supremum in R).

If A is a closed subset of X, where (X, d) is a complete metric space, then
(A,d) is also a complete metric space; because: if (x,) is a Cauchy
sequence in (4,d), then it is a Cauchy sequence in (X,d), so that it
converges to some & € X, and, since A is given to be closed, £ € A.
Moreover, if A € X, and if (4, d) is a complete metric space, then 4 is a
closed subset of X; because: if (x,) is a sequence of elements of A that
converges to ¢ € X, then we must show that £ € A, and, indeed, this is the
case, since (x,) is a Cauchy sequence (since it converges), and the fact
that (4,d) is a complete metric space implies that (x,) converges to a
limit in A, thatis, { € A.m

The Cantor Intersection Theorem for Complete Metric Spaces: Let (X, d)
be a complete metric space. Suppose that (x,,) is a sequence of points in
X, and that (1;,) is a sequence of positive real numbers such that r;, — 0 as
n — oo, so that we obtain the closed balls ... B[x,, 41, 41] € Blx,, 1] S
-+ © B[xy,11]. Then the intersection of these closed balls is non-empty,
and, more precisely, there exists a point ¢ such that Ny, B[x,,7,,] = {¢}.
Proof: Firstly, we shall show that the sequence (x,,) given in this theorem
is a Cauchy sequence. Let € > 0, and let n’ € N be chosen such that r,,» <
€. Then, if m,n = n' with m > n, it holds that B[x,,, 1;,] € B[x,,1;,], and,
therefore, d(x,,, x,) <1, <1, <e&. Hence, indeed, (x,) is a Cauchy
sequence in (X, d). Since (X, d) is a complete metric space, (x,,), being a
Cauchy sequence, converges to some ¢ € X. Because, whenever n > m, it
holds that (x,) € B[x,,, %], for any m € N, it holds that & €
Ny_; B[x,, 1,]. Now, we shall show that the aforementioned intersection
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of closed balls contains only the point £. For the sake of contradiction, let
¢, x €nyy Blx,, 1,]. Then, for any n € N, it holds that

d($,x) < d(§,x,) + d(xp, x) < 213,

and, by taking the limit as n — oo, we realize that d(&, x) = 0 (since, by
hypothesis, 1;, = 0 as n - o0). Therefore, & = x, so that N;_; B[x,, 1] =
{}m

Characterization of complete metric spaces: A necessary and sufficient
condition that a metric space (X, d) is complete is that, for any decreasing
sequence A; 2 A, 2 A; 2 -+ of non-empty closed sets with diameters
approaching 0, the intersection N; A4; is non-empty.

Note: If diam(4;) = 0 as i = oo, then N; 4; is either empty or contains
exactly one point due to Cantor’s Intersection Theorem.

Proof (according to the method of G. Cantor): Suppose that (X,d) is a
complete metric space. Let x; be a point in 4;, i = 1,2,3, ... If we consider
any € > 0, then there is a A large enough so that diam(4;) < ¢, that is,
d(xi,xj) < gfori,j > A. Therefore, (x;) is a Cauchy sequence. Because
(X,d) is a complete metric space, (x;) converges to some x € X. Claim
that x € 4;. Indeed, if we consider a specific set 4;, it holds thati = j =
x; € Aj; because 4; is closed, it follows that x € 4;.

Conversely, given a Cauchy sequence (x;) in (X, d), we must show that it
converges to a point in X. Consider a set B; containing the points
Xi, Xiy1, -, SO that B; 2 B, 2 --- Additionally, diam(B;) — 0 because
(x;) is a Cauchy sequence. If A; = Cls(B;), then A; 2 A;,,, and
diam(4;) = 0,i = 1,2,3, ... By hypothesis, the 4;’s are non-empty, and,
due to Cantor’s Intersection Theorem, there exists an element & €N; 4;.
Hence, the sequence (x;) converges to the point & ; quod erat
demonstrandum.

Corollary: R™ equipped with the Euclidean metric dg is a complete metric
space.

Proof: Firstly, we shall prove that (R, d) is a complete metric space.

Let (x,) be a Cauchy sequence. Then, by definition, for any £ > 0, there
exists a natural number n' such that d(x,,, x,) = |x, — x,| < € for all
mmn=n'.

For ¢ = % >0, let n, be the smallest natural number such that |x,, —

x| < % for all m,n > n,,.
For € = ziz > 0, let n; be the smallest natural number such that |x,, —

1
x| <z forallm,n =n,.
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Continuing in the same way for € = 2% >0, we realize that there exists a

smallest natural number n; such that |x,, — x,,| < —— forallm,n > n,.

k+1
Thus, ny <n; <n, <-- <n, <-Then we come up with the sequence
(xnk), which is a subsequence of (x,,). Now, we shall show that (xnk) is
convergent. For this purpose, let us consider closed intervals [, =

1
[xnk+1 g X, T 2k+1] for
any k. Now, we shall show that the sequence (I},) is decreasing, that is, the
diameter of I, tends to 0 as k — «. Since (xnk) is a subsequence of a

1 1
[xnk — 5% X T z_k] , and then [, =

Cauchy sequence, namely, of (x,), it follows that (xnk) is also a Cauchy

sequence, and, therefore, for £ = — > 0, there must exist a natural

number n” such that |xnk+1 = nk| < k+1 for all ng,q,n =n ', so that
2k+1 < Xpppr ~ Xny < SEr 2k+1 Then, we observe the following:
2k+1 < Xppyr ™ Xngeo (1
and
1
Xrger — Xny < 2k+1° (2)
. T 1 1,1 1
Inequality (1) 1mphes that Xnj = Ser1 < Xngyy = xnk —wto T <
1 1
Xnjers = Xy — 2k RPTz=1 2k+1 < Xnjers = Xy — z_k Tz 2"+1 < Xngss = Xnp —
1 1 1 1
2—k<xnk+1—2k+1$x 2—k<xnk+1—2k+1<xnk+1+m. 3

3 1

Inequality (2) implies that Xngrr < Xnp ¥ o537 2k+1 nk+1 < Xp, + -t
1 2-1 1

2k+1 D Xnpgr < xnk + Skt D Xnpyq < Xy, + ~ Sk ke T

k+1 <X, + “4)
2

Comblnmg 1nequalities (3) and (4), We obtain:

F<x < gy + 507 < Xn 37 =>[x

=X

Xnp — Nk+1 2k+1 N+1 2k+1 LTE

1 1
F'xnk+1 +F] c [xnk —Z—k,xnk +2_k] = Ik+1 c Ik for all k. HCIICG,

(I;) is a decreasing sequence of closed intervals. Moreover, diam(l,,) =
Supx,yelkd(x' }’) - Supx,yelklx - J/| - xnk + Z_k - (xnk - z_k) - xnk +

zik — Xp, + zik = diam(l,) = zik, and, thus, diam(l,) = zk%l, which tends
to 0 as k — oo. By Cantor’s Intersection Theorem, Ny, I, will have exactly
one point, say &, that is, N, I, = {{}. Then & must belong to I, for all k,

1

. 1 . 1
that is, £ € [xnk =55 Xny, + 2_k] for all k, meaning that |xnk - f| < 7 for

nk
all k. Hence, |xnk — f| — 0 as k - oo, so that x,, - § as k — oo, that is,
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(xnk) is a convergent subsequence of (x,), and, therefore, (x,) is also
convergent, which proves the completeness of (R, d).

Now, we shall use the completeness of (R, dy) in order to deduce the
completeness of (R™,dg). Recall that (R", dg) is the set of all real n-
tuples (x4, x5, ..., X,) endowed with the metric

d(x,y) = /(X = y)2 + (x5 = ¥,)% + - + (% — W)2,

where x = (xq, x5, ..., x,) and y = (¥4, ¥, -, ¥n) are elements of R™. In
order to prove the completeness of (R™, d), it suffices to prove that every
Cauchy sequence in (R",dg) is convergent. Let (x™) be a Cauchy
sequence in R™, whose terms are real n-tuples, namely:

the first term of (x™) is x* = (1, x3, ..., x1);

the second term of (x™) is x2 = (x%,x2, ..., x2);

the pth term of (x™) is x? = (x7,x%, ..., x%);

the gqth term of (x™) is x4 = (x],x, ..., x7);

Since (x™) is a Cauchy sequence, it holds that, given any £ > 0, there
exists an r € N such that, forall p,q > r,

d(x?,x?) <e=> \/(xf —xD) b (P —x1) <es (P —x1) +

oot (xf = x,g)z < €2. Snce this is a summation of positive numbers, each
term is less than £2, namely, for all p,q = 7, and for eachi = 1,2, ..., n, it
holds that

(x? —xf)z <e?> |xf —xl| <o,

by taking the square root. Hence, we have proved that, for each i =
1,2,..,n, (xip ) is a Cauchy sequence in R (i.e., each component is a
Cauchy sequence). Due to the completeness of (IR, dg), the sequence (xg’J )
converges to some x; for each i =1,2,...,n. Set x = (xq, X5, .-, Xp) »
which obviously belongs to R". Given any € > 0, we have % > 0. Set
&

— =¢'. Given this €', and since (xp) converges to x; for each i =
vn g :

1,2, ...,n, it holds that, for each i = 1,2, ..., n, there exists an r; € N such
that [x7 — x;| < &’ forallp > 1. Let r = max{ry, 7y, ..., 7;,}. Then

|xP — x| <& = %for all p > r and for all i. Hence,
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d(x?,x) = \/(xf —xl)2 + (o - xz)z 4+t (2 - xn)2 <

2 2 2 2
L E Ly E ’ng—:g,foraHPZr.
n n n n

In other words, d(xP,x) < € for all p >r, and this means that (x™)
converges to x, which, in turn, means that (R", dg) is complete.m

Compactness: In real analysis, the property known as the “local
compactness of R” states that every bounded sequence has a convergent
subsequence (this result was proved in Chapter 2). The local compactness
of R highlights the significance of bounded closed intervals, since every
sequence (x,,) in a bounded closed interval [a, b] has a subsequence (xnk)
that is convergent to a point in [a, b]. Given a metric space (X, d), a subset
A of X is said to be “compact” if and only if every sequence (x;,,) in A has
a subsequence (xnk) that is convergent to a point of A.

For instance, given a metric space (X,d), any finite subset A =
{xx|k = 1,2,...,n} is a compact set: in any infinite sequence formed from
members of A, at least one of the values must appear infinitely many
times, because, if each value appears only finitely many times, then the
sequence itself would be a finite number of values appearing finitely many
times, that is, it would be finite, which contradicts the assumption that it is
infinite; and, therefore, one of the values appears infinitely many times.
Then the subsequence that is formed by the value that appears infinitely
many times is obviously convergent to a point of 4.

On the other hand, for instance, in R with the usual metric, the subset

(0,1] is not compact: the sequence (%) converges to 0, which is not a point
of (0,1], and, thus, all subsequences of (%) converge to 0, and no

subsequence of (%) converges to a point of (0,1].

Consider a metric space (X, d) and a subset A of X. A collection of subsets
{U,} of X is called a “cover” for A if A €U, U,. For instance, if U, is the
set of all odd numbers (1,3,5, ...), if U, is the set of all even numbers
(0,2,4,6, ...), and if C = {U,,U,}, then every element of the set U =
{0,1,2,3,4,5,6} belongs either to U; or to U,, that is, U < U; U U,, and,
therefore, C is a cover of the set U. Moreover, another simple example is
the following: the collection C = {(—n, n)|n € N} is an open cover of R,
since R CU, ¢y (—n,n).

Any subcollection of {U, } that is itself a cover for 4 is called a “subcover”
for A. A cover is called “finite” if it contains only a finite number of sets.
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A cover C of a set S is said to be an “open cover” of S if each member of
C is an open set.

Let us consider the closed interval U ={x E R0 <x <1}. Ife>0is
fixed, then the collection C = {(@ — &, @ + €)|a € U} is an open cover of
U. This open cover provides many subcovers. For instance, we may
choose the family ¢ = {(8 — &, 8 + €)|B € {x € Q|0 < x < 1}, which is
an open cover of U, since every irrational number x € [0,1] can be
approximated to within & by some rational number, and C’ is a subset of C,
meaning that C' is a subcover of U . Similarly, the family C" =
{(y —gy+lye{xeqQ0<sx< 1}} is an open cover of U, and it
consists of uncountably many sets.

Thus, given a metric space (X, d), a subset 4 is “compact” (or “ball cover
compact”) if every cover for A by open balls with centers in A has a finite
subcover. It is easily seen that this definition of compactness, which is
based on the notions of a cover and a finite subcover, is semantically
equivalent to the definition of compactness that is based on the notions of
a convergent sequence and a convergent subsequence (in the former case,
we think in terms of collections of open balls, while, in the latter, we think
in terms of sequences of points and the limit of a sequence). Notice that
the definition of convergence and the fact that open balls are open sets in a
metric space imply that every convergent sequence in a metric space has
an open cover consisting of open balls centered at the limit point.

In general, if a subset A of a metric space (X, d) is compact, then it is: (i)
bounded and (ii) closed.

Proof: (i) For the sake of contradiction, let A be an unbounded subset of
(X,d). Then, given an x, € A, it holds that, for each natural number n,
there exists an x,, € A such that d(x,, x,) > n. Hence, the sequence (x,,)
in A is unbounded, and, therefore, every subsequence of (x,) is
unbounded. This fact implies that no subsequence of (x,) can be
convergent, and, therefore, A is not compact, which contradicts the
hypothesis.

(i1) For the sake of contradiction, suppose that A is not bounded. Then
there exists a cluster point x, of A in X — A, and, thus, there exists a
sequence (x,) in A that converges to x,, which is a point of X — A.
Moreover, all subsequences of (x,) converge to x, € X —A, and,
therefore, no subsequence of (x,,) converges to a point of A, meaning that
A is not compact, which contradicts the hypothesis.m

However, a closed and bounded subset of a metric space (X, d) need not
be compact. For instance, consider a metric space (R, d) where d is the
discrete metric, and let A = [0,1]. Then the subset A = [0,1] of (R, d) is
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closed and bounded but not compact: I have already mentioned that, in a
discrete metric space, every set is both open and closed. Moreover, I have
already mentioned that, in a discrete metric space, every set is bounded.
Then A is a closed and bounded subset of R with the discrete metric d.
Now, we shall prove that 4 is not compact. Let K = {{x}|x € A} be a
collection of open sets in the discrete metric space (R, d), where by the
definition of a discrete metric space, we are allowed to call the sets {x}
open. Obviously, A =U,¢, {x}, meaning that K is an open cover of A.
Thus, we have to prove that K has no finite subcover for 4, in order to
prove that A is not compact. For the sake of contradiction, suppose that K
has a finite subcover for A, say K' = {{xl}, {x,}, ...,{xn}}. Then this
means that K’ can also cover 4, that is, A =Ul-; {x;} = {x;} U {x,} U ..U
{x,} = {x1, x5, ..., x,}. But, by hypothesis, A = [0,1], which has infinitely
many elements, whereas {x;, X5, ..., X, } is a finite set, and, therefore, A #
Uiz, {x;}. This contradiction proves that K has no finite subcover for 4,
and, therefore, A is not compact.
Nevertheless, in real analysis, compact sets have a very simple
characterization, which is known as the Heine—Borel theorem (named after
the German mathematician Eduard Heine and the French mathematician
Emile Borel).
Heine—Borel Theorem: Every open cover of a closed and bounded set in R
equipped with the Euclidean metric d; admits a finite subcover, and,
therefore, by the definition of a compact set, such a set is compact.
Moreover, every compact set in R equipped with the Euclidean metric d
is closed and bounded. Hence,

(closed and bounded) & compact
in (R, dg).
Proof: Let S be a closed and bounded set, and let C = {U,|a € A} be an
open cover of S, so that S €U, 4 U,. Moreover, because S is bounded (by
hypothesis), there exist two real numbers a and b such that S C [a, b]. For
the sake of contradiction, assume that S does not have a finite subcover.
Let us bisect [a, b] at ¢, so that we obtain two subintervals [a, c] and
[c, b]. Then at least one of these subintervals contains a subset of S that
does not have a finite subcover, and we rename this subinterval as [a,, b, ].
The length of [a;, b;] is b, — a, = ?. Subsequently, we bisect [a,, b;] at
point ¢;, and we select that subinterval as [a,, b,] which contains a subset
of S that does not have a finite subcover. Repeating this process of

bisection and selection, we obtain nested closed intervals [a,, b,,], where
n = 1,2, ..., such that:
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i. the length of [a,, b,], which is equal to %, tends to 0 as n — oo,

and
ii. each [a,,b,] contains a subset of S that does not have a finite
subcover.

Hence, applying Cantor’s Intersection Theorem, we obtain [a,, b,] C
(e—96,e+38) for § >0, and N,y [a,, b,] = {€}, so that € is an
accumulation point of the set S. Because S is a closed set (by hypothesis),
€ € S. Moreover, C is an open cover of S, so that, for some n, € € U,,, and,
since U, is an open set, € € (¢ — 8, + &) c U,,. Hence, condition (i)
implies that [a,, b,] € U, for some n, so that [a,, b,] is covered by a
single member U,, of C, which contradicts condition (ii). Therefore, S has
a finite subcover.
Regarding the converse (i.e., the statement that every compact set is closed
and bounded), I have already proved that, if a subset A of any metric space
(X, d) is compact, then it is: (i) bounded and (ii) closed (in our proof, we
used the concepts of a convergent sequence and a convergent
subsequence).m
Remark: The above theorem is due to Emile Borel (1871-1956), who gave
its formal statement in 1895. The reason for attaching Heine’s name is that
Eduard Heine (1821-81) used the underlying idea in 1872 in order to
prove that a real function which is continuous on a finite closed interval is
uniformly continuous. As we did in the proof of the completeness of
(R™, dg), we can generalize the Heine-Borel theorem in (R™, dg) .
Therefore, we obtain the following characterization of compact sets: a set
S in (R™, dg) is closed and bounded if and only if it is compact, that is,
every open cover of S admits a finite subcover (for S).
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Chapter 8
Infinitesimal Calculus:
Functions, Limits, Continuity, the Topology
of R", Differentiation, and Integration

“Infinitesimal calculus” is a branch of mathematics that concerns itself
with the systematic study of the concept of an “infinitely small function,”
a function of a variable x whose absolute value, |f(x)|, becomes and
remains smaller than any given number as a result of variation of x. The
method of the “infinitesimals” (“infinitely small” quantities), whose origin
can be traced back to ancient Greek mathematicians, underpins the
analytic way of thinking. The analytic way of thinking is based on the
awareness that, when we treat geometric figures and the motions of
physical bodies as “wholes,” we cannot demonstrate significant apparent
similarities between them, but, when we analyze them into (sufficiently)
“small” pieces, they display great similarities to each other. Hence, the
major problem of seventeenth-century mathematics consisted of
determining the proper processes for dividing the “whole” into “small”
parts, which would be more easily and more rigorously studied than the
“whole,” as well as of determining the proper processes for reassembling
the behavior of the “whole” from the behavior of its “small” parts. In
particular, the “small” parts into which an object of scientific research is
divided are similar to the “small” parts into which another object of
scientific research is divided, and, thus, we can formulate generalizations
(scientific laws) as the dimensions of such “small” parts tend to zero
(hence, we have to work with “infinitesimals”).

The ancient Greek mathematician and physicist Archimedes can be
considered to be the most important ancient pioneer of infinitesimal
calculus. Some other great pioneers of infinitesimal calculus are the
Flemish Jesuit and mathematician Gregory of Saint Vincent (1584—-1667),
the Dutch-French philosopher and mathematician René Descartes (1596—
1650), the Italian mathematician and Jesuate Bonaventura Francesco
Cavalieri (1598-1647), the French lawyer and amateur mathematician
Pierre de Fermat (1607-65), the English clergyman and mathematician
John Wallis (1616-1703), the English Christian theologian and
mathematician Isaac Barrow (1630-77), and the Scottish mathematician
and astronomer James Gregory (1638-75).

Infinitesimal calculus is primarily aimed at solving problems concerning
“change.” Thus, infinitesimal calculus is used in many scientific
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disciplines, including physics, engineering, biology, economics, statistics,
mathematical psychology, neuroscience, and strategic studies (including
warfare problems and arms races). In the seventeenth century,
infinitesimal calculus was erected as a rigorous framework of science as a
result of the revolutionary achievements that took place in the scientific
discipline of celestial mechanics, whose protagonists were Nicolaus
Copernicus, Galileo Galilei, Tycho Brahe, Johannes Kepler, and Isaac
Newton. In its contemporary rigorous form, infinitesimal calculus was
formulated independently in England by Isaac Newton and in Germany by
Gottfried Wilhelm Leibniz in the last quarter of the seventeenth century,
using the algebraic set-up and, especially, the Cartesian set-up, which had
been introduced and developed by their predecessors.

Functions

Whenever, by a known value of one quantity, we can find the value of
another quantity, we say that there is a “functional dependence” between
these quantities. For instance, if the length x of the side of a square is
known, then its area can be found by the formula A = x2. In this way, we
specify the functional dependence between the length of the side of a
square and its area.

As already explained, the specification of a “numerical function” requires
a set of numbers X and a rule f, according to which every number x that
belongs to the set X is associated with a certain number (the value of the
function). An independent variable taking on values from the set X is said
to be the “argument” of the function. Given a member a of the set X, the
value of the function f for the argument a is denoted by f (a).

If a function f is specified on a set X, then the set X is said to be the
“domain” of this function, and the set of all the values of the function is
said to be its “range.” As already mentioned, a function f: X — Y assigns
to each element x € X exactly one elementy € Y.

We can read the expression y = f(x) as follows: “y is a function of x,”
meaning that, as the variable x varies, the variable y also varies according
to some rule f; in this case, y is the dependent variable, and x is the
independent variable.

Analytic representation of a function: Assume that we are given a
collection of operations that must be performed with the argument x in
order to obtain a function value. Then the function is said to be represented
by an “analytic expression.” For instance, consider the following
functions: y =x2+x+1,x€[01]; y=x2+x+1, x € [-2,3]; and
y=x%2+x+1,x € (—o,+c0). Even though the analytic expressions of
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these functions are the same in form, we have three different functions,
because they are defined on three different sets (their domains are
different).

Graphical representation of a function: Assume that a function f is given
by an analytic expression f(x), that is, y = f(x) with x € X, where X is
the corresponding real interval, on which f is defined. The “graph” of the
function f is a set of points of the coordinate plane that have coordinates
(x, f (x)), where x € X. If a function is even, then its graph is symmetric
with respect to the axis of ordinates (i.e., its graph remains unchanged
after reflection about the y-axis). If a function is odd, then its graph is
symmetric about the origin.

A function y = f(x) is defined to be “increasing” on its domain if, for any
two of its points x; and x, such that x; < x,, the inequality f(x;) <
f(x,) is satisfied; in other words, if to a greater value of the argument
there corresponds a greater value of the function. If f(x;) < f(x;)
whenever x; < x,, then the fuction f(x) is called “strictly increasing.” A
function y = f(x) is defined to be “decreasing” on its domain if, for any
two of its points x; and x, such that x; < x,, the inequality f(x;) =
f(x,) is satisfied; in other words, if a smaller value of the function
corresponds to a greater value of the argument. If f(x;) > f(x,)
whenever x; < x,, then the fuction f(x) is called “strictly decreasing.”

A function f is said to have a “period” T if, for any value of x for which f
is defined, the following equalities hold:

fx=T)=f&x)=fx+T).

The aforementioned definition implies that, if a function f with period T is
defined at the point x, it is also defined at the points x + Tand x — T. If a
function f has a non-zero period T, then it is said to be “periodic.” For
instance, if time is measured in years, then the distance from the Earth to
the Sun is given by a periodic function whose period is equal to 1. In
general, the period of a periodic function represents the interval of x
values on which one copy of the repeated pattern occurs. For instance, the
functions sinx and cosx have period 2m, and the functions tanx and cotx
have period m. “Frequency” is defined to be the reciprocal of period, that

is, frequency = = number of events per unit time.

period
One of the simplest functions is the “linear function” (or “linear
equation”), where y = mx + c. In this, y and x are “variables” (that is,
they can take on many values), while m and c are “constants” (that is, they
have fixed values). As already explained, if we plot y against x on a
diagram, the result will be a straight line, hence the name. A “nonlinear
function” (“nonlinear equation”) is any other sort of function (equation).
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For instance, y = x? is a quadratic equation that is downward-sloping for
negative values of x and upward-sloping for positive values of x .
Functions come in many forms, and they are very useful as models of the
real world when they are simple or can be satisfactorily approximated by,
or manipulated into simple forms.

The Limit of a Function

The concept of a limit, or a limiting process, is central to all mathematical
analysis. In fact, one can argue that, from the perspective of mathematical
analysis, “analysis” means taking limits. In his book entitled Cours
d’analyse, the French mathematician Augustin-Louis Cauchy (1789-
1857), one of the founders of modern mathematical analysis, explained the
concept of a limit of a function in a clear, formal, and arithmetic, rather
than geometric, way by arguing as follows: “when the successive values
attributed to a variable approach indefinitely a fixed value so as to end by
differing from it by as little as one wishes, this last is called the limit of all
the others” (quoted in: Boyer, The History of Calculus and Its Conceptual
Development, p. 272).
Consider an arbitrary function f(x) defined at all values in an open
interval of the number line R containing a point x,, with the possible
exception of x, itself, and let L be a real number. The “limit of a function”
f(x) at a point x, is L if and only if the values of x (where x # x,)
approach the number x, (notice that f(x,) may not be defined, since,
according to the definition of a limit, x tends to x,, but x never becomes
equal to x,). In other words, as x gets closer to x,, f(x) gets closer and
stays close to L; symbolically:
lim, ., f(x) = L.
Remark: Let a be a real number and ¢ a constant. Then
lim,_,x = a, and
lim,_,c =c.
Let us recall that the distance between any two points a and b on the
number line R is |a — b|. Therefore, the statement

lf(x)—Ll<e
means that the distance between f(x) and L is less than €, and, by the
definition of an absolute value, the statement

0<|x—al<$é
is equivalent to the statement

a—6 <x<a+46,sothatx # a.
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Thus, the Cauchy epsilon-delta definition of a limit is the following:
assume that, for all x # a, an arbitrary function f(x) is defined over an
open interval containing a. Then

limyof (x) = L
if and only if, for every € > 0, there exists a § > 0 such that, if 0 <
[x —al <&, then [f(x) —L| < e. The statement (with the universal
quantifier) “for every € > 0” means “for every positive distance € from
L”; the statement (with the existential quantifier) “there exists a § > 0”
means that there is a positive distance § from a; and the conditional
statement “if 0 < |x —a| < &, then |f(x) —L| < €” means that, if x is
closer than § to a, and x # a, then the value of f(x) is closer than € to L.
Hence, in the 1-dimensional Euclidean metric space, the Cauchy epsilon-
delta definition of a limit means that, if, for each € > 0, there exists a
sufficiently small § > 0 such that, for all points x that belong to an open
1-dimensional ball centered at a and of radius §, except possibly for a
itself (i.e., this open 1-dimensional ball is a deleted neighborhood of a),
the vale of f(x) belongs to an open 1-dimensional ball centered at L and
of radius &, then we say that the limit of f(x) as x tends to a is L (recall
that an open ball in R is an open interval).
Limit laws: If lim,_,f (x) = L; and lim,_,,g(x) = L,, then:
limx—»a(f(x) T g(x)) = limx—»af(x) t limxaag(x) = Ll T LZ;
limx—»a(f(x)g(x)) = limx%af(x)limxaag(x) =LyLy;

M _ limyoaf(x) — L1 .
70— I — L provided that L, # 0.

Squeeze Theorem: Suppose that, for all x € [p, q] (except possibly at x =
a ), it holds that g(x) < f(x) < h(x) . Moreover, suppose that
lim, ,g(x) =lim,_ ,h(x)=L for some p<a<q . Then
lim,_.f(x) = L.

Proof: The Squeeze Theorem follows from the definition of the limit of a
function as follows: By the definition of limits,

lim,_,g(x) = L means that

Ve> 0,36, >0|lx —al| <6, = lgx) — Ll <e.

Hence, [x —a| < 6, =2 —e<gx)—L<e. @)
Similarly, lim,_,,h(x) = L means that

Ve > 0,36, >0||[x —a| <, = |h(x) - L| <.

Hence, [x —a| < §, > —e < h(x)—L<e. 2
By hypothesis, g(x) < f(x) < h(x), and, thus,
gx)—L<f(x)—L<h(x)—L.

Choosing § = min{d,, §,}, and using inequalities (1) and (2), we obtain
the following results: whenever |x — a| < 6,

lim,_,
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—e<g@)—L<f(x)—-L<h(x)-L<e=>-e<f(x)—-L<e=>
lim, ,,f(x)=L.m

The small angle approximation.: A very important limit is the following:
limy o= =1,

which can be restated as follows: sinx = x for small x, meaning that, for
small values of angle x, the sine of x is approximately equal to x.
Following Leonhard Euler’s Foundations of Differential Calculus, we can
prove this limit geometrically by thinking as follows: Consider the unit
circle, centered at (0,0) of radius equal to 1. Let x be the length of an arc
along the unit circle, from the point (1,0) in a counter-clockwise direction
to some point (cosx, sinx) on the circle. Then, obviously, sinx is the
height of this point above the x-axis. Now, let us imagine what happens if
x — 0. Then the arc is just an infinitely short vertical line, and the height
of the endpoint above the x-axis is just the length of the arc. Hence, when
x = 0, sinx = x, meaning that limx_,o% =1.

cosx—1

Corollary: lim,_,, = 0. Proof: Using the above result, we work as

follows:
cosx—1 (cosx—1)(cosx+1) _ li cos?x—-1

= lmy_,o

lim,_, =lim,_,

x(cosx+1) x(cosx+1)
Recall that cos?x + sin’x = 1 = cos?x — 1 = —sin’®x.
Hence, the last equation becomes

li cosx=1 _ . -sin?x _ li sinx\ [ —sinx \] _
UMy o X =My 07— = UMy PUST | B

x(cosx+1) x cosx+1
. sinx ;. —sinx
lim,_,—lim,,,—— = (1)(0) = 0.
x—0 x x—0 cosx+1 ( )( )

We can adapt the above definition of a limit to define a limit of a function
in n-variables, that is, in the n-dimensional Euclidean metric space, as
follows: if, for each € > 0, there exists a sufficiently small § > 0 such
that, for all points (x4, ..., x;,) that belong to an open n-dimensional ball
centered at (ay, ..., a,) and of radius §, except possibly for (a,, ..., a,)
itself (i.e., this open n-dimensional ball is a deleted neighborhood of
(aq, ..., ay)), the vale of f(xy, ..., x;,) is less than € away from L, then we
say that the limit of f(xy, ..., x,) as (x4, ..., x,,) approaches (a,, ..., a;,) is
L; symbolically:

lim(xl,...,xn)—>(a1,...,an)f(xll 'xn) =L

For instance, in R?, the limit of f(x,x;) as (x, x,) approaches (a,, a,)
is L, written lim(y, »,)-(ay,a,)f (X1, X2) = L, if and only if, for each £ > 0,
there exists a sufficiently small § > 0 such that, for all points (x;, x,) in
an open 2-dimensional ball (i.e., in an open disc) centered at (a,, a,) and
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of radius &, except possibly for (a,, a,) itself, the value of f(x;, x,) is less
than & away from L , that is, |f(x;,x,) —L| <& whenever 0 <

\/(x1 —a)? + (x; —ap)* < 6.
The same limit laws hold for functions in n-variables.

Continuity, Topological Structures, and
Homeomorphisms

In Chapter 7, I defined “continuity” and “uniform continuity” using the
concept of distance (i.e., in the context of metric spaces). In this section, |
shall revisit the concept of continuity in order to study some more details
regarding the definition of this concept and its difference from the
definition of a limit, as well as in order introduce the concept of a
topological structure, which enables us to define continuity without
depending on a metric. Moreover, I shall explain the meaning of a
homeomorphism, which is an isomorphism in the category of topological
spaces.
Consider a function f whose domain is Dy. Let a be an interior point of
Dy. Then f is said to be “continuous at the point” a if and only if
lim,_.f (x) exists finitely and
limyof (x) = f(a),
meaning: if and only if the limit of f(x) as x tends to a is equal to the
value of f(x) at a. If a is a boundary point of Dy (i.e., in this case, an
endpoint of a closed interval), then we distinguish the following two cases:
i. if Dy = (xy, a], then f(x) is said to be “continuous from the left”
at a iflim,_,-f(x) = f(a);
ii. if Dy = [a,x;), then f(x) is said to be “continuous from the
right” at a if lim,_+f (x) = f(a).
The aforementioned definition of continuity (known as the limit definition
of continuity) can also be given in the following equivalent forms:

(i) A function f is continuous at a € Dy if and only if, for every
sequence (x,,) with lim,,_,,,x,, = a, where x,, € Dy, it holds that
lim,_f(x,) = f(a). As I explained in Chapter 2, an infinite
sequence (x,,) of real numbers x,, x5, ..., X, has a limit a if and
only if the distance |x, — a| tends to zero as the indices of the
terms of this sequence become greater than some value n,. This
means that, after a finite set of n, terms of this sequence, the
remaining infinitely many terms of the given sequence, namely,
Xng+1r Xng+2 Xng+3s - CONverge indefinitely to the value a. The
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sequential definition of continuity was originally developed by the
German mathematician Eduard Heine (1821-81).

(i) A function f is continuous at x = a € Dy if and only if:
Ve>0,36 >0|lx—al<s=|f(x) — f(a)] <e.

A function f is said to be “continuous over (or on, or in) an open interval”
(x4, x,) if f is continuous at every point in that interval (x; may be —oo,
and/or x, may be +0). A function f is said to be “continuous over (or on,
or in) the closed interval” [x;, x,] if the following conditions hold: firstly,
f is continuous at every x in the open interval (x;, x,); secondly, f(x;)
and f(x,) both exist; and, thirdly, lim,,, +f(x) = f(x;) , and
limx—»xz_f(x) = f(x2)~

If we compare the definition of the limit of a function with the definition
of the continuity of a function, we realize that they have the same
structure, but they also have the following differences:

i. In the case of the limit of a function (Cauchy epsilon-delta
definition), we have 0 < |x — a| < §, or x # a, whereas, in the
case of continuity, we have only |x — a| < §, meaning that the
definition of continuity holds also when x = a.

ii. Instead of the value L that is used in the definition of the limit of a
function, the definition of the continuity of a function uses the
value f(a), meaning that, in the case of the continuity of a
function, the function must be defined at the point a. Indeed, it is
meaningless to talk about the continuity (or the discontinuity) of a
function at a point that does not belong to its domain.

iii. In the definition of the limit of a function (Cauchy epsilon-delta
definition), the point a must be an accumulation point of the
domain Dy of the corresponding function. Therefore, it may not
belong to Dy. However, in the definition of the continuity of a
function, the point a must belong to the domain Dy of the
corresponding function.

For instance, notice that every polynomial function is continuous
everywhere, since: constant functions are continuous, x (the identity
mapping) is continuous, multiplication is continuous, addition is
continuous, and composition of continuous functions is continuous.
Polynomials are precisely functions obtained by repeatedly composing
addition, multiplication, constants, and x.

Let A € R™. Then a function f: 4 —» R is said to be “continuous” at a
point P, € A if and only if: for every € > 0, there exists a § > 0 such that,
for every P € A with [|PP,|| < &, it holds that ||f(P) — f(P)Il < €.
Equivalently, we can say that a function f: 4 - R, where A S R", is
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continuous at a point Py(x1, x5, ..., X5,) € A if and only if: for every € > 0,
there exist 6; >0 , i=12,..,n , such that, for every point
P(xy, %5, ..., X,) € Awith |x; — x{| < 6;,i = 1,2, ...,n, it holds that

f (1, X ooy X)) = f (21, 22, s x| < e

A third equivalent definition of the continuity of a function in n real
variables is the following: Let A € R", and let A" be the set of the
accumulation points of A. Then a function f: 4 — R is continuous at a
point Py € AN A" if and only if limp_,p, f(P) = f(P,).

Properties of continuous functions: If a function f is continuous at x,,
which belongs to the domain of f, and if f(x, ) # 0, then there exists a
neighborhood of x, (specifically, there exists an open and bounded
interval centered at x,) wherein f(x) # 0. In other words, there exists a
& > 0 such that f(x) # 0 for all x € Ns(x,) N Dy, where Ns(x,) denotes
a §-neighborhood of x,, and Dy denotes the domain of f. In particular, if
f(xg) > 0 (resp. f(xg) <0), then f(x) > 0 (resp. f(x) < 0) for all x €
Ng(x) N Dy. Proof: Given that f is continuous at X, it holds that

Ve> 0,36 > 0]|lx — x| <8 =|f(x) — flxo)l <&,

where x is any element of the domain of f. Since f(x, ) # 0, if we set
€= %lf(x(, )I, then we shall get

|f () = ()l < 21f (oI, Vx € Dy with |x — xo| < 8, s0 that

f (o) =3 1f (o ) < F(x) < f (o) +51f (xo ).
Hence, if £ (xo) > 0, then f(x) > f(x0) =7 f (%) =5 f (%o ) > 0, and, if

f(xo) <0, then f(x) < f(xo) =2f(x0) =5 (o) < 0, Vx € Dy with
|x — xo| < 6, that is, Vx € Ng(x,) N Dy, quod erat demonstrandum.
Given two functions f and g that have the same domain, if they are
continuous at x,, which is an element of their common domain, then the
functions

kf (for any constant k),

ftg

f-9

|f1], and

g(with g %0)

are also continuous at x,. These properties follow directly from the limit
definition of continuity and the properties of limits. Moreover, given that
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min{f,g} =5 (f + g — If — gl) and max{f,g} =5 (F+g+If —gl).

the above properties of continuity imply that, if f and g are continuous at
Xy, then min{f, g} and max{f, g} are also continuous at x.

If f and g are functions such that g is continuous at x, and f is continuous
at g(x,), then the composition f (g (x)) is continuous at x,; since, given a
convergent sequence X, , n € N, with x,, - x,, the fact that g(x) is
continuous implies that g(x,) = g(x,) as x,, = x,, and the fact that f(x)
is continuous implies that f (g (xn)) - f(g(xg) ) as x,, = x,, as required.

Discontinuities: In intuitive terms, a function is said to be continuous if it
varies with no abrupt breaks or jumps. Hence, points of continuity are
characterized by the fact that, for small changes in the argument, the value
of the function changes but little, whereas points of discontinuity are
characterized by the fact that, for small changes in the argument, the
function can change considerably. For instance, consider a load that is
suspended on a thread above a table. Due to this load (supposed to be a
material particle), the thread extends, and the distance [ from the load to
the point of thread suspension is a function of the mass m of the load,
symbolically, [ = f(m), where m = 0. For small changes in the mass of
the load, the distance [ will change but little. But, if the mass of the load
approaches the tensile strength m, of the thread, then a small increase in
the mass of the load may cause a break in the thread. Thus, the distance [
will increase jump-wise and become equal to the distance L from the
suspension point to the surface of the table. On the half-closed interval
[0,m,), the graph of the function [ = f(m) is a continuous line, and, at
the point m,, it suffers a discontinuity. Consequently, we get a graph
consisting of two branches: at all points except m,, the function [ = f(m)
is continuous, in the sense that it exhibits a smooth change. At the point
m,, however, it has a discontinuity, in the sense that it exhibits a jump-
wise change. In Figure 8-1, we see an example of a “jump discontinuity.”
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Figure 8-1: Jump discontinuity.
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In case of a “jump discontinuity,” the right-hand limit and the left-hand
limit both exist, but they are not equal. In fact, the size of the jump is the
difference between the right-hand limit and the left-hand limit. For
instance, the piecewise function
lifx<0

f(x)_{Zifx>O
has a jump discontinuity at x = 0, where the value of the function changes
suddenly from 1 to 2.
In case of an “infinite discontinuity,” the one-sided limits exist, and at
least one of them is equal to 0. A common example of a function with

an infinite discontinuity is the function f(x) = i, which has a vertical

asymptote at x = 0. The function f(x) = i is continuous on (0, ) and on

(—0,0), but it has a single point of discontinuity, namely, x = 0, and, in
particular, it has an infinite discontinuity there.

Continuity on a Closed Interval: If a function f: [a, b] = R is continuous
on the closed interval [a, b], then f is bounded in [a, b]. Proof: This
theorem means that that, if f:[a, b] - R, is continuous on the closed
interval [a, b], then there exists an M > 0 such that, for all x € [a, b], it
holds that |f(x)| < M. For the sake of contradiction, suppose that this
does not hold, so that, for any M > 0, there exists some x € [a, b] such
that |f(x)| > M. For M = n, in particular, let’s assume that there exists a
sequence X, € [a,b] with |f(x,)| >n. The sequence x,,, n €N, is
bounded, since a < x,, < b for all n € N. Therefore, by the Bolzano—
Weierstrass Theorem (proved in Chapter 2), there exists a convergent
subsequence, say X, n € N, with lim,,_,x;,, = x,. Because x, € [a, b]
and f is continuous at X,, it must hold that lim,,_,.f (xkn) = f(x,) € R
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Hence, f (xkn) is convergent and, therefore, bounded. But this result
contradicts the assumed property that | f (xkn)| > k,. Consequently, f is
bounded in [a, b], quod erat demonstrandum.

Weierstrass’s Extreme Value Theorem: If a function f:[a,b] - R is
continuous on the closed interval [a, b], then f attains its supremum (least
upper bound) and infimum (greatest lower bound) in [a,b]. Proof:
According to the previous theorem, continuity of a function on a closed
interval implies boundedness of the function. Therefore, f:[a, b] - R is
bounded in [a, b], meaning that it has a supremum, say M, and an
infimum, say m. We shall prove that there exist x,, and x,,, in [a, b] such
that f(xy) = M and f(x,,) = m. If, for the sake of contradiction, we
assume that there exists no x,, € [a, b] such that f(x,) = M, then it
should hold that f(x) < M for all x € [a, b]. Then M — f(x) is positive
and continuous on [a, b]. Moreover, the function

1
x)=——x€lab
9 = ey x € labl,
is continuous on [a, b] and, therefore, bounded. Because it is positive, it
has a positive supremum, say k, so that

glx) = M_;(x) <k,Vx € [a,b],

which implies that f(x) < M —% < M for all x € [a, b]. This means that

M- % is an upper bound of the range of f strictly smaller than M. But this

is impossible, because M = sup(f). Therefore, there exists an x,, € [a, b]
such that f(x,) = M. The proof for the infimum is similar; quod erat
demonstrandum.

The Intermediate Value Theorem (due to Bolzano and Cauchy): Suppose
that a function f: [a, b] = R is continuous on the closed interval [a, b] and
f(a) # f(b). If N is any value between f(a) and f(b), then there exists
an x, € (a,b) such that f(x,) = N. Proof: Without loss of generality,
suppose that f(a) < f(b) and f(a) <N < f(b) (we can work
analogously in case f(a) > f(b) ). Let’s consider the set A=
{x € [a,b]|f(x) < N}. Then A # @, since a € A and A is bounded from
above by b. Hence, the supremum of A exists, and let sup(4) = x,. We
shall prove that f(x,) = N. Indeed, if f(x,) > N, then x, > a, and, since
f is continuous at x,, there exists some € > 0 such that f(x) > N over the
interval x, — € < x < x,, (since I have already proved that, if a function f
is continuous at x, and f(x, ) # 0, then there exists a neighborhood of x
wherein f(x) # 0, and, in particular, if f(x,) > 0 (resp. f(xy) < 0), then
f(x)>0 (resp. f(x) <0 ) for all x in the intersection of this
neighborhood of x and the domain of f). Therefore, x, — € is an upper
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bound for A, which contradicts the assumption that sup(4) = x,. If
f(xy) <N, then x, < b, and, since f is continuous at x,, there exists
some € >0 such that f(x) <N over the interval x, < x <x,+¢€,
meaning that there exist values of x that are greater than x, and belong to
A for which it holds that f(x) < N and, therefore, x, # sup(4), thus
contradicting our assumption that sup(4) = x,. Consequently, f(x,) =
N, quod erat demonstrandum.

Corollary 1: 1f a function f:[a,b] = R is continuous on the closed
interval [a, b] and k € R such that

inf (f(la,b])) < k < sup(f([a, bD),

then there exists an x, € [a, b] such that f(x,) = k. In other words, every
continuous function defined on a closed and bounded interval takes on all
the values between its smallest value and its largest value in this interval.
This corollary follows from the above Intermediate Value Theorem, given
that, by Weierstrass’s Extreme Value Theorem, there exist x,, and x,,, in
[a, b] such that inf (f([a, b)) = f(x) < k < f(xy) = sup(f([a, b])).
Corollary 2: In case, N = 0, the above Intermediate Value Theorem
reduces to the following corollary, known as Bolzano’s theorem: If a
function f:[a,b] » R is continuous on the closed interval [a, b] and
f(a) - f(b) <0, then there exists some x, € (a, b) such that f(x,) = 0.
Remark: The geometric significance of the above-mentioned Intermediate
Value Theorem is the following: If the graph of a continuous function
passes from one side of a horizontal line to the other, then it necessarily
intersects that line somewhere. The geometric significance of the above-
mentioned Bolzano’s theorem (Corollary 2) is the following: If a
continuous function on [a, b] has values of opposite sign at the interval’s
endpoints, then it has at least one root in that interval.

Continuity and the Topology of R™: The epsilon-delta definition of a limit
and the definition of continuity that is based on the epsilon-delta definition
of a limit, as well as, generally, the study of limits and continuity in the
context of metric spaces, depend on the concept of distance and assume
that we have a clear rule for measuring distances. Moreover, these
definitions are based on the concept of closeness. Thus, one may ask
whether we can go up to such a high level of abstraction that we can
rigorously define the continuity of a function in terms of closeness alone,
without having to resort to distance measurement, that is, without having a
metric. The answer to this question is positive and is one of the
fundamental topics studied in topology.

Topology is a highly abstract kind of qualitative geometric knowledge, in
the sense that it deals with the qualitative concept of nearness to spaces
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that might be conceptually close, without, however, using the quantitative
concept of a distance function. Hence, intuitively, topology offers tools to
model the concept of nearness in a set. In the context of topology, instead
of using a ruler, we can think of two points x and y as being near each
other if there are many open sets that contain both x and y, whereas, if
there are no open sets containing two given points, then these two points
are far apart (of course, the whole space is considered to be an open set
containing every point under consideration). It is conventional to call the
qualitative properties “topological properties.”

In order to understand what we mean by the qualitative properties of
geometric figures, one can imagine a solid sphere to be a rubber ball that
can be stretched and shrunk in any manner without being torn or gluing
any two of its points together. Such transformations of a sphere are called
homeomorphisms, and the different replicas that can be obtained as a
result of homeomorphisms are said to be homeomorphic to each other. In
other words, “homeomorphisms” are isomorphisms in the category of
topological spaces. Hence, the qualitative properties of the sphere are
those that it shares with all its homeomorphic replicas, that is, those which
are preserved under homeomorphisms. For instance, one of the qualitative
(“topological”) properties of the sphere is its integrity, namely,
“connectedness.”

In few words, “topology” is the study of continuous shapes, and it is
mainly preoccupied with properties that survive continuous deformation.
In topology, we are allowed to deform objects, and, as long as we deform
them continuously, we agree that they are topologically the same. From
the topological point of view, it doesn’t matter if we bend, distort, or twist
a geometric figure. To the topologist, homeomorphic spaces are
indistinguishable, in the sense that they have the same topological
properties (the term “homeomorphic” means being equal in the topological
sense).

For instance, a topologist is not concerned with the differences between a
circle and a square, since, from a topologist’s perspective, both a circle
and a square are just simple closed curves (a curve is said to be “simple” if
it does not cross itself, and a curve is said to be “closed” if it has no
endpoints and, thus, forms a closed loop). A topologist is interested in
those properties of a thing that, while they are in a sense geometric, are the
most permanent, namely, the ones that will remain invariant after bending,
distorting, or twisting a geometric figure. The roundness of a circle will
not remain invariant, because we can tie or glue the ends of a bit of string
together and make it into a circle, and, subsequently, without cutting or
disconnecting it, we can make it into a square. But the facts that a circle
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has no endpoints and does not cross itself remain invariant (and, thus,
every simple closed plane curve is homeomorphic to a circle). The
straightness of a straight line is not a topological property (since, in
topology, a straight line does not have to remain straight in the Euclidean
sense, since it may be drawn on a globe and become a “geodesic”), but a
straight line retains the quality of being continuously connected along
itself, and it is this connectedness and this continuity that topology holds
on to; and for this reason, in topology, deformations are only allowed if
one does not disconnect what was connected, nor connect what was not.
As I mentioned in Chapter 7, the concept of connectedness generalizes an
intuitive concept of the wholeness or unseparatedness of a geometric
figure, and the concept of a disconnected space generalizes the concept of
the negation of wholeness, that is, separatedness.

According to the topological concept of a homeomorphism, we can take a
doughnut-shaped (or, formally, a torus-shaped) lump of clay and make up
a mug with a handle, and vice versa, without any tearing or gluing
together, thus showing that a doughnut and a mug with a handle are
topologically equivalent (the hole in the doughnut corresponds to the hole
in the mug’s handle), as shown in Figure 8-2. In view of Figure 8-2, the
torus can be construed as a surface of revolution (revolving a small circle
along a line made by a bigger circle) and, equivalently, as the solid sphere
with one handle. By contrast, a round lump of clay without a hole (i.e., a
solid sphere without a handle) and a mug with a handle are not
topologically equivalent, because a round lump of clay cannot be
transformed into such a mug (with a handle) without giving it a handle,
and, since a round lump of clay (solid sphere) does not have a hole, it
cannot be continuously deformed into a mug, which has a hole in the
handle.

In topology, an object is said to be “simply connected” if and only if (like
the lump of clay without a hole) it consists of one piece and does not have
any “holes” that pass all the way through it. Notice that neither a doughnut
(torus) nor a mug (with a handle) is simply connected, but a round lump of
clay (solid sphere) is simply connected, in the sense that it can
(continuously) contract to a point. In other words, connectedness can be
defined as follows: a space is “connected” if and only if there are no two
open sets that cover the entire space and have no points in common;
whereas “simple connectedness” can be defined as follows: a space is said
to be “simply connected” if and only if it is connected and every simple
closed curve in the space can be continuously shrunk to a single point (i.e.,
in a simply connected domain D, every simple closed curve within it
encloses only points of D).
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Figure 8-2: A homeomorphism between a mug (with a handle) and a doughnut
(source: Wikimedia Commons: Author: CHW;
https://commons.wikimedia.org/wiki/Category:Homeomorphisms#/media/File: Ho
meo_tasse.png).

Some of the most important pioneers and founders of topology are the
French mathematician, epistemologist, and theoretical physicist Henri
Poincaré (1854—1912), the German mathematician Felix Hausdorff (1868—
1942), and the Soviet mathematicians Pavel Sergeyevich Alexandrov
(1896—1982) and Andrey Nikolayevich Tikhonov (1906-93).
Topology is the weakest structure (that is, the most “economical” structure
in terms of assumptions) that can be established on a set and secure a good
definition of continuity of mappings. By the term “topological space,” we
mean a set endowed with a topology defined on it. By the term “topology”
(or “topological structure), we mean a collection of subsets of the given
set that are declared to be open. In fact, the intention of defining and using
open sets in the context of topology is to give a meaning for “nearby,” in
the sense that two points are, in some sense, “nearby” if they are both in an
open set. However, it does not suffice to declare a set open, since we want
our open sets to have additional qualities, and we want to be able to
perform set operations on them to preserve the given sets’ qualities. In
fact, in R"™, the union of any collection of open sets is an open set, and the
intersection of a finite collection of open sets is an open set. Thus, with
these conditions and with the declarations that the empty set and the whole
set are open sets, we come up with the “Euclidean topology” 7 of R™. In
general, a topology endows a set with a structure based on the concept of a
neighborhood, and, thus, a topology organizes a set into chunks of nearby
points. The formal definition of a topology is the following: A “topology”
T on a non-empty set X is a collection of subsets of X, called open sets,
such that:

(T1) the empty set, @, and X are open, symbolically, @, X € T;

(T2) the union of any collection of open sets is open, symbolically,

ifU, €T fora € A, thenU,c, U, €ET;
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(T3) the intersection of a finite collection of open sets is open,
symbolically, if U; € T fori = 1,2, ...,n, then N}, U; € T

Then the pair (X, T) is called a “topological space.” Whereas the concept
of a metric space is based on the concept of a distance (or, more
specifically, on the concept of a distance function), the concept of a
topological space is based on the more abstract concept of closeness alone,
or, more specifically, on the concept of a neighborhood. Notice that, if X is
a topological space and U a subset, then U is said to be “open” in X if and
only if, for each p € U, U is a neighborhood of p; and a subset Y is said to
be “closed” in X if and only if X — Y is open.
For instance, given the set X ={1,2,3,4,5} , the family F, =
{(Z), X,{1},{3,4},{1,3,4}, {2,3,4}} is not a topology on X, because {1,3,4}
and {2,3,4} belong to F;, but {1,3,4} U {2,3,4} = {1,2,3,4} & F,, whereas
the family F, = {(Z), X,{1},{3,4},{1,3,4}, {2,3,4,5}} is a topology on X (it
satisfies conditions (T1), (T2), and (T3)).
In a metric space (X, d), open sets are defined in terms of the metric d as
open balls as follows:
(A S X,Aopenset) & (Vx € A,3r > 0|B,(x) € A),
where B,.(x) is an open ball centered at x and of radius r in the metric
space (X, d). Similarly, in a normed space (E, ||-||), open sets are defined
in terms of the norm ||-|| as open balls as follows:
(A S E,Aopenset) & (Vx € A,3r > 0|B,(x) € A),
where B,.(x) is an open ball centered at x and of radius r in the normed
space (E, ||*|]). The so defined open sets satisfy the conditions (T1), (T2),
and (T3) mentioned in the above definition of a topology, and, therefore,
they define a topology on the corresponding metric or normed space,
respectively.
Notice that a metric space is a topological space with the properties
required to define a metric (distance function), meaning that metric spaces
have a richer structure than topological spaces. Hence, sameness of
topology does not imply sameness of metric geometry.
The “usual” or “standard” topology on the real line is the topology whose
open subsets are (unions of) open intervals, that is, they are sets of the
form {x € Rla < x < b}, where a,b € RU{—00,+00}, and unions
thereof (we have extended the order relation on R by declaring that —oo <
+00, —0 < x, and x < 400, for any x € R). Notice that, in geometry, a
“point at infinity,” or an “ideal point,” is an idealized limiting point that
represents the “end” of each line, and, thus, a point at infinity completes a
line into a topologically closed curve. The real line equipped with a point
at infinity is called the “real projective line,” extending from an original
point 0 to an ideal point oo, as shown in Figure 8-3.
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Figure 8-3: The real projective line (source: Wikimedia Commons: Author:
DerSpezialist; https://commons.wikimedia.org/wiki/File: Projective_Reals.svg).

Let f be an one-to-one mapping of the extended real line into R defined as
follows:

f(=e) = —1,
f(X) = Tlxl,x € ]R,
f(+x) =1.

Then the function
d(x,y) =1f(x) = f)| Vx,y € RU {—o0, +o0}

is a metric on the extended real line, and the metric space of the extended
real line is denoted by R. Notice that R is isometric to the metric space
that consists of the closed interval [—1,1] with the Euclidean metric dg
(this metric space, which can be simply denoted by [—1,1], is called a
subspace of R). Arguably, the n-dimensional sphere is the simplest non-
Euclidean geometry. However, notice that Euclidean geometry is a local
geometry on the sphere (in regions where the curvature of the sphere tends
to zero), and the geometry on the sphere (Riemannian geometry) is a
generalization of Euclidean geometry.

Given a metric space (X, d), the set of all open sets is a topology on X, and
it is called the “metric topology” on X. The open sets of the Euclidean
topology 7 on R™ are given by arbitrary unions of the open balls B, (p),
defined as B.(p) = {x € R"|dg(p,x) <r}, for all r > 0 and for all p €
R", where dj; is the Euclidean metric. In fact, the circle St is a topological
space, in the sense that all the points that are on the circle lie in the set S?,
and, by analogy, the sphere S2, which is embedded in R? and inherits the
topology J; from the embedding topological space (R3,7;), is a
topological space, too (a 2-sphere is an ordinary 2-dimensional sphere in
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3-dimensional Euclidean space, and it is the boundary of an ordinary 3-
ball).

Notice that, given a non-empty set X, the collection {@, X}, consisting of
the empty set and the whole set, is a topology on X, and it is known as the
“trivial topology” on X. The power set §(X) of X, consisting of all the
subsets of X, is a topology on X, and it is called the “discrete topology” on
X.

A topological space is called “Hausdorff” if and only if, for any two
distinct points p and g, there exist neighborhoods U of p and V of g such
that UNV =@ (i.e., distinct points are separated by disjoint
neighborhoods). For instance, any Euclidean space is Hausdorff (the
Euclidean topology is Hausdorff because, for any two distinct points in a
Euclidean space, there exist disjoint open sets containing each point, and
this property ensures that points can be separated).

Consider a topological space X and its subsets A and B. As I have already
mentioned, A and B are separated if and only if Cls(A) NB =@ and AN
Cls(B) = @, where Cls denotes “closure.” A topological space X is
“disconnected” if and only if it can be represented as the union of two non-
empty separated sets, whereas a topological space not satisfying this
condition is said to be “connected.” The simplest examples of connected
topological spaces are a one-point space X = {*} and an arbitrary set X
equipped with the “trivial topology” on X. The simplest example of a
disconnected topological space is a two-point set X equipped with the
“discrete topology” on X.

If X and Y are topological spaces, then a mapping f from X to Y is said to
be a “continuous mapping” if and only if f ~1(A) is openin X (i.e., f ~1(A4)
belongs to the topology of X) whenever A is open inY (i.e., A belongs to
the topology of Y). Notice that f: X — Y would be discontinuous if nearby
points in the domain X were sent far apart in the codomain Y; and,
reversing the direction of this statement, we require that all nearby points
in X must be nearby in Y, thus securing the continuity of f: X - Y.
Equivalently, we can say: If X and Y are topological spaces, then a
mapping f from X to Y is said to be a “continuous mapping” if and only if,
given f(x) €Y and a neighborhood Ng(,) of f(x), there exists a
neighborhood N, of x such that f(N,) S N(y). Therefore, the continuity
of a mapping signifies the preservation of the nearness of points.
According to Pavel Sergeyevich Alexandrov, topology was born more in
connection with clarifying the foundations of mathematical analysis, and it
is in essence the most abstract theory of continuity. In topology, the
concept of continuity is based on the existence of relations that are defined
as local or neighborhood relations. Thus, according to Alexandrov, a
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topological space can be construed as a set in which certain subsets are
defined and are associated to the points of the space as their
neighborhoods.

Geometry is concerned with the study of such concepts as length, angle,
area, and volume, whereas topology is concerned with the study of
“closeness,” or “connection,” so that geometry will inform you about the
length and the direction of a path between two points, but topology will
tell you whether or not there is a path between two points. In other words,
geometry is the branch of mathematics that you use in order to answer
questions like “how far is it to get from point x to point y?” whereas
topology is the branch of mathematics that you use in order to answer
questions like “can I even get from point x to point y?” Thus, topology is
frequently described as the study of shapes that can be stretched, squished,
and otherwise distorted while keeping nearby points together (no tearing is
allowed). Whereas geometry deals with specific kinds of spaces, topology
deals with the most general kind of space possible. Topology transcends
the particularities of different geometries, and it studies a common
conception of “space,” which amounts to considering one or more sets of
objects (e.g., points, lines, etc.) endowed with a structure (namely, with a
set of axioms describing the relations between these objects). Hence, a
topological space can be intuitively construed as a geometric space in
which “closeness” is defined in a rigorous way, but it cannot necessarily
be measured in respect of a numeric distance.

If a topological space admits a metric, then it is called “metrizable.” For
instance, a metrizable topological space is R endowed with the discrete
topology. The discrete topology is induced by the discrete metric.
However, if R is endowed with the trivial topology T = {X, @}, then this
topological space is not metrizable (in this case, the only closed subsets of
R are @ and the space R, but we know that, in a metric space, singletons
are closed sets; if (R, 7)) was metrizable, then its singletons should also be
closed).

Given two topological spaces, (X;,7;) and (X,,7;), a function

f: (X, 7)) = (X2, 73)

is said to be a “homeomorphism” if and only if f is a bijection (i.e., one-
to-one and onto), f is continuous, and f~! is continuous. If such a
function exists, then the spaces X; and X, are said to be “homeomorphic”
or “topologically equivalent” (they are actually, topologically speaking,
the “same” space). Moreover, if the function f*: X; — f(X,), obtained by
restricting the range of f, is a homeomorphism, then f is called an
“embedding” of the space X; into X, (notice that f(X,) carries the
subspace topology inherited from X,).
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Example 1: On the real (number) line with the usual (or standard)
topology, the following open sets are homeomorphic (where a, b, c,d €
R):
i (a,b) and (c,d): The function f(x) = E (x—a)+c,
where x € (a,b), with f~1(y) = Z_T[cl (y—c)+a, where

y € (¢, d), is a homeomorphism (notice that both f and f~!
are continuous, being linear functions).
a+b

. . . _ s

il. (a,b) and R: The function f(x) = tan [E (x = T)] .
where x € (a,b), with f~1(y) = b%atan‘ly + %, where
y € R, is a homeomorphism (notice that both f and f~1 are

continuous, because both tanx and tan~1y are continuous).

iil. (a,b) and (c,+): The function f(x) = ﬁ +c— L,

b—-a
where x € (a,b), with f~1(y) = 1;4— a, where y €

y—C+b_a
(¢, +00), is a homeomorphism (notice that the continuity of
both f and f~?! follows from the continuity of the function

g
x)'

iv. (a,b) and (—oo,c): The function f(x) = —ﬁ +c+ ﬁ,
where x € (a,b), with f~1(y) =———— +a, where y €

—ytety—
(—o0,¢), is a homeomorphism (notice that the continuity of
both f and f~?! follows from the continuity of the function
D

Remark: The functions mentioned in the above four cases are not the
only homeomorphisms between the corresponding sets, but they are
simple in terms of operations, and this is the reason why I chose them
in order to show that the corresponding sets are homeomorphic.

Example 2: The 2-sphere is locally homeomorphic to the Euclidean plane,

in the sense that, for each p € S2, there is a neighborhood U of p such that

U is homeomorphic to R?. In the XYZ-coordinate system (i.e., in R3),

consider a unit 2-sphere with the origin as the center, namely, a subset of

points of R3 that satisfy |p| = /p? + p5 + p? = 1. We denote the upper
half of this sphere (i.e., z > 0) whose pole is (0,0,1) by S*. It is easily
noticed that each point (qq,q,, q3) € ST is projected to the point
(41,92, 0) of an open disc D of radius 1 in the XY-plane (see also Figure
6-16). The point (q4,q,,0) can be naturally identified with the point
(91,9,) € R?, since D is a domain (an open disc) in R? consisting of
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points (u, v) such that u? + v? < 1. Thus, we obtain a homeomorphism
(and, in fact, an embedding)
£:D - 52 C R?

flu,v) = (u,v,\ll —u? —v2) = (x,v,2)

(it is easily seen that (u, v) can be treated as coordinates of a point on the
sphere). The pair (f(D), f~1) constitutes a coordinate pair covering S*.
By analogy, we can construct five other coordinate pairs by taking
(0,0,-1), (0,%£1,0), or (£1,0,0) as the poles. In fact, each hemisphere is
mapped by a homeomorphism onto an open disc, and the coordinates of
the points in the disc can be used in order to describe coordinates of points
in the corresponding hemisphere. The 2-sphere is covered by a family of
six coordinate neighborhoods each of which meets four other members of
this family.

A topological space X each of whose points has a neighborhood
homeomorphic to the open 2-disc (i.e., to the set of all points (x, y) € R?
for which x2 + y2 < r2 for some r € R) is a “two-dimensional manifold”
(as we saw above, S? is a 2-dimensional submanifold of R3?). In general,
by a “topological n-dimensional manifold” M™, we mean a connected
Hausdorff space such that everyone of its points has a neighborhood
homeomorphic to an open set in R™. If M™ is a topological n-dimensional
manifold, then an indexed system V = {V/,,} of open sets is said to be a
“covering” of M™ if each point of M™ belongs to at least one of these sets,
and the union of these V}.’s equals M™. Associated with each of these V}.’s
are an open set U;, of R" and a homeomorphism ¢: V), = U,.

Notice that, since a manifold is locally Euclidean while its global structure
may be non-Euclidean, different geometries can be simultaneously valid,
in the sense that they have different metrics, but they are logically
isomorphic axiomatic systems (that is, their underlying manifolds are
homeomorphic). In these cases, the choice of the appropriate geometry
(e.g., plane geometry or spherical geometry) depends on our practical
needs, the purpose of our work. For instance, locally, the Earth appears flat
(ignoring hills, etc.), but long-distance observation leads us to the
awareness that the Earth is roughly spherical.

Example 3: Any isometry is a homeomorphism. As mentioned in Chapter
7, given two arbitrary metric spaces (X,d;) and (Y, d,), an isometry is a
bijective mapping f:X — Y such that d, (f ), f (y)) =d,(x,y) for all
x,y € X. In order to show that f is continuous, notice that, given € > 0, if
di(x,y) <&, then dy(f(x),f(¥)) =dy(x,y) < &, meaning that f is
(uniformly) continuous for § = &. In order to show that f 1 is continuous,

defined by
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simply notice that it is an isometry, and, therefore, by the first part, it is
(uniformly) continuous as well.

FExample 4: A torus is defined as the Cartesian product S* x S, where S*
is the 1-sphere, that is, a circle (roll a square so that two opposite edges
meet to form a cylinder and then glue the cylinder’s top and bottom edges
to obtain a torus: this is a distorted square with all four vertices identified
and with two pairs of opposite edges identified). A torus T = S x St is
not homeomorphic to S2 (the 2-sphere), because a simple closed curve on
S2 can always be shrunk to a point, whereas this is not always the case on
S1 x ST (some simple closed curves on S x St can be shrunk to a point,
but others cannot, since a torus has a hole). Therefore, the 2-sphere and the
torus are not topologically the same, since simple closed curves on
homeomorphic surfaces behave in the same way.

Another very important concept in topology is that of compactness. As I
have already mentioned in Chapter 7, compactness can be intuitively
construed as a sort of completed infinity: the concept of a compact space is
a generalization of the concept of a closed and bounded subset of the real
line. Let X be a set, and A € X. A collection C of subsets of X is called
a”cover” for A if and only if

Acu{C|C e c},

and, if this is the case, we say that C covers A. If a subcollection of C also
covers A, then it is said to be a “subcover” of C for A. If X is a topological
space, then an “open cover” is a cover each of whose members is open,
and a “closed cover” is a cover each of whose members is closed. A
topological space X is said to be “compact” if and only if every open cover
for X contains a finite subcover (a subcover consisting of finitely many
sets). Thus, a compact space has no “punctures” or “missing endpoints,”
so that it includes all its limit points. Since compactness is defined in
terms of open sets, it is a topological property.

A compact Hausdorff space (i.e., a topological space that is both compact
and Hausdorff) is a topological space in which every limit of a sequence
that should exist does exist and does so uniquely. Hence, in topology,
when we refer to a “compact space,” we precisely mean a Hausdorff space
with the property that every open cover contains a finite subcover.

If fiX—>Y is a continuous mapping of a compact space X onto a
Hausdorff space Y, then Y is compact: Given an open cover of Y, where
the individual sets are denoted by U; (with the i running over some set of
indices), the sets f~1(U;) form a cover of X that, due to the continuity of
f , is open. Because X is compact, a finite collection, say
Yy, ..., f~1(U,), will cover it, and then Uy, ...,U, form a finite
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subcover of the given cover of Y, and, since we have assumed that Y is
Hausdorft, it follows that Y is compact.

Curves and Surfaces in R"

Mathematically, dimensions are degrees of freedom. Consider a set of n
real independent variables x4, x5, ..., X,. Such an n-tuple may be regarded
as the coordinates of a current point in an n-dimensional space V,, in the
sense that each set of values of the variables defines a point of V. The
totality of the points that correspond to values of the variables lying
between certain specified limits constitutes a “region” of V,.
The assemblage of points of I, whose coordinates may be expressed as
functions of a single parameter t is said to be a “curve” in the n-
dimensional space V,,. Intuitively, a curve is an one-dimensional object,
that is, an object that can be described by a single parameter. Hence, the
equations
x; =x;(t),i =12, ..,n,
define a curve. However, points of I}, whose coordinates may be expressed
as functions of two independent parameters u, v constitute a “surface” in
the n-dimensional space V/,.
The totality of points whose coordinates may be expressed as functions of
k independent parameters is said to be a k-dimensional “algebraic variety”
or a k-dimensional “subspace” of ,, and it may be denoted by V} (i..e., an
algebraic variety is the set of solutions of a system of polynomial
equations over some field). Any such subspace is said to be “immersed” in
V,.If k = n — 1, then V}, is said to be a “hypersurface” of V,.
Notice that, by a “constraint equation,” we mean an equation of several
variables that shows the relation between these variables. Usually, each
constraint equation reduces the dimension by one, so that, usually, a set
defined by m constraint equations in n variables is (n — m)-dimensional.
Thus, an equation of the form

@(xg, X9, ey X)) =0
is a constraint equation that determines a hypersurface in the n -
dimensional space V,,, since such a relation reduces the number of
independent variables to n — 1. Notice that, for instance, a line in R? can
be defined as the algebraic variety (the set of zeros) of the linear
polynomial x +y = 0.
Moreover, if ¢ is an arbitrary constant, then

QO(Xq, Xp, i, Xp) =C
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represents a family of hypersurfaces, each value of ¢ determining a
hypersurface. If the function ¢ is single-valued, then one hypersurface of
the family passes through each point of V/,.

For instance, the constraint equation x + 2y + 3z =5 (one constraint
equation in three variables) determines a 2-dimensional set (specifically, a
plane); and the constraint equations x2 + y2? + z2 = 100 and x + 2y +
3z =5 (two constraint equations in three variables) determine an 1 -
dimensional set (specifically, a circle, arising from the intersection of a
sphere and a plane).

Differential Calculus in R

Assume that a function y = f(x) is defined at the points x and x;. The
difference x; — x is called the “increment of the argument,” and it is
denoted by Ax (or sometimes simply by h). The difference f(x;) — f(x)
is called the “increment of the function,” and it is denoted by Af or Ay.
Therefore, Ax =x;, —x ©x;=x+4x , and Af = f(x;) — f(x) =
f(x + 4x) — f(x). Using this formula, we can compute the value of Af
for any given x and Ax. Moreover, notice that a function y = f(x) is
continuous at a point x = a if and only if lim,,_,4f = 0, where Ax =
x—a and Af = f(x)—f(a) . Indeed, the function y = f(x) is
continuous at the point x = a if and only if lim,_,, f (x) = f(a) or, which
is the same, if lim,_,_o(f(x) — f(a)) = 0, that is, if lim,_,Af = 0.
Let f(x) be a function defined on an interval [a, b], and let p € (a,b).
Assume that the limit
f)-f®)

x=p
exists. Then the function f(x) is said to be “differentiable” at the point
FO)-f(@)

x—p

lim,_,

p € (a,b), and the limit lim, _,,, is called the “derivative” of f at

f (p)

p, and it is denoted by f'(p), or y'|,—p, or . Symbolically:

df(p) _ — _ - f(p)
"o =T O =Y e = lime =
The “right-hand derivative” of f(x) at x =p is defined as f/(p) =
fl)- f ®)

lim,_,,+ , provided that the limit exists. The “left-hand derivative”

of f(x) at x = p is defined as f'(p) = lim,_,,- w

the limit exists. Hence, f'(p) exists if and only if £, (p) = f(p).

A function is said to be differentiable on a closed interval [a, b] if it is
differentiable at all points of (a, b) and has a right-hand derivativative at a
and a left-hand derivative at b.

, provided that



257

Let Ax = dx be an increment given to x, and let the increment iny =
f(x) be Ay = f(x + Ax) — f(x). If the function f(x) is continuous and
the derivative f'(x) is also continuous on an interval, then the increment
Ay = f'(x)Ax + edx = f'(x)dx + edx, where € = 0 as Ax — 0.

The first member of the right-hand side, that is, the term f'(x)dx, is called
the “differential of y,” and it is denoted by dy. Hence,

dy = f'(x)dx,

and dx is called the “differential of x.” In general, Ay # dy, but, if Ax =
dx, which is an infinitesimal, then the infinitesimal dy approximates Ay
closely. Therefore, we write:

dy _ . flx+A4x)—f(x) . Ay
ax () = limyy, o o limyo Ax

Notice that Z—x = f'(x) is a new function defined at every such point x at

which the indicated limit exists; this function is called the “derivative of
the function y = f(x),” and it measures the rate of change of y with
regard to x.

The geometric significance of the derivative of a function: Given a
function y = f(x), we realize that, in order to find the rate of change of y
with regard to x at a particular point, we need to find the slope of the
tangent line to the curve at that point. In differential calculus, a main
objective is to try to understand tangents to curves, as shown in Figure 8-4.
Hence, it is important to define a tangent line to an arbitrary plane curve in
a rigorous way. A tangent line cannot be rigorously defined as a straight
line having only one common point with the corresponding curve. In order
to define a tangent line to an arbitrary plane curve in a rigorous way, we
must use the concept of a limit. Let L be an arc of some curve, and M, be a
point of this curve. We draw a secant MyN through the point M,. If the
point N, moving in the curve, approaches the point M, then the secant
M, N turns about the point M,,. Thus, it may so happen that, as the point N
approaches M, the secant tends to a certain limit position M,T, so that
M,T is referred to as the “secant” to the curve L at the point M,,, as shown
in Figure 8-4. Then the “tangent line” to the curve L at the point M, is
defined as the limit position of the secant MyN as N — M,,.
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Figure 8-4: A tangent line to a curve.

Ya

0

Let us try to compute the slope of the tangent line for the case when the
curve L is the graph of a certain function y = f(x). Let M, be a point of
the graph with abscissa x, and ordinate y, = f(x,). Assuming that the
tangent line to the curve L at the point M, does exist, we take one more
point N (x, + Ax,y, + Ay) on the curve, as shown in Figure 8-5, and we
draw a straight line through the points My and N. If ¢ is the slope of this
secant to the positive direction of the x-axis, then

|BN| = Ay, |MOB| = Ax’ and tan(p — |IBN| Ay

IMoB| ~ 4x’

so that k.4, = limy_,y, tang = limy,_ctang.

If we denote the slope of the tangent line to the axis of abscissas with 0, as
shown in Figure 8-5, then the slope of the tangent line is

_ g g Ay
Kign = tanf = limy,_otangp = limy,_,, e

Figure 8-5: The slope of a tangent line.

Y,

A
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Consequently, in order to draw a non-vertical tangent line to the graph of
the function y = f(x) at a point with abscissa x,, it is necessary and

sufficient that, at this point, the limit lim,,_, j—z exists (finitely); and this

limit is equal to the slope of the tangent line. In other words, we create an
infinite sequence of slopes, and then we say that the slope of the given
tangent line is the infinite limit of this sequence. Hence, infinitesimal
calculus provides us with abstract objects (such as a tangent to a curve) at
which only infinite tasks can arrive through the concept of a limit. The
concept of a limit has a deep philosophical significance, because it secures
the theoretical convenience of being able to do an infinite number of tasks
through a theoretical concept—namely, that of a limit—without actually
doing each one of them, which would be practically impossible. This
abstraction underpins the foundations of calculus as it was articulated by
Newton and Leibniz in the seventeenth century. In view of the foregoing,
the slope of the tangent line to the graph of a function y = f(x) at the
point x, is equal to the value of the derivative at the point of tangency;
symbolically: k.o, = f'(x). This is the geometric significance of the
derivative of a function.
Theorem: If a function f is differentiable at x having a finite derivative,
then f is continuous at x. However, the converse is not necessarily true.
Proof: Suppose that f is differentiable at x = p. Then the limit
. f&x) = fp)

lim,_,————
xX—p
exists, it is finite, and, by definition, it is equal to f'(p). Then notice that:

lim,p(f () = f ) = lim,._, (Lg“’) Jeu p)) =

limx—»p %l;(p) ' limx—»p (x — p) = f,(p) - 0.

Hence,

lim, ., (f(x) = f(p)) = 0 & lim,_,f(x) = f(p),

and this proves that the function f is continuous at x = p. We have, thus,
proved that, whenever a function has a finite derivative at a point, it is
continuous there. In order to prove that the converse is not necessarily
true, it suffices to give a counterexample. Indeed, consider, for instance,
the function f(x) = |x| for all x € R. Then, at x = 0, the function is
continuous, because lim,_,f(x) = f(0) , but the function is not
differentiable at x = 0, because f/(0) # f/(0); and, in fact, for f(x) =

lxl . £10) = Limyqr B2 = fimy, o 20 = 1imy,_oe 1 which s

equal to limh_,0+% =1, since, in this case, h > 0, whereas f'(0) =

X—>p
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limy, - w = limy,_,- % , which is equal to limy,_ - _Th =-1,

since, in this case, h < 0.m

Techniques and rules of differentiation: The formula for the derivative of

x (for any x € R) is given by Z—i = (x)' = 1. Indeed, using the limit
definition of the derivative, if f(x) = x, then we obtain:

dx __ li xX+Ax—-x
ax UMpx—0

. Ax .
—— = llmAx_,(]E = limy,01 =1.
The intuition behind this result is that, given that the derivative of a
function at a point represents the slope of the tangent drawn to the graph of
that function at that particular point, and given that f(x) = x represents a

straight line, the derivative of x will be 1 at all points.
Obviously, ;—x(c) = ( for any constant c¢ (the slope, that is, the rate of

change, of a constant function is zero; constant functions f(x) = c are
always horizontal lines parallel to the x-axis and cutting the y-axis at c).
If n is a positive integer, then f(x) = x™ can be differentiated as follows:
First of all, by definition, we shall have

_ n_.n
f,(a) = limxaa% = limx_)ax -
Moreover, it holds that
x"—a"=(@x—a) " T +ax" 2 +a’x" 3+ +a"3x? +a"%x +
a1, 2
and we notice that there are n terms in the second factor (we shall use this

observation in the sequel). By substituting (2) into (1), we obtain:
, . (—a)(x™" +ax™ 2 +a?x" 3+ +a" 3x2+a" 2x+a 1)
f (a) = llmx—>a =

x—a
lime,o(x™t+ax™ 2 +a?x"3 4+ -+ a"3x2+a" 2x+a™1) =
avl+aa"?+a%a" 3+ +a"3a? +a"2a+a*! =na"! . By
replacing the a with an x, we obtain (x™)' = nx™"1, for any positive
integer n. This result is known as the “power rule.”

Let X € R be an interval, a € X, and f: X — R and g: X — R be functions
that are differentiable at a. Then, by the limit definition of the derivative,
the following relations hold:
If k € R, then the function kf is differentiable at a, and

(kf)'(a) = kf'(a).
The function f * g is differentiable at a, and

fx9)(@=f'(a) g (@.
The function f - g is differentiable at a, and

(f-9)'(@) = f'(@g(a) + f(a)g'(@).

If g(a) # 0, then the function 5 is differentiable at a, and

(1)

x-a
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7\ N _ Fl@g@-f@g' @

(g) (@) = 9(a)? )
Differentiation of a composite function (thechain rule”): (f (g(x))) =
f ’(g (x)) g'(x). This result is known as the “chain rule.”
dy du

dx  du dx

For instance, to apply the chain rule to f(x) = (x2 + 1)1°, the outside
function is h(-) = ()1, and, by the “power rule,” its derivative is 10(+)?;
while the inside function is g(x) = x? + 1, whose derivative is 2x .
Therefore, the chain rule implies that f'(x) = 10(x? + 1)92x.

Implicit differentiation: If, in a function f(x), one variable is not directly
expressed in terms of the other variable, then this fuction is called
“implicit.” Implicit differentiation is illustrated in the following example:
x*+y3=7. Since y = f(x), (x*) + (¥3) = (7) & 4x3 + 3y? % =

dy 4x3

d
0e3y?2=—-d4xr’e =2,
dx dx 3y

In other words, if y = y(u(x)) then 2

Higher order derivatives: 1t is evident that the first derivative Z—z expresses

the rate of change of y with respect to x (e.g., velocity). Then;—x (Z—z) =
2

7= = y" expresses the rate of change of the first derivative of y with

axz = B

respect to x (e.g., acceleration), and Z? = y"" = y® expresses the rate of

change of the second derivative of y with respect to x (e.g., jerk) of

course, we can compute the nth derivative of y = f(x), denoted by y

y™, where n is called the order of the derivative.
Basic differentiation formulae (following from the limit definition of the
derzvatzve)
i. —(ax +a, X" T4 tax+ay) =a, nx™t+
g (n— l)x" 24 ..-+a,;, by the sum rule and the power
rule.
il. ;—x(e") = e*; which can be proved as follows: If f(x) = e*, so
that f(x + h) = e**" then the limit definition of the derivative

x+h_,x x(eh—
implies that f’(x) — limh—»o e e — limh—)Q e (eh 1) =

h
e llmh_>0 . Sete —1=n, so that, as h - 0, n - 0.Then
el=n+1 => Ine® =inn+1)=>h=1In(n+1) . Therefore,
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iii.

iv.

V1.

Vil.

1
I o XT: n — ,X1; n no_
x) = e*lim —— =e*lim — X3 =
f ( ) n-0 n(n+1) n-0 n(n+1) %
. 1 . 1 1
exllmn_,om = e*lim,,_,, T=e" T
pinint In(n+1)n ln<limn_,0(n+1)n)

1 1
where In (limn_,o (n+ 1)5) = Ine = 1, since lim,_,(n+ 1)n =
e, and, hence, we have proved that % (e*) = e”*.

;—x(lnx) = i; notice that the method of implicit differentiation

implies that, since y = Inx, e¥ = x & e¥ Y11
dx dx ey «x

Using logarithmic differentiation and implicit differentiation, we

can prove the power rule for any real number n as follows:

Let us define y = x™, and then take the natural logarithm of both

!

sides: lny=lnx"ﬁlny=nlnx$y;:n%=>y’=y§:

xn n_ nxn-1

a .

E(a") = a*lna, since we can sety = a* & Iny = x * Ina and

then differentiate both sides implicitly with respect to x, obtaining

%y’ = Ina = y' = ylna, where y = a*.

;—x(xx) = x*(1 + Inx); notice that we can sety = x* & Iny =
Inx* = xInx (and then we apply the product rule).

d 1 . L
- (log.x) = —— . since, by the method of implicit
differentiation, setting y = log,x, we get a” = x & (Ilna) - a” -
d_yzl(:)ﬂzi.i:L.l’x>0'

dx dx Ina a¥ lna x

d . darcsinx 1

E(smx) = cosx, x € R; and o mfor -1<x<1.

Remark: We can prove ;—x(sinx) = cosx by applying the limit
definition of the derivative, some basic trigonometric formulae,

and the small angle approximation (i.e., limx_,oﬂ%= 1) If

f(x) = sinx, then we have:
, _1s fl+h)—-f(x) _ . sin(x+h)—sin(x)
f'(x) =limy,, — = li

mhaﬂf H and7 by
using the sum and difference of angles in trigonometry (i.c.,
sin(A + B) = sinAcosB + cosAsinB), the above limit can be

. sinxcosh+cosxsinh—sinx
restated as follows: f'(x) = limy_q =

h
[-sinx(1—cosh)]
h

[-sinx(1—cosh)+cosxsinh
h

limh_,o ] = limh_,g
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cosxsinh

h
(cosx)limy,_, %

(1—cosh)] +

= (—sinx) [lim,H0 -

limy,_,,

Now, by using the half-angle formula 1 — cosh = ZSinzg, the
above equation can be restated as follows:

2sin* 2 sinh
f'(x) = (=sinx)lim,,_,, Tz + (cosx)limy,_,, -
. h
sin- h
= (—sinx) [limy,_, Tz -limhqosini

2
) sinh
+ (cosx)limy,_,, -

which, by the small angle approximation, gives

f'(x) = (—sinx) (1 - sin g) + cosx(1) = (—sinx)(0) + cosx =

COSX.
darcsinx

dx
sin~lx = arcsinx and siny = x, and then take the derivative of
both sides of the equation and solve for y’, namely: siny = x =

In order to compute , we work as follows: Set y =

(cosy) y' =1=y'= ﬁ Recall that cos?y + sin*y = 1=

cosy =+/1—sin?y, cosy >0 on the range of y =sinlx.
Plugging this in the above equation for y’, we obtain

p_ 1 _ 1 __1
Y T sy T ity Jiae
Following similar techniques, we can prove the derivatives of the
other trigonometric functions.

d . darccosx -1
—(cosx) = —sinx, x € R; and —— = for -1 <x<
dx dx 1—x2
1.
d 1 darctanx 1
— (tanx) = = sec?x; and —— = —.
dx cos?x dx 1+x2
d darccotx -1
— (cotx) = ——— = —csc?x; and = :
dx sin2x dx . 1-|)—Cx2
. . d . d (et—e™ 1|d
Hyperbolic functions: — (sinhx) = —( ) == [— (e*) —
dx dx 2 2 Lldx

;—x(e‘x)] = %(ex +e™*) =coshx ; and, similarly, we find

i(coshx) = sinhx , i(ttanhx) = sech?x , and i(cothx) =
dx dx dx
—csch?x.
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Investigation of the behavior of a function using differential calculus: 1f a
function y = f(x) is differentiable on an interval (a, b), then:
i.  f is increasing on the interval (a, b) if and only if its derivative is
non-negative in this interval; symbolically: f'(x) =0V x €
(a, b);
ii. f is decreasing on the interval (a, b) if and only if its derivative is
non-positive in this interval; symbolically: f'(x) <0V x €
(a, b).
Geometric significance: A differentiable function increases where its
graph has positive slopes, and decreases where its graph has negative
slopes. If f'(x) = 0, then f(x) is constant (in a sense, it increases and
decreases simultaneously).
We often have to solve optimization problems—that is, to choose from
various variants the best one for some reasons. For instance, builders must
know how to select the dimensions of a square beam in order to ensure its
best tensile strength, aircraft builders must know what orbit ensures
minimum fuel consumption, agronomists must know what seeding rate
will guarantee the richest harvest, logistics managers must know how to
minimize the transportation cost, production managers must know how to
minimize costs and maximize utility, artillery officers must know what
inclination of a gun tube will result in the greatest range of fire, and so on.
Most optimization problems reduce to finding the extreme values,
meaning the greatest and the lowest values, of a function.
A point x = c is called a “point of maximum” (resp. “minimum”) for a
function y = f(x) if there is a neighborhood (¢ — §, ¢ + §) of this point in
which the inequality f(x) < f(c) (resp. f(x) = f(c)) holds. If a function
y = f(x) has an extremum (i.e., a maximum or a minimum) at a point X,
of its domain, then the derivative of the given function either does not
exist or is equal to zero at this point; because, at a point of extremum, the
tangent line to the graph of the function is either horizontal or, in case the
gaph has a cusp (i.e., a sharp bend or a corner), does not exist at all. In
particular, at a “cusp” x,, the right-hand derivative is not equal to the left-
hand derivative, that is, f(x,) # f!(x,); and a characteristic example of a
cusp is the point (0, £(0)) where f(x) = |x].
Assume that a function y = f(x) is continuous at a point x = ¢, and that
there exists a neighborhood (¢ — §,c + §) of this point such that the
inequality f'(x) > 0 holds in the interval (c —§,c), and the inequality
f'(x) <0 holds in the interval (¢,c +&). Then x = c is a “point of
maximum” for f(x). In other words, if f(x) increases in the interval
(c — §8,¢) to the left of ¢, and decreases in the interval (c,c + §) to the
right of ¢, then x = ¢ is a “point of maximum” for f(x).
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On the other hand, assume that a function y = f(x) is continuous at a
point x = ¢, and that, for some § > 0, it holds that f'(x) < 0 in the
interval (¢ — §,¢), and f'(x) > 0 in the interval (c,c + §). Then x = c is
a “point of minimum” for f(x). In other words, if f(x) decreases in the
interval (¢ — &, ¢) to the left of ¢, and increases in the interval (c,c + &)
to the right of ¢, then x = c is a “point of minimum” for f(x).

Consequently, we obtain the following algorithm for investigating a
function y = f(x) for an extremum (maximum or minimum):

i.  Find the derivative f'(x).

ii.  Find the critical points, that is, the points at which the function is
continuous and the derivative f'(x) is either equal to zero or does
not exist.

iii. Consider the neighborhood of each critical point found that does
not contain another critical point and investigate the sign of the
derivative to the left and to the right of the critical point under
consideration.

iv. Using the aforementioned sufficient conditions for a maximum
and a minimum, draw relevant conclusions (when passing through
a maximum, the derivative changes sign from plus to minus,
whereas, when passing through a minimum, the derivative
changes sign from minus to plus).

For instance, let us investigate the function f(x) = x3 — 9x2 + 24x for an
extremum. We work as follows:

i. Wehave f'(x) = 3x2 — 18x + 24.

ii. Equating the derivative to zero, we find the two roots (solutions)
of the equation 3x2 — 18x + 24 = 0, namely: x; = 2 and x, = 4
(the curve has horizontal tangents at these values). In this case, the
derivative is defined everywhere, and, therefore, there are no
other critical points.

iii. We study the behavior of the function in a neighborhood of the
point x; = 2 and in a neighborhood of the point x, = 4. We see
the following: when passing through the point x; =2, the
derivative changes sign from plus to minus, whereas, when
passing through the point x, = 4, the derivative changes sign
from minus to plus.

iv. Atx; = 2, the function has a maximum f,,,,, = 20. At x, = 4,
the function has a minimum f,,,;,, = 16.

We have, thus, learnt that the first derivative of a function, f', provides
important information about f. Now, we shall apply the same techniques
to f' itself, and learn what this tells us about f. Therefore, we shall study

f”,
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A function f(x) is said to be “concave up” on an interval X if all the
tangents to f(x) on X are below the graph of f(x), as shown, for instance,
in Figure 8-6 (i.e., it “opens” up). A function f(x) is said to be “concave
down” on an interval X if all the tangents to f(x) on X are above the graph
of f(x), as shown, for instance, in Figure 8-7 (i.e., it “opens” down).

Figure 8-6: A concave-up function.

Figure 8-7: A concave-down function.

L

Let f be a function differentiable on (a, b). (i) If f’ is increasing (namely,
if f""(x) >0 on (a,b)), then f is concave up on (a,b). (i) If f' is
decreasing (namely, if f"(x) < 0 on (a, b)), then f is concave down on
(a, b). (iii) If f' is constant, then the graph of f has no concavity.

If f: (a,b) = R changes its direction of concavity at x,, then the point
(x0, f(xg)) is said to be a “point of inflection.” In other words, x, is a
point of inflection if x, € (@, b) so that either f is concave down in (a, x,)
and concave up in (xy, b), or f is concave up in (a, x,) and concave down
in (x,, b).

Notice that, if x, is a critical point of f(x) and the second derivative of
f(x) is positive (resp. negative), then x, is a “local minimum” (resp. a
“local maximum”) of f(x). In other words, if the critical point has positive
concavity (i.e., f" (x,) > 0), then it is a local minimum; and, if the critical
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point has negative concavity (i.e., f''(x,) <0), then it is a local
maximum.

Rolle’s Theorem: Let f:[a, b] - R be a function satisfying the following
conditions:

i.  f is continuous on the closed interval [a, b],

ii.  f is differentiable on the open interval (a, b), and

iii.  f(a) = f(b).
Then there exists at least one point ¢ € (a, b) such that f'(c) = 0.
Proof: Since f is continuous on the closed interval [a, b], it is bounded
and attains its supremum (least upper bound) and its infimum (greatest
lower bound) in [a,b]. Let inf(f) =m, sup (f) =M, and f(a) =
f(b) = k. Then it must hold that m < k < M.
First case: If m = k = M (i.e., if f is a constant function), then f(x) = k
and, therefore, f'(c) = 0 Vc € (a, b).
Second case: If m = M, then m < k or k <M. Suppose that k <M.
There exists a ¢ € (a, b) such that f(c) = M, since, if f is continuous on
the closed interval [a, b], then it attains its supremum and its infimum in
[a, b]. Moreover, f'(c) exists, because a < ¢ < b. Notice that f(x) <

M Vx € [a,b]. Therefore, if a < x < ¢, then f(x; [ _ [OIM 0, 50

xX—=
that lim, .- 22O > 0o f'() 2 0. I c<x < b, then f—(") /©

f(j) CM <0, so that lim,_,+ M <0 f,(c)<0. Consequently,

0<F(©)=f()=fi(c)<0=f'(c)=0. We can work similarly in
order to prove the theorem form < k.m

Geometric interpretation of Rolle’s Theorem: Under the above conditions,
there exists a point ¢ at which the tangent line to the graph of y = f(x) is
parallel to the x-axis, as shown in Figure 8-8. In particular, conditions (i)
and (ii) imply that the curve y = f(x) is continuous from x = ato x = b,
and it has a definite tangent at each point between x = a and x = b; and
condition (iii) implies that the ordinates at the endpoints a and b are equal.
Algebraic interpretation of Rolle’s Theorem: Since, according to condition
(iii), f(a) = f(b), let f(a) = f(b) = 0. Then Rolle’s Theorem means
that, if f(x) is a polynomial in x, and if a and b are two roots of the
equation f(x) = 0, then the equation f'(x) = 0 has at least one root
between a and b. In fact, the French mathematician Michel Rolle, after
whom the above theorem is named, proved the given theorem in 1691 only
in the case of polynomial functions, and a general proof of this theorem
was achieved and published by Augustin-Louis Cauchy in 1823. The name
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“Rolle’s Theorem” was first used by the German mathematician, logician,
psychologist, and philosopher Moritz Wilhelm Drobisch in the 1830s.

Figure 8-8: Rolle’s Theorem (source: Wikimedia Commons: Author:
Benboyadjian,

https://commons.wikimedia.org/wiki/File: Teorema_de Rolle_(caso_2).jpg?uselan
g=it).

M fc)

fx)
f@=7(b)

In mathematical analysis, the mean value theorems play a very important
role, because they examine the relationship between the values of a
function and the values of the derivative of the given function. The Italian-
French mathematician and astronomer Joseph-Louis Lagrange (1736—
1813) proved the following mean value theorem, which allows us to
express the increment of a function on an interval through the value of the
derivative at an intermediate point of the corresponding segment:

Lagrange’s Mean Value Theorem: 1f f:[a,b] > R is a function
continuous on [a, b] and differentiable on (a, b), then there exists a point

¢ € (a,b) such that f'(c) = L2ZLD o £(b) - f(@) = £ () (b — a).

Proof: On [a, b], we define another function g(x) as follows:
g(x) = f(x) — kx for all x € [a, b],

where k is a constant defined in such a way that

g(a) = g(b).

Thus, f(a) — ka = £(b) — kb = k =L@,

-a

The assumptions that f: [a, b] = Ris a function continuous on [a, b] and
differentiable on (a, b) and the above value of k imply that the above
function g(x) satisfies every condition of Rolle’s theorem. Therefore, by
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Rolle’s theorem, there exists a ¢ € (a, b) such that g'(c) = 0= f'(c) —
k=0=f'(c)=k= %, quod erat demonstrandum.

a

Geometric interpretation of Lagrange’s Mean Value Theorem: As shown

in Figure 8-9, Lagrange’s Mean Value Theorem implies that the slope of

the chord passing through the points of the graph corresponding to the

(0)-f(a)
b—-a

ends of the segment a and b is equal to k = tanf = L , and then

there exists a point x = ¢ inside the closed interval [a, b] such that the
tangent to the graph at x = c is parallel to the chord. In other words, if a
function f is continuous on the closed interval [a, b] and differentiable on
the open interval (a, b), then there exists a point ¢ in the interval (a, b)
such that f'(c) is equal to the function’s average rate of change over
[a, b].

Figure 8-9: Lagrange’s Mean Value Theorem.
VA

v
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Corollary 1: If f'(x) =0 for all x € (a,b), then f(x) is constant on
(a,b).

Proof: Let x; and x, be two arbitrary elements of the interval (a, b). Then,
since f(x) is continuous and differentiable on (a, b), it must also be
continuous and differentiable on [x;,x,]. Therefore, we can apply the
Mean Value Theorem for x; and x,. This means that f(x,) — f(x;) =
f'(c)(x; — x1) where x; < c < x,. By hypothesis, f'(c) = 0. Hence,
fl)—f(x) =0= f(x,) = f(x;), and, since x; and x, are two
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arbitrary elements of the interval (a, b), the function f is a constant on
(a,b).m

Corollary 2: If f'(x) = g'(x) for all x € (a,b), then, in this interval,
f(x) = g(x) + c, where c is a constant.

Proof: This is a direct result of Corollary 1.m

Example 1: Given f(x) = x2 + x + 1, if we are asked to find the point ¢
at which f'(x) gets its mean value over [0,2], then we work as follows:
we confirm that the hypotheses of Lagrange’s Mean Value Theorem are

satisfied, and, therefore, 3c € (a,b)| ———— f(b) f(a) =f'(c) > ————— f(z) f(o) =3 =
f'le)=2c+1=>c=1.
Example 2: Let 0 < a < b. Then we can prove that

a b b

l1-——<ln-<--1

b a a
as follows: Set f(x) = Inx. By Lagrange’s Mean Value Theorem,
fle) =128 g <c<b,

. thatl — Inb—Ina — lnb/a'
[ b—-a b—la 1 )
Wehave:a<c< b= > <=-< ;because 0 < a < b. Therefore,
Inb 1 b- b _ b- b _b
lombla 1,000 b8 _Soplal g , quod erat
b b—-a a b a a b a a
demonstrandum.

Cauchy’s Mean Value Theorem: If functions f(x) and g(x) are
continuous on a closed interval [a,b] and differentiable on the open
interval (a, b), then there exists some point ¢ € (a, b) such that

[f () — f(@)]g'(c) = [g(b) — g(@)]f'(c),

which, for g’ (x) # 0 for all x € (a, b), can be equivalently restated as
'@ _ r-r@

g'©  gb)-ga’

Proof: Consider the function

h(x) = [f(x) — f(@]lg () — g(@)] = [f(b) — f(@)][g(x) — g(a)].
This function is continuous on [a, b] and differentiable on (a, b), with

R (x) = f'()lg) — g(@] — g’ If b) — f(a)].

Moreover, h(a) = 0 = h(b). Hence, by Rolle’s theorem, there exists a
point ¢ € (a,b) such that h'(c) =0, and then [f(b) — f(a)]g'(c) =
[9(b) — g(@)]f'(c).m

Remark: When g(x) = x, Cauchy’s Mean Value Theorem reduces to
Lagrange’s Mean Value Theorem. Cauchy’s Mean Value Theorem can be
geometrically interpreted as follows: the functions f(x) and g(x)
determine a plane curve with parametric equations x = f(t) and y =
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g(t), where t € [a, b], and then Cauchy’s Mean Value Theorem states
that, for some c € (a, b), there exists a point (f (o), g(c)) on this plane

curve such that the slope ”

r
L ,EZ of the tangent line to the curve at this point

is equal to the slope of the chord that joins the endpoints of the curve.

Optimization problems:

1.

ii.

Maximum area enclosed by a fence: Assume that a man has a
farm that is adjacent to a river, and he wants to build a
rectangular pen for his cows with 500ft. of fencing. Given
that one side of the pen is the river, which functions as a
natural fence (since cows will not swim away), the largest
area of the pen that he can build can be calculated as follows:
This rectangular field needs to be fenced on 3 sides, and two
of these sides (which need to be fenced), say side s; and side
S,, are equal to each other. Let s; = 5, = x ft, meaning that
this man will use 2x ft of fencing for these two sides, and
the remaining amount of fencing will be 500 — 2x ft,
corresponding to the third side of this rectangular farm. Then
(given that area = width X length) we have to maximize
the area function A(x) = x(500—-2x) . We have to
differentiate and find the critical points: A'(x) = 500 — 4x.
We want to know where A'(x) is equal to zero and where
A'(x) is undefined. However, A'(x) = 500 — 4x is defined
for all values of x. Setting A'(x) = 500 — 4x = 0, we obtain
x = 125, which is the critical point of A(x). By checking the
behavior of A’(x) around x = 125, we realize that, when
passing through the point x = 125, the derivative changes
sign from plus to minus, and, therefore, x = 125 is a
maximum for A(x). Therefore, the area of the largest pen
that this man can build is A(125) = 125(500 — 2 x 125) =
31,250ft2.

Closest points (minimum distance between a curve and a
point): We can determine the points on y = 6 — x? that are
closest to the point (0,3) as follows: we have to minimize the
distance function d? = (x — 0)2 + (y — 3)? subject to the
constraint of y = 6 — x2. Hence,

d=f()={/x—-02+(@y-3)=
Va2 +(6-x2=3)2 = f(x) = Jx2 + B - x2)2.
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Now, we have to minimize f(x), and, therefore, we have to
find its critical points, that is, the points at which the
derivative f'(x) is equal to zero or undefined. Firstly, we
have to compute f'(x), using the chain rule:

1 1
f'(x) = > [x* + (3 —x?)?]72[2x + 2(3 — x*)(—2x)]
—10x + 4x3

24/x% + (3 — x?)?
(the derivative is equal to zero when the numerator is equal
to zero, and the derivative is undefined when the
denominator is equal to zero; but notice that, in the
denominator  of  this  fraction, the  expression
Jx?2+ (B —x%2)%2isd = f(x), and, therefore, it will never
be equal to zero, since it represents the distance between a
point on the y-axis, specifically, (0,3), and the parabola y =
6 — x?, meaning that the denominator is always different
from zero, and, therefore, the derivative is always defined).
The derivative f'(x) =0 when —-10x+4x3=0>=

x(4x2—10)=0:a4x(x2—%):0:4x[x2—

2
( 5) l=4x<x—\/§><x+\/§>=0,

2 2 2
and, therefore, we obtain three solutions, which are the three
critical values of f(x), namely: 0, \E, and — \E; and we

have to find out which of them is the minimum value.
Investigating the manner in which the sign of the derivative
f'(x) changes when passing through each of these three

. . 5 . . 5 .
points, we realize that \/; is a minimum, and — \/; is a

minimum (indeed, given the parabolay = 6 — x2, which is
symmetric with respect to the y-axis, and the point (0,3),
which is on the y-axis, we expected to obtain two minimum
values, and we expected them to be symmetric with respect
to the y-axis). Consequently, f(x) = d has a minimum

when x =+ \E , since f'(x) changes from negative to

positive at those x values.
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Optimal route: A team of archaeologists is camped on an
archaeological site 9km to the north of a highway running
from west to east. There is a town 15km to the east of the
nearest point on the highway to the camp. The archaeologists
send a messenger by bicycle to the town. What route should
the messenger follow in order to reach the town in the
shortest time if he can ride at 8km/h across the
archaeological site and at 10 km/h along the highway? In
Figure 8-10, we can see a model of this problem: The point P
denotes the location of this team of archaeologists, the
straight line L denotes the highway, B denotes the town,
PA=9km , AB =15km , PMB is the route of the
messenger, and the position of the point M between A and B
is not known yet. The quantity that we must optimize is the
time t during which the messenger will move from P to B.
Let AM = x. According to the problem, the point M may be
anywhere between A and B including points A and B .
Therefore, the real bounds within which x varies are 0 <
x < 15. We express time t in terms of x as follows: We have
PM = \PA% + AM? = /81 + x2. The messenger, using his
bicycle, covers this distance at a speed of 8 km/h, that is,

V81+x2

t, = — Moreover, MB = 15 — x, and the messenger,

using his bicycle, covers this distance at a speed of 10 km/h,
so that t, = 151—;x. Hence, the total time ¢ that the messenger
spent in order to cover the entire distance is equal to t; + t,,
that is,

V81+x2 = 15-x
+

t= 8 10 °
/ 2 -
We have to minimize the function t = % + 1510x in the

closed interval [0,15]. The derivative L S—
dx  g8{81+x%2 10

exists for all x, and we have to find the points at which % =
0. We have —— -1 =0=>x = 12, which belongs to
8V81+x2 10
the closed interval [0,15]. Let’s examine the values of the
function t at the endpoints of the closed interval [0,15] and
at x = 12 in order to find the least value of t. Atx =0,t =
105/40 . At x=12, t=87/40 . At x=15, t=
5v306/40. Thus, the least value of t is t = 87/40, and it is
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1v.

reached for x = 12. This result implies that the messenger,
using his bicycle, has to ride along a route PMB such that the
distance between the points A and M on the highway is equal
to 12km. This type of problems is very common in logistics
and transportation.

Figure 8-10: An optimization model.

P

O
A M B L

In view of what we discussed in Chapter 4, we have:

Total Cost:  C(x) = fixed cost + variable cost for
producing x items, where fixed cost consists of all types of
cost that do not change with the level of output (e.g., the rent
of the premises, the insurance, taxes, etc.), and variable cost
is the sum of all costs that are dependent on the level of
production (e.g., labor cost, the cost of raw materials, the
cost of energy, the cost of packaging, etc.).

Total Revenue: R(x) = xp(x), where x denotes units sold,
and p denotes price per unit (i.e., R(x) is the revenue
obtained from selling x items).

Demand Function (linear approximation): @, =a+ bp ,
where a stands for the quantity-intercept (i.e., the x -
intercept) of the demand (i.e., a is quantity demanded when
price is zero, and it is known as the “autonomous demand”),
b measures the change in quantity demanded resulting from a
particular change in price (i.e., indicating the responsiveness
of consumers to a particular increase in the price of a
commodity, b = % , which, given Figure 4-1, is the
reciprocal of the slope of the demand curve), and p denotes
price (notice that the independent variable p is graphically
represented by the vertical axis, that is, by the y -axis,
whereas the dependent variable Qj, is graphically represented
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by the horizontal axis, that is, by the x-axis, as shown in
Figure 4-1).

Supply Function (linear approximation): Qs = k + Ip, where
k denotes the quantity-intercept (i.e., the x-intercept) of the
supply (usually, it is negative, since, at a price of zero, no
producers are generally willing or able to provide a
commodity; but, in the case of some subsidies, the value of k
may be positive), [ denotes the price coefficient of supply
(i.e., indicating the responsiveness of producers to a
particular increase in the price of a commodity, [ is given by

the change in quantity supplied divided by the change in

price, and, thus, | = %, which, given Figure 4-1, is the

reciprocal of the slope of the supply curve), and p denotes
price (notice that the independent variable p is graphically
represented by the vertical axis, that is, by the y -axis,
whereas the dependent variable Qg is graphically represented
by the horizontal axis, that is, by the x-axis, as shown in
Figure 4-1).

Profit: P = R — C, where R denotes revenue, and C denotes
cost.

Break-Even Point: the point at which R(x) = C(x), that is,
the point at which the revenue function and the cost function
Cross.

Average Cost: C = @, that is, the cost per unit item.

Average Price: p = @, that is, the price per unit item.
Marginal Revenue: R'(x) = dl;—ix).

Marginal Cost: C'(x) = d(;ix).

Minimization of Average Cost: In order to find the level of
output for which the average cost is minimum, we define the
function of the average cost, say AC(x) , in the case under

consideration, and then we calculate the cost-minimizing
dAC(x)

level of output x by solving AC'(x) = = 0, and,
2
finally, we get the value of x for which AC"' (x) = %Cz(x) >

0.

Maximization of Total Revenue: In order to find the level of
output for which the total revenue is maximum, we define
the function of the total revenue, say R(x), in the case under
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consideration, and then we calculate the revenue-maximizing

level of output x by solving R'(x) = di—ix) = 0, and, finally,

2
d R(zx) <0.
dx

Marginal Profit: P'(x) = R'(x) — C'(x), that is, marginal
profit is defined to be the difference between marginal
revenue and marginal cost.

Maximization of Profit: In order to find the level of output
for which the profit is maximum, we define the function of
the profit, say P(x), in the case under consideration, and then

we calculate the profit-maximizing level of output x by
dpP(x)
dx

2
for which P (x) = dde(Zx) <0.

we get the value of x for which R" (x) =

solving P'(x) = = 0, and, finally, we get the value of x

Polynomial approximation of functions: the formulae of Taylor and
MacLaurin: Polynomial functions are always continuous everywhere (i.e.,
at any real value), and they are also differentiable for all arguments.
Moreover, polynomial functions being linear combinations of
1,x,x2,x3,...,x", they are easier to differentiate and integrate than other
functions, and algorithms have been devised to differentiate and integrate
polynomial functions, whereas often there are no such algorithms for other
functions, and this often compels us to use laborious graphing techniques
to solve problems. Hence, it is very important to be able to approximate
any function by means of polynomials.

Suppose that we have a function f(x) and we want to express this
function, or approximate this function, as a polynomial, symbolically,
f(x) = p,(x), where n symbolizes that the highest power of x we are
going to consider is x™, and f (x) can be any function you can think of as
long as it is differentiable. The key idea that underpins the polynomial
approximation of functions is the following: Firstly, we define p,,(x) by
expanding it around some general point a, namely:
pa(x)=ag+a;(x—a)+a,(x—a)?+-+a,(x—a)",

and we stop at the nth power because we have fixed our polynomial p,, (x)
to be of maximum degree n. Then we have to decide how to define the
coefficients a; (where k = 0,1,2, ...,n) of p,(x). In particular, we define
the coefficients of p,(x) in such a way that the kth derivative of p,, (x) at
the point a is equal to the kth derivative of the function f(x) at the point
a, symbolically:

P (@) = f©(a).

For instance,
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pn(x) =a; + 2a,(x —a) + -+ + na,(x —a)* 1,
p"(x) =2a, +--+nn—1)(x—a)" 2,

Notice that

p (x) = agk! + ageq (k + Dk(k — 1) .20 — @) + - (1)

where, after the term a, k!, every other term of p,(lk) (x) includes a power
of (x — a). But the rule that we use in order to determine the coefficients
of p,,(x) is p(k) (a) = f®(a), and, if we set x = a in the polynomial (1),
the first term, that is, a; k!, remains, because it is a constant, and every
other term vanishes, because it includes a power of (x — a). Hence,

® (g
pO@ = F9() = akt = o, = k,( )
(this is the formula for determining the coefficients of ‘the approximating
polynomial, which, in fact, leads us to Taylor’s formula), and

PaC) = (@) + f'@x — @) + 2 G — 0)? 4 o+ LoD (- g
Furthermore, due to Cauchy’s Mean Value Theorem, we can argue that,
because the functions f(x) and p, (x) agree on these n derivatives at this
point a, they are in fact almost the “same,” in the sense that p,,(x) tends to
become exactly f(x) as we continue this pattern forever; that is, as we
increase the degree of the approximating polynomial, we get better
approximations of the function f(x).
Generalization: If f:R — R is a continuous function such that f has
continuous derivatives of all orders at x = a, then f(x) can be expanded
in a power series as follows:

(x - ) (x = )

f(X)zf(a)+—f()+ fr@+ -+ ——f™(a)
+ e
(we get a more and more accurate approximation of f(x) the more terms
we take, that is, the more derivatives of f(x) we calculate at a). This
equation is known as Taylor’s formula, and it approximates a function
around a point.
Fora =0, in particular we obtain

fO) ~fO)+5 f (0) + f”(O) +- +—f(">(0) +-
(this equation is a spemal case of Taylor s formula, and it approximates a
function around the origin). This equation is known as MacLaurin’s
formula.
Examples: For any x € R, MacLaurin’s formula implies that
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e* 1+x+x2+ +xn+ x Zw il
1 2! n=o 1!
since f(x) =e* = f(")(x) =e* and then f™(0) = 1;
x x3 2n+1

) x5
smx~ﬁ——+5' =>smx—zn0 (2 =y
since f(x) = sinx = f™(x) = sin (x + nz) , and then f(0) =
sin (n 17:) { 0whenn = 2k
=" Whenn =2k+1
x? x*
cosx—1—§+z— ﬁcosx—zno (Zn)'
since f(x) = cosx = f™(x) = cosx (x + nz) , and then f(0) =
cos (nrc) {O whenn =2k +1
(D™ whenn = 2k’
The binomial series: Let f(x) = (14 x)™, where m is an arbitrary
rational number (positive or negative). Then
fWx)=mm-1)..(m—n+ 1A +x)™™;
and MacLaurin’s formula implies that
@1 (D (Dt

where the binomial coefficient is defined by

m . e
(k) = #ik)', wherem! =1-2-3-..-m,mis a positive integer, and

m=k =0 (as I have already mentioned, m =0 = 0! =1, since the
binomial coefficient gives the number of combinations of m elements
taken k at a time).

Analytic functions: A function is said to be “analytic” in a neighborhood
(open disc) centered at x,, if and only if its Taylor series converges to the
value of the function at each point of the neighborhood. For instance, the
functions e*, sinx, and cosx are analytic for all x € R, whereas the
function (1 + x)™ is analytic in the open interval (—1,1).

L’Hopital’s rule and indeterminate forms: Consider the following limits:
lim,_.f(x) = 0 and lim,_,,g(x) = 0.
Then the limit

; fGx) 0
lim,_, oG Assumes the form pe
which is called an “indeterminate form.” Other such forms are g, 00 — 00,

and 0 - oo. For evaluating such forms of limits, we apply L’Hopital’s rules:
i Let f and g be two functions that are both differentiable at
each point of the neighborhood N, (a) of a, and let g’ (x) #
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0 for all x € Ny(a). If lim,_,f(x) = 0 and lim,_,g(x) =
0, then

; f& _ . 1)
llmx—»a E = x—-a ma
provided that the limit in the right exists. Notice that, if x =
a is the point at which we are trying to take the limit, we can
expand both the functions f(x) and g(x) into Taylor series
about a, so that f(x) = f(a) + f'(a)(x —a) and g(x) =
g@)+g'(a)(x—a) . But, since lim, ,f(x)=0=
lim,_,g(x), then (as we get infinitely close to a) we have

f(x) = f'(a)(x —a) and g(x) = g'(a)(x — a). Hence, as

f& '@
T T v
il. If f and g are two functions such that

lim,_.f(x) = oo and lim,_,,g(x) = oo, then
lim, L2 =1 I

xX—-a g(x) xX—a gl(x)ﬂ
provided that the limit in the right exists. Notice that
lim,_, % can be written as lim,._,, i;?gi, which reduces to

the above 0/0 form.
The indeterminate forms oo —oco and 0-oco are reducible to the
indeterminate form %. If lim,_f (x) = 0 and lim,_,,g(x) = oo, then
lim o f (x) - () = lim,_, 22,
g(x)
which is of the form %.

Iflim,_,f (x) = oo and lim,_,,g(x) = oo, then

1 1
lim,_,[f(x) — g(x)] = lim,_, [g(x)lf(x)]’

90O f(x)
which is of the form %,

Example: In case of lim,_,, ﬂ%, we can use L’Hopital’s rule, since the
limit reduces to the indeterminate form %, and, therefore,

i Si
limy o 225 = limy g B— = lim, ,y 2= =~ = 1.
X —x 1 1
dx
The curvature of a curve: Intuitively, by the term “curvature,” we refer to
the measure of how sharply a curve bends, that is, of how much a curve
deviates from being a straight line. Formally, we can say that a curved line

is a line that gradually changes direction from one point to the next, and
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the rate of this change of direction, per unit length along the curve, is
called the “curvature.” The ancient Greek mathematician Apollonius
calculated the curvature of conic sections, the French scholastic
intellectual and mathematician Nicolas d’Oresme understood and studied
“curvature” in an abstract way, Descartes studied curvature as a local
measure of a curve’s bending in the context of the Cartesian coordinate
system and his “algebraic calculus,” Kepler and Leibniz studied curvature
in terms of the “closest” circle at a point (the “osculating circle”), the
seventeenth-century Dutch mathematician Christiaan Huygens found a
way to calculate the curvature of any curve, and Newton formulated the
concept of curvature in its modern form, which will be studied here.

If y = f(x) is a plane curve, then the curvature at any point P(x,y) is
expressed in terms of the first and the second derivatives of the function
f(x) by the formula

If" (0l

3
[1+(F'(x))?]2
where K characterizes the speed of rotation of the tangent to the curve at
the given point.
Proof: First of all, let us consider the following preliminary concepts and
principles:

1. The radius of a circle drawn to a point of tangency between the
circle and the tangent line is perpendicular to the tangent line.

2. If two separate lines are tangent to a circle at two different points,
then the lines drawn perpendicular to the tangent lines at their
points of tangency intersect each other at the circle’s center; and
each perpendicular line’s segment from its point of tangency to
the point of intersection is a radius.

3. Historically, the curvature of a (differentiable) curve was defined
by means of the “osculating circle,” that is, the circle that best
approximates the curve under consideration (as shown in Figure
8-11). The curvature of a circle is defined as the reciprocal of its
radius (i.e., the curvature of a circle of radius R is 1/R). For any
two nearby points on a curve, at least one circle minimizes the
absolute area between the curve and the circle between the two
points. This circle’s radius can be viewed as approximating the
curve’s radius of curvature R, and, then, the curve’s curvature is

K =

K= %as the two points approach each other. See, for instance,
Figure 8-11.
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Figure 8-11: Radius of curvature (source: Wikimedia Commons: Author:
Emperorhoney;
https://commons.wikimedia.org/wiki/File: Osculating.svg).

4. A curve’s curvature between two points approaches its curvature
at a point as the two points approach each other (Figure 8-11).

5. The curvature of a circle that minimizes the absolute area
between the curve and the circle between two nearby points on
the curve approaches the curve’s curvature K as the two points
approach each other (Figure 8-11).

6. The radius of the absolute area-minimizinng circle approaches the

curve’s radius of curvature R =% as the two points approach

each other.
7. The function that represents the slope of a function f is the

derivative of f (precisely, the slope of a tangent line at a point).
Consider a curve given by the twice differentiable function
y = f(0). (D
Let (xo,Y0) and (x;,y,) be two points on the given curve. Using the
point-slope form of a line, and denoting its slope by m,, the tangent line to
the curve at (x,, y,) is given by the following equation:
(Y = ¥o) = my(x — xo). (2)
Because the slope of a line perpendicular to another line is the negative
inverse of that line’s slope, the line perpendicular to the tangent line at

(x0,¥o) is given by the following equation:
(x—x0)

=y =-— : 3)

mo

Similarly, the corresponding tangent and perpendicular lines at (xy,y;)
are, respectively, given by the following equations:
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(yd_ 1) =my(x —xq) 4)
an
=)= —0‘,;—’;1). Q)

The intersection of the two perpendicular lines approximates the curve’s
center of curvature. As the distance between x, and x, tends to zero, the
aforementioned intersection becomes the center of the circle of curvature
that matches exactly the curve’s curvature at the point (x,,V,). This
intersection is the solution of the simultaneous equations (3) and (5). In

fact, substituting equation (3) into equation (5), we obtain
(x=x0)

=) =0-y)+ 01—y =——~ (6)
=)= =2 (- y) ()
P i o Y s
—Or =yl =T ©)

(x XO) = xo)+ (- xo)_l_ 1 — o). (10)

mq
leen that f(x) is thce differentiable (by hypothes1s) it holds that
(y1 — ¥o) = m(x; — x,), where m denotes the curve’s slope somewhere
in the closed interval [x,, x;]. We have:

1Y) _ (x1—-x0) _
(= x0) (7 = 7o) = 222 4 m(x; — xo) (11)
1
(r = x0) (222) = (== + m) (11 — o) (12)
(om)
(x —x0) = m(ﬁﬁ Xo) (13)
momq

(1 )
(x = x0) = "L (. — Xo). (14)
Substituting equation (14) into equation (3), we obtain:

(x—x0) (1 )
= yo) = = = — oy — ). (15)

Since y = f(x) is given to be twice differentiable, it has a slope at each
point, and these slopes can be treated as another function (the slope
function of the original function (curve)). Moreover, notice that, just as the
tangent line to the original function (curve) at (x,,y,), namely, (y —
Vo) = my(x — xy), is a good approximation to the original curve near
(x0,¥0), the tangent line to the slope function at (x,,y,), namely,
(m —m,) = ny(x — xy), where n, denotes the slope (rate of change) of
the slope function, is a good approximation to the slope function near

(X0, Y0)-
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Given that f(x) is twice differentiable, it holds that

(my —mg) =n(x; — x,) (16)
where the term (m; — m,) is the difference between the original curve’s
slopes at the points (x;,y;) and (x4, y,), respectively, and n denotes the
slope of the slope function somewhere in the closed interval [x,, x,].
Substituting equation (16) into equations (14) and (15), we obtain:

mo(1+mmy)

(x —x0) = ~ (17)
and
(y — yo) = 0 (18)

n
As x, approaches x,, all the slopes approach their values at (x,, y,), and,

therefore, (x — x,) and (y — y,) approach:

(x = xp) = —oltmd) (19)
and

(1+m(2))
=y = I (20)

Equations (19) and (20) give the x-coordinate and the y-coordinate of the
center of the circle that corresponds to the radius of curvature at (x,, ;).
The “radius of curvature,” R, is the distance of the point (x,y) given by
equations (19) and (20) from the point (x,, y,). Hence,

mi(1+m3)? (1+md? (1+mi)3
R? = (x = x0)* + (y = y)* = ———— = >

2 2
Ng Ng Ng

meaning that, finally,
3
_|[@+mg)2

Ny

R

where, using the terminology of differential calculus, the term m, can be
2

written as Z—i = f'(x), and the term n, can be written as ZTJZ/ = f"(x), so

that

3
NGO
@
Given that curvature is the reciprocal of the radius of curvature,
K=io L0l
[1+(f! (2))%]2

quod erat demonstrandum.

Curvature is one of the key concepts of differential geometry. Differential
geometry is a combination of infinitesimal calculus and analytic geometry
applied to curves and surfaces. The pioneers of differential geometry are
C. Huygens, A. C. Clairaut, L. Euler, A.-L. Cauchy, and G. Monge. In the
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twentieth century, curvature played a very important role in the
development of modern physics, since, according to the general theory of
relativity, objects of great mass bend space-time. Geometrizing the theory
of gravity, we could say, following Einstein, that a heavy body modifies
the geometry around it in such a way that the geodesics in the
corresponding geometry are the curved trajectories of the attracted
particles.

A very simple way in which one can present Einstein’s general theory of
relativity is the following metaphor: imagine a big rubber sheet stretched
nice and taut before your eyes. If you watch a little marble as it rolls across
the surface of this rubber sheet, then you will realize that it follows a
simple straight-line trajectory. But if you watch the movement of a heavy
rock on this rubber sheet, then you will realize that now the rubber sheet is
deformed, warped, curved. In contrast to the previous marble, this rock
does not follow a straight-line trajectory, but it follows a curved trajectory
along the curved surface of the rubber sheet. Einstein took this idea and
applied it to the fabric of space. Originally, the fabric of space may look
nice and flat, like the rubber sheet in the previous example. However, if
the Sun appears, the fabric of space curves. Similarly, in the vicinity of the
Earth, the fabric of space curves, and the Moon is kept in orbit around the
Earth because it rolls along a valley in the curved environment that is
created by the Earth’s mass. This is the manner in which, according to
Einstein, gravity is communicated from place to place: through warps and
curves in the fabric of the space, more specifically through warps and
curves in space-time. For instance, the Earth is kept in orbit around the
Sun because it rolls along a valley in the curved environment that is
created by the Sun’s mas, and, similarly, as I mentioned before, the Moon
is kept in orbit around the Earth because it rolls along a valley in the
curved environment that is created by the Earth’s mass. For this reason,
the general theory of relativity is necessarily founded on Riemannian
geometry (in Riemannian geometry, we do not talk about “straight lines,”
but about “straightest lines,” that is, “geodesics” (the shortest path between
two points on a curved surface) or “great circles” (the shortest path
between two points along a spherical surface in particular)).

It is worth mentioning that the general theory of relativity makes the
following predictions: rays of light passing close to a star should be bent
towards it, and physical processes should take place more slowly in
regions of low gravitational potential than in regions of high gravitational
potential (thus, kinetic energy changes throughout an orbit, resulting in a
higher speed when a planet is closer to the Sun).
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According to the “Bing-Bang” cosmological model, gravity underpinned
and, actually, determined the transition from the “Bing-Bang”
cosmological “soup” to the galactic structure that we observe today:
gravity started from the initial conditions of the Big Bang and made the
universe much more complex because, even though the density of the
universe was almost uniform, there were density quantum-mechanical
fluctuations. Put slightly differently, there were small differences in the
density of the universe from one region to another. Thus, a region of the
universe with density slightly greater than the mean density of the universe
acted upon itself by its own gravity, and, gradually, it made itself denser.
Consequently, instead of expanding with the rest of the universe, it drew
matter into the given region. Ultimately, this region collapsed upon itself
and did not participate in the universal expansion. In this way, a physical
object was made out of such a region. Gradually, the universe was filled
with small density inhomogeneities resulting from inflation due to
quantum-mechanical fluctuations, which ultimately merged into the
structures of the universe that we observe today.

The physical significance of differentiation (basic applications in
mechanics): By the term “energy,” we mean the impetus that underpins all
motion and all activity—more specifically, the capacity for doing work. In
physics, we typically look at the work that a constant force, F, does when
moving an object over a distance of s. In these cases, the work is

W = Fs;

the force is parallel to the displacement.

Mechanics is the branch of physics that studies the relationships between
the following three physical concepts:

1. Force: an agent that changes or tends to change the state of
motion (i.e., the state of rest or of uniform motion) of an
object. The “velocity” of an object is the rate of change of its
position with respect to a frame of reference, and it is a
function of time (i.e., velocity is the first derivative of
displacement with respect to time). Notice that the “relative
velocity” of a moving body A with respect to a moving body
B is denoted by ¥, 5 and is defined as the vector sum of the
velocity ¥, of A and the negative of the velocity U5 of B;
symbolically: ¥, = ¥4 + (—Vp) , which is the vector
equation of relative motion, whereas the corresponding
algebraic equation is v, p = V4 — V3.
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il. Mass: the quantity of matter that is concentrated in an object.
The product of the mass times the velocity of an object is the
“momentum” of that object.
iii. Motion: a change in the position of an object with respect to

time.

The part of mechanics that is concerned with the study of motion is called

kinematics. Due to the rigorous study of classical mechanics by Isaac

Newton, the SI (Systéme International) unit of force, newton (denoted by

N), has been named in his honor. One newton is defined as the force

needed in order to accelerate one kilogram (kg) of mass at the rate of one

meter (m) per second (sec) squared in the direction of the applied force:

m

1IN = 1kg —z

Regarding the measurement of time and physical distance, it should be

mentioned that the German mathematician Hermann Minkowski depicted

time as a length by proposing the following definition:

distance = speed of light X time = ct.

Hence, if the speed of light in vacuum, commonly denoted by the letter c,

is approximately 300,000,000 meters/second (according to Rosa and

Dorsey), then we say that 1/300,000,000 of a second is one meter. In

other words, one meter is the distance travelled by light in vacuum during

a time interval of 1/300,000,000 of a second.

First Law of Motion: An object will remain at rest or in a uniform state of

motion unless that state is changed by an external force.

Second Law of Motion: The vector sum of the forces on an object is equal

to the mass of that object multiplied by the acceleration of that object

(“acceleration” is the rate of change of the velocity v of an object with

respect to time, meaning that acceleration is the first derivative of velocity

with respect to time or, equivalently, the second derivative of displacement

s with respect to time); symbolically:

d?s

F’

where F denotes force, m denotes the mass of an object, and a denotes the

acceleration of the given object (thus, for any force you put on an object,

an object of small mass will accelerate a lot, and an object of large mass

will accelerate just a little). In case of circular motion (i.e., a movement of

an object along the circumference C = 2nr of a circle of radius r), if the

period for one rotation is T, then:

the angular velocity (i.e., the angular rate of rotation) is
_2m _ do(®)
v T oat”’
where @(t) denotes the angular displacement from the x -axis and is
measured in radians, and t denotes time (measured in seconds);

— av _
F=ma=m—=m
dt
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the speed of the object travelling the circle is

2nr
V=—=wr,
T

the angular acceleration of the particle is
dw
=—
and, in case of uniform circular motion, a = 0;
the acceleration due to change in the direction is
2
a =—= w?r;
and the centripetal and centrifugal force can be computed using
acceleration as follows (the centripetal force and the centrifugal force are

actually the same force, depending upon the frame of reference):

mvz

FE. =ma, = -

For instance, a “satellite” is any object that is orbiting the Earth (or any
other massive body). Once launched into orbit, a satellite is a projectile
acted upon by a single force, specifically, by the force of gravity. In
particular, a satellite is a projectile that is launched horizontally at such a
high speed that, due to gravity, it falls towards the Earth, but it never falls
into the Earth (thus, making a circular path around the Earth) because the
curvature of the satellite’s path matches the curvature of the Earth
(approximately, for every 8 km horizontally, the Earth curves downward
5m, and, therefore, 5m is the distance that a projectile falls in one second,
so that, if we shoot a projectile that travels 8 km horizontally per second,
it will fall towards the Earth but never touch the Earth; in other words,
since a satellite moves at 8 km/sec, it “falls” at the same rate as the Earth
“curves downward”).

Third Law of Motion: For every action in nature, there is an equal and
opposite reaction. The “internal forces” of a system of objects are those
forces which are exerted between the members of the given system. The
“external forces” of a system of objects are those forces exerted by bodies
not belonging to the given system on the members of the given system.
Internal forces are interaction forces (that is, pairs of action and reaction),
and, therefore, their resultant is equal to zero. Hence, the total momentum
of an isolated system of objects remains constant. For instance, the
operation of rockets and jet planes is based on the conservation of
momentum: as the fuel burns, it gives off hot gas that shoots out from an
opening at the back of the chamber, so that the force of the gas moving
backward pushes the rocket/the jet plane forward.

Newton’s Law of Universal Gravitation: An object attracts another object
with a force that is directly proportional to the product of the masses of the
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objects and inversely proportional to the square of the distance between
them, symbolically:

mim
Fy=G6=5
where F; is the magnitude of the gravitational force on either object, m,
and m, are their masses, r is the distance between them, and G is the
gravitational constant, whose value is found to be (in SI units) 6.673 X
107N - m? - kg2 (thus, the “weight” of a body is the total gravitational
force exerted on the body by all other bodies in the universe).
Total Mechanical Energy of a System: E,, = K + U,
where E,,, denotes mechanical energy, K denotes kinetic energy, and U
denotes potential energy.
By the term “potential energy,” we mean the energy possessed by a body
by virtue of its position relative to others, stresses within itself, its electric
charge, or other factors. For instance, gravitational potential energy (e.g.,
in the case of a ball whose mass is m and is dropped from height h) can be
computed using the following formula:
U = mgh,
where m denotes the mass of the object, g denotes the acceleration
constant due to the Earth’s gravity (= 9.8 m/sec?), and h denotes the
height (displacement) of the object as a function of time (gravitational
acceleration g differs from planet to planet; for instance, at the surface of
the Earth, gravitational acceleration is approx. 9.8 m/sec?, whereas, at the
surface of Mars, gravitational acceleration is approx. 3.7 m/sec?).
By the term “kinetic energy,” we mean the energy possessed by a body by
virtue of its motion. Let us consider a body of mass m moving along the
x-axis under the action of a constant resultant force of magnitude F
directed along the axis. The body’s acceleration is constant, and, according
to Newton’s Second Law of Motion, it is given by F = ma. The kinetic
energy of this body can be computed using the following formula:
K= %mvz,
where v denotes the body’s velocity (which is, by definition, a function of
time), and m denotes the mass of the object. Thus, the work done by the
resultant external force on a body is equal to the change in kinetic energy
of the body.
The eighteenth-century French mathematician and natural philosopher
Emilie du Chatelet proposed and tested the law of “conservation of
energy,” according to which the total energy of an “isolated system” (i.e.,
one that does not interact with other systems) remains constant.
In order to clarify the meaning of the principle of the conservation of
energy, let us consider the following example: setting fire to coal. The
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chemical bonds of the coal molecules store great amounts of energy. If we
set fire to coal, then fire causes a chain reaction between the coal and
oxygen in the air. In this reaction, energy from the chemical bonds is
converted into kinetic energy of air molecules. Hence, the air becomes
warm, and, for this reason, it will rise. This rising air can be used in order
to drive a turbine and, for instance, move a vehicle, or in order to create
electricity (by feeding it into the grid). Alternatively, we can just burn coal
without doing anything with the produced energy. This does not change
the total energy in the system, because the total energy in the system is
conserved. The chemical energy of the coal is converted into kinetic
energy of air molecules, which are distributed in the atmosphere. Even
though, in this case, the energy is useless, the total energy in the system
remains the same. The difference between the aforementioned cases is
entropy, or the measure of the molecular disorder, or randomness, of the
system under consideration. Initially, the energy was packed into the coal,
and the level of entropy was low. By setting fire to coal, the energy was
distributed in the motion of air molecules, and the level of entropy became
high. When a system has energy in a state of low entropy, its energy can
be used in order to create macroscopic change (e.g., drive a turbine), and
this useful energy is called “free energy.” Free energy is a type of energy
that does “work.” But, if the energy in the system is in a state of high
entropy, then the energy is useless, and it is called “heat.” Heat is a type of
energy that does not do “work.” Even though fotal energy is conserved,
free energy is not conserved.

Escape velocity: By “escape velocity,” we mean the minimum velocity
that a moving body, such as a rocket, must have to escape from the
gravitational field of a celestial body, such as the Earth, and move outward
into space. Suppose that a mass m is launched from the surface of the
Earth with a velocity equal to v, and it travels to a height h. According to
the law of conservation of energy,

(K + Uiowest point = (K + U nignest point

where K denotes kinetic energy, and U denotes potential energy. The
potential energy of an object of mass m on the surface of the Earth is

_GMm, where M denotes the mass of the Earth, and R denotes the radius of

the Earth (this potential energy is due to the gravitational pull of the Earth,
and it is negative because the work is done by the gravitational force of
attraction). The above formula of the law of conservation of energy
implies that, for some height h,

-GMm 1 —GMm

Emviznitial + T = Emvfinal +
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where, we realize that, as h - o, R + h — oo, and, thus, potential energy
tends to zero, and, since we do not need any excess speed at the end (as we
are looking for the absolute minimum velocity), v = 0 (as h — o0), and,
thus, kinetic energy tends to zero, too. Under these assumptions, the right-
hand part of the last equation vanishes, and we obtain
) GMm

2 MVinitiat = —p—
(this vi,itiq; 1s What we call “escape velocity”). Hence, solving for vi,itiqis
we get the escape velocity:

2GM
Vescape = T

(where M and R, respectively, denote the mass and the radius of the planet
from which the projectile is launched (in this case, the Earth); and if one
launches a projectile with the speed Vegeqpe, Or higher, then the projectile
will fly away and will not return).

Differentiation of Multivariable Functions
So far, we have studied exclusively functions of a single (independent)
variable x, but we can also apply the concept of differentiation to

functions of several variables x, y, ... Suppose that f(x,y) is a function of
two variables x and y, and that the limits

fx+4x,y) - f(xy)

limAx—»O Ax

and
5 fl,y+Ay) — f(x,y)
iMmyy o 1y

exist for all values of x and y in question—that is, f(x,y) possesses a
derivative % with respect to x and a derivative % with respect to y. These

derivatives are called the “partial derivatives” of f, and they are
respectively denoted by
o of
dx " 0y
LGy, fy ().
We use the following notation for second-order partial derivatives:
2 2
L= fnand L= £
and, in case of second-order mixed derivatives, we write:
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a (d 2 a (d a

5 (é) = 6y6fx = fx,J” anda (Bi) = axz?fy f

Similarly, we can differentiate functions of three or more variables.

In general, when calculating partial derivatives, we treat all independent
variables other than the variable with respect to which we differentiate as

constants For instance, if f (x y) = x — 3xy — 5 then

ch (x —3xy—5)=— (xz) -—— (3xy) —— (5) = 2x — 3y, and

L= -3y - 5)——(x2)——(3xy)——(5)——

The geometrlc significance of |(xo o) and |(xO o) 18 illustrated in

Figure 8-12. Let us consider a functlon z=f(x, y), whose graph in R3 is
a surface. We suppose that P(x,, ¥,) is an arbitrary point of the domain of
f. Notice that, in R3, the equation y = y, represents a plane IT that is
perpendicular to the y-axis. This plane intersects the surface z = f(x,y)
by a curve C whose equation is z = f(x,y,). If Q(xq, Y0, 2o) is a point
belonging to C, so that its orthogonal projection to the plane xOy is the
point P, then the slope of the tangent to the curve C at Q is equal to

Z—ikxwo) = tang, where ¢ is the angle formed by the x-axis and the

tangent to the curve C at Q, as shown in Figure 8-12. Similarly, we can
show that the slope of the tangent to the curve C at Q is equal to

gl(x(),yo) = tanf, where 0 is the angle formed by the y-axis and the

tangent to the curve C at Q.

Remark: 1f f, f, fy, fey, and fy; are all continuous at (xo,¥,), then

fry (X0, ¥0) = fyx (X0, ¥o)-
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Figure 8-12: The geometric significance of a partial derivative.
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Generalization: If f: R™ — R is a function,
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then
Of (%1, Xy woey Xiy woey X))
axi
- lim f Oy, Xgy o X + Ay, o, X)) — F (1, Xy vy Xy oeey Xp)
Axi—0 Axi

is the partial derivative of f(xy, x5, ..., x,) with respect to x;, where i =
1,2, ...,n (the “round d,” that is, the symbol d, was originally used in the
1770s by the French mathematician and philosopher Marquis de
Condorcet and the Swiss mathematician Leonhard Euler for partial
differentials; and this symbol was used for the first time in the modern
combination df /dx in the 1780s by the French mathematician Adrien-
Marie Legendre).
We take for granted the obvious generalizations of the theorems of
differentiation to two or more variables.
Partial derivatives of composite functions (chain rule for multivariable
functions): If a function f(x,y) is defined on an open set A of R?, and if
x =x(r) and y = y(r) with r € [a,b], then the derivative of the
composite function f with respect to 7 is given by

af Odfox adfady

or Odxodr dyor
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provided that f has continuous partial derivatives over A and that x =
x(r) and y = y(r) are differentiable over [a, b]. Since f is written as a

. . df . a
function of the parameter r, we can also write d—f, instead of a_l;'

The above formula can be generalized for functions f(xq, x5, ..., Xj, -, X)
of n variables with x; = x;(r), i = 1,2, ..., n, as follows:

af Of 0x; Of 0x, of 0x,

or  0x, or  0x, Or dx, Or
under similar assumptions as previously.
Harmonic functions: A function f(x,y) defined on a subset A of R? is
said to be a “harmonic function” if and only if it satisfies the following
equation:
8%f | 8%f
ﬁ + 6_312 =0. ] 2(1)
Equation (1) is called the “Laplace equation,” and the operator % + 52 is
called the “Laplace operator.” For instance, on their respective domains in
R?, the functions f(x,y) =x+y, f(x,y) =x2—y?%, and f(x,y) =
In(x? + y?) are harmonic (the domain of f(x,y) = In(x? + y?) may be
any open subset of R? that does not include 0). An interesting property of
a harmonic function is that its value at a point is always equal to the
average of its values over a ball centered at that point (i.e., harmonic
functions are always equal to the average of their nearby values). Thus,
harmonic functions are used in simplifying complex processes, since a
first harmonic response gives us an indication of the linear approximation.
Homogeneous functions: A function f(x,y) defined on a subset A4 of R? is
said to be a “homogeneous function of degree k” if it holds that

fx, ay) = Af (x,y)

for all (x,y)€ A, where A>0, and k is a real number (i.e., a
homogeneous function is scale-invariant, meaning that, if every variable is
replaced with a scaled version of itself, this scale being the same for each
variable, then the whole function is scaled by some power of that original
scale). For instance, the function f(x,y) = x2 + y? is a homogeneous
function of degree 2, since f(Ax, Ay) = (Ax)? + (Ay)? = 22(x? + y?) =
A2f (x,v). Moreover, notice that a function f(x,y) that can be expressed
in the form of

k(Y k(%
xtg () or v ()
is a homogeneous function of degree k.

Euler’s theorem for homogeneous functions: 1f u(x,y) is a homogeneous
function of degree k, then
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ou ou
x—+ Yoy = ku(x,y).
The proof of this theorem follows directly from the definition of a
homogeneous function: Since u(x,y) is a homogeneous function of

degree k, it can be expressed in the form of u(x,y) = x*f G) Then

(applying the product rule and the chain rule) we obtain Z—Z =

2 () 4 (1) v (=5) = 5 = e (3) =297 ()
Similarly (treating x* as a constant), we obtain Z—; = xkf’ G) i = Z_; =
xk=1fr G) . Therefore, xZ—Z + yg—; =x [kxk—lf G) — xk=2yf7 G)] n
y [xk_lf ’ G)] = kx*f G) = ku(x,y), quod erat demonstrandum.

Partial derivatives of implicit functions: Variables x, y, and z are said to
be “related implicitly” if they depend on each other by an equation of the
form F(x,y,z) = 0, where F is some function. For instance, the points on
a sphere centered at the origin with radius 2 are related implicitly by the
equation x% + y2 + z2 — 22 = 0. In such situations, we can compute the
partial derivatives of one of the variables with respect to the other
variables by using the method of implicit differentiation, in the context of
which we treat the variables as independent in order to find the partial
derivatives of the function F, while simultaneously keeping in mind the
fact that the variables depend on each other due to the equation
F(x,y,z) = 0.

Suppoze that variables x, y, and z are related by the equation F(x,y,z) =
0 and that we want to compute 2_321' In order to do this, we have to think that

the equation F(x,y,z) = 0 determines z as a differentiable function of the
independent (yet implicitly related to z) variables x and y, Z—Z # 0. In fact,

the method of implicit differentiation is underpinned by the chain rule, in
the sense that the original independent variables are x, y, and z, but we
can reconsider them from a different persepective according to which the
independent variables are x and y, and we treat z as a function of x and y.

Let y be implicitly related to x by the equation F(x,y) = 0, and suppose
that the locus of F(x,y) = 0 is a closed curve, as shown, for instance, in
Figure 8-13. In this situation, we observe the following: On the one hand,
y is not a “function” of x, since to a particular value of x there correspond
several values of y (applying the vertical line test, mentioned in Chapter 2,
we realize that, in Figure 8-13, a line perpendicular to the x-axis intersects
the given locus at more than one point, whereas, by definition, a function
is single-valued). On the other hand, even though the equation F(x,y) = 0
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does not define y as a function of x, there are certain segments of this
locus (e.g., the segment of the oval in Figure 8-13 that lies above the
horizontal axis) that can be considered in isolation (i.e., separately from
the totality of the given oval) in such a way that they can be considered to
constitute a function of x, namely, y = f(x). In other words, we can
separate out a segment of a closed curve C that can successfully pass the
vertical line test, thus defining a function y = f(x). In fact, this is the
reason why we say that the equation F(x,y) = 0 defines y implicitly as a
function of x, so that y is an implicit function of x.

Figure 8-13: A closed curve (source: Wikimedia Commons: Author: Herbee;
https://commons.wikimedia.org/wiki/File:Ovall. PNG).

In view of the foregoing, if we consider the locus of F(x,y) = 0 in Figure
8-13, we can meaningfully try to compute the derivative of the function
y = f(x) with respect to x at a particular point of the given locus
(provided that we are working on a segment of the given locus that defines
a function y = f(x)), and, in fact, this derivative is:

9F (x.y)
Q - _ dx
dx OF(x,y)
ay
where 252 = . Thus, we have come up with the following theorem of

implicit differentiation: If F(x,y) = 0, if x and y are restricted to those
OF (x,y)

values which satisfy the equation F (x,y) = 0, and if 3y # 0, then
d_y _ 6Fé))cc,y)
dx  9F(xy)-

oy
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Proof: 1If we set W = F(x,y), then the total differential of the function W
is

W oW
aw = " dx+ay dy. €))

If x and y are restricted to those values which satisfy the equation
F(x,y) =0,then W = F(x,y) = 0, and dW = 0. Hence, if we set dW =

0 in equation (1) and solve for %, we obtain

OF(x.y)
ay _ _ Tox _ OF(xy)
dx ~ OFY) 3y

oy

#* 0, quod erat demonstrandum.

The aforementioned theorem of implicit differentiation can be formally
stated as follows: Given that an equation of the form F(x,y) = 0 defines
an implicit function y = f(x) if and only if F[x, f(x)] = 0 for all x € R,
let F(x,y) = 0 be defined on R?, and (x, y,) € R?. Suppose that F; and
Fy are continuous, F(x,,yo) = 0, and F;(xo,y,) # 0. Then there exists a
neighborhood of x,, say U(x,), wherein the equation F(x,y) = 0 defines
a function y = f(x) in a unique way, so that F; is continuous, y, = f(x,),
and

dy K

dx  F
(this theorem delineates the method of implicit differentiation for
multivariable functions).
Example: Let (2,1) be a point, and let F(x,y) = x?2 — 2xy = 0 be an
equation. Then we can show that the given equation defines a function
y = f(x) on a neighborhood x, = 2 and find F; as follows: In order to
show that an equation of the form F(x,y) = 0 defines a function y =
f(x) on a neighborhood of x,, it is enough to show that:

1. F; = 2x — 2y and F; = —2x are continuous, which they are.
il. F(x4,y0) = 0= F(2,1) = 0, which is true.
iii. Ey(x0,¥0) # 0= F;(2,1) # 0, which is true.
Therefore, x? — 2xy = 0 defines a function y = f(x) on a neighborhood
dy _ _Fx_ _yx
U(x,). Moreover, i

We can work in R3 in a similar way: A function of the form F(x,y, z)
such that z = z(x,y), that is, F[x,y,z(x,y)], is called “implicit,” while
z = z(x,y) is an “explicit” function. An equation of the form F(x,y,z) =
0 defines an implicit function z = z(x, y) if and only if F[x,y,z(x,y)] =
0 for all (x,y) ER?. Let F(x,v,z) =0 be defined on R3®, and
(%0, Y0, 29) ER® . We assume that Fy, Fy, and F; are continuous,
F(x0,Y0,20) =0 , and F;(xy,Y0,20) #0 . Then there exists a
neighborhood of (x,, ¥4), say U(x,, ¥o), wherein the equation F(x,y,z) =
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0 defines a function z = z(x,y) in a unique way, so that F; and F; are
continuous, z, = z(x,,Y,), and

0z F

ox  E/
and

0z _ F;

dy E

(the proof is essentially the same as the above proof for the case F(x,y) =
0). Of course, the rule of implicit differentiation does not hold for the
points of the surface defined by F(x,y,z) = 0 at which iy = Fj = F; =
0, and such points are called “singular points” (that is, the singular points
are those points at which all the partial derivatives simultaneously vanish;
and, thus, at a singular point, we cannot solve for any variable in terms of
the others, and an algebraic variety looks strange near such a point, or it
may not look at all like the graph of a function). The total differential of
the implicit function z = z(x, y) defined by the equation F(x,y,z) = 0 is
given by

oF aF aF

The Jacobian determinant: The Jacobian determinant of n functions,
fi, f2, s fn, In mreal variables, x4, X5, ..., X,,, With respect to xy, x5, ..., X,

is defined by
i 0fi 0fi
a_.x'l a_.x'z es E

Wty f) _ (Y2 2 O

T (g, X s X)) 6261 aifz aazcn
a}cn afn : afn
0x; 0x; 77 0x,

(and it is named after the nineteenth-century German mathematician Carl
Gustav Jacob Jacobi). Notice that, if x; = x,(1ry, 75, ., ), s Xp =
X (11,13, e, 1), then

0 for - fu) _ 01 foros fr)  0(X1, X, ooy %)

A(r, 1y ) 0(Xg, X2, 0, Xy) 01,1, v, )
which is the Jacobian determinant of n functions whose variables
Xy, X5, ..., X, are functions of n variables 1,15, ..., 1;,.
Jacobian determinants are useful in order to compute the partial
derivatives of implicit functions that are defined by a system of equations.

Case I: Let {f(x, y,2) =0
g(x,y,2) =0

} be a system such that:
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the functions f and g have continuous first-order partial derivatives,
f(x0,¥0,20) =0 =9g(x0,¥0,25) , and the Jacobian determinant
a(5.9)
0(y,z)
y(x) and z = z(x), where y(x) and z(x) are two functions whose
derivatives (with respect to x) are continuous on a neighborhood of x,, so
that y, = y(x,) and z, = z(x,). Then:

| (xo.y0,20) * 0- Every system of this form has a unique solution y =

’ ’

a(f.9) fx, fZ,

d_y __0&xn _ 19x Gz
dx a(f.9) fy' fz’
(y,z) ' )

9y 9z

and

2(.9) ) d f"

% __ox) _ 9y YIx
dx a(f.9) fy’ fz'
(y,z) ) '

9y 9z

(this result gives us the partial derivatives of implicit functions defined by
a system of the form {f(x,y,z) = 0,g(x,y,z) = 0}).

f(x,y,2,t)=0
Case II: Let {g(x, %, 2,6) = 0
the functions f and g have continuous first-order partial derivatives,
f(xo, Y0, Z0, to) = 0 = g(x0,¥0,Z0, to) » and the Jacobian determinant
a(5.9)
a(z,t)
z(x,y) and t = t(x,y), where z(x,y) and t(x, y) are two functions whose
partial derivatives are continuous on a neighborhood of (x,,y,), so that
Zo = z(xy, Vo) and t, = t(x,,V,). Then the derivatives of these functions
are given by the following formulae:

} be a system such that:

| (xo.v0.20.t)  0- Every system of this form has a unique solution z =

a(f.9)

Z Ay
E )
a(z,t)

a(f.g9)

0z 340
@ RETC)

a(z,t)
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a(f.9)
at _ a(z,x)
Ix 0.9
a(z,t)
and
a(f.9)
ot . azy)
dy )
a(zt)

(this result result gives us the partial derivatives of implicit functions
defined by a system of the form {f (x,y,z,t) = 0,g(x,y,z,t) = 0}).
Functional dependence and functional independence: Consider m
functions in n variables (each), namely,
f1(x1, X, e, %), f2 (g, X, e, X)), woes frn (X1, Xg, ey X))
Suppose that the domain of each of these functions is a subset A of R
(i.e., they have the same domain). These functions are said to be
“functionally dependent” in the set 4 if, for every n-tuple (x, x5, ..., x,,) €
A, they satisfy at least one equation of the form F(fy,f, ..., fm) =0;
otherwise, they are said to be “functionally independent.”
For instance, the functions f;(x,y,z) =y —xz, f,(x,y,z) = yz — x, and
f3(x,y,z) = (x —y)(z + 1), which are defined on R3, are functionally
dependent in R3 , because fi+fo+tfz=yv—xz+yz—x+
x=y)z+1)=0.
In particular, n functions in n variables (each), namely,
f1(x1, %, e, X)) f2 (1, Xg, ey X )y oy fro (X1, X w00, X))
are functionally dependent in R™ if and only if the Jacobian determinant

_ 0o o) _

=——=0

(X1, X2, ey Xp)

(otherwise, i.e., when J # 0, they are functionally independent).

Mean Value Theorem: If a function f:A—> R, where A S R?, is
differentiable at the points of the straight line segment ab, where a =
(ay,a;) and b = (by,b,), then there exists a number 6 with 0 < 6 < 1
such that

fa+00b-a)= f—(b; _ Z(a)
where f' is the partial derivative of the function f(x, y) with respect to x.
Geometric interpretation of the mean value theorem for a function in two
variables: In Figure 8-14, we realize that, if A(al, a,, f(aq, az)) and
B(bl,bz,f(bl,bz)) are two points of the surface z = f(x,y) that
correspond to the points a and b, then there exists a point P on the curve
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X = aq + t(bl - (11)
y =a; +t(b; — az) }, where t € [0,1],
z=f(a+tb—a))

of the surface z = f(x,y), such that the tangent at P is parallel to the
chord AB.

Figure 8-14: The geometric significance of the mean value theorem for a function
in two variables.

A7z

| |
| |
| |
| |
I f
| |

<v

4
(a1,a2) (b1, b2)

X

Remark: An equivalent formula for the mean value theorem for a function
f(x,y) and the points (x,,y,) and (x, + h, yo + A) is the following:

f(xo +hyo+2) = f(x0,¥0)
_ haf(xo + 6h,y, + 64) +/16f(x0 + 6h,y, +61)

- dx dy

where 0 < 0 < 1.

Recall that a set A is called convex if, for every a,b € A, ka + (1 — k)b €
A. Tt is easily seen that, if a function f(x, y) is differentiable on a convex
subset A of R?, and if, for every (x,y) € R?, it holds that % =0=

af (xy)
oy

, then f(x,y) is a constant function.

Extreme values: If z = f(x,y) is a continuous function defined on a set R,
then the extreme values of f may occur only at:
1. the boundary points of R in case the set R is compact (i.e.,
closed and bounded);
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il. the interior points of R where f,| = f,; = 0 (“critical points”);

iii. the points where f,/ or f; fail to exist (“critical points™).
Hence, if there are no boundary points (e.g., when z = f(x,y) is defined
on an open disc or on a quadrant minus the axes, or on the entire plane,
etc.), the function may have no extrema on R, but, if it does, they must
occur at its critical points in R.
Maximum-Minimum Tests: If f has continuos first-order and second-order
partial derivatives on some open disc containing the point (a, b), and if
fi(a,b) = fy(a,b) = 0, then:

o if £y <0and ffy, (f ) > 0 at the point (a, b), then the

point (a, b) is a “local maximum”

o if £y >0and f f), (f ) > 0 at the point (a,b), then the
point (a b) is a “local minimum”

. 1ffxx Yy (f ) < 0 at the pomt (a, b), then the pomt (a,b) is
“saddle point” (a “saddle point,” also known as a “minimax
point,” is a point on the surface of the graph of a function where

the slopes, i.e., the derivatives, in orthogonal directions are all
zero (and, thus, it is a “critical point”), but it is not a local
extremum of the function: a saddle point is a stable point where

the function has a local maximum in one direction, but a local
minimum in another direction, as shown, for instance, in Figure

8-15);
o if fifyy (f =0 at the point (a,b), then the test is
inconclusive.
Note: The expression f/ fy, (f is called the (Hessian)

“discriminant” of f, and it is sometimes easier to remember in the
determinant form

4 n
xx xy

Il
Ry~ US) = g
(this method was developed in the nineteenth century by the German
mathematician Ludwig Otto Hesse).
Because f,, is continuous, the order of mixed partial derivatives f;, and
» does not matter (notice that, if the function is continuous, then it is
continuous in every variable, and, therefore, if we measure the mixed rates
of change of x and y, the result should be the same as measuring firstly y
and then x, since everything is happening “smoothly” with respect to both
variables; however, if the function is not continuously second
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differentiable, then, at the points where the derivative is discontinuous, the
partial derivatives may not commute).

Figure 8-15: Saddle point with the coordinates z = x* — y? (source: Wikimedia
Commons: Author: Nicoguaro;
https://commons.wikimedia.org/wiki/File:Saddle_point.svg).

\N

N

If the local extrema refer to the entire domain of the function under
consideration, then they are “global extrema,” and, as we know, a
continuous function takes on an absolute maximum value and an absolute
minimum value on any closed and bounded set on which it is defined.
Example: In order to find the extreme values of the function f(x,y) = xy,
we work as follows: Since the function is differentiable everywhere and its
domain has no boundary points, the function can assume extreme values
only where
fy=y=0andf; =x=0.

Hence, the origin is the only point where f might have an extreme value.
In order to examine what happens there, we calculate

x =0, fyy =0,and fi, = 1.

Then the discriminant of f is

fafyy = (F5)" = -1,

and, since it is negative, we realize that f(x,y) = xy has a saddle point at
(0,0), meaning that this function assumes no extreme values at all. Notice
that, if we restrict the domain of f(x,y) = xy to the closed disc x? +

y? < 1, then the maximum value of f is + %, and the minimum value of f
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is —% (as shown by changing to polar coordinates: xy = r2sinfcosf =
%rzsinZQ).

In order to calculate the local extrema of a function f(x,y,z) that is
defined on an open subset A of R® and has continuous first-order and
second-order partial derivatives, we work as follows: Firstly, we solve the
system of equations

{fi=01f=0f =0},

since the solutions to this system represent the possible locations of the

local extrema of the given function. Then we compute the following
expressions:

"
xXx»

" "
_ axx xy
D2 - " " and
yx yy
" " "
XX xy xz
" " "
Dl - |Yyx yy yz|-

o foy foz
We find the value of each of these three expressions at the critical points
of f(x,v,z), that is, at the solutions to the system {fx’ =0,/ =0f, =
O}. If (x4, y0, Zo) 1s a critical point of f, then:
o if fix (X0, Y0, Zo) > 0, Dy (X0, ¥0,20) > 0, and Dy (o, Yo, Zo) > 0,
then (xg, Yo, Zo) is a “local minimum”;
o if fix (X0, Y0, Zo) < 0, Dy(x0,¥0,20) > 0, and Dy (o, Yo, Zo) < 0,
then (xg, o, Zo) is a “local maximum.”

Integral Calculus in R

In infinitesimal calculus, we start with two general questions about
functions. Firstly, how steep is a function at a point? Secondly, what is the
area underneath a graph over some region? The first question is answered
using a tool called the “derivative.” In other words, the derivative
measures the rate of change of a function at a point. The second question
is answered using a tool called the “integral.”

Indefinite Integrals in R

Let f:I - R be a function, where [ is an interval; in fact, [ may have one
of the following forms:
[a' b]! [a, b)' (a' b]! ((1, b), [a' +Oo): (a: +Oo); (—OO, b]: (—OO, b); (_Oo; +O°)
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where a,b € R. When the interval I is closed, for instance, [a, b], the
expression F'(x) = f(x) Vx €1 implies that the following functions
(derivatives) exist: F'(x) Vx € (a,b) , F{(a), and F'(b). Then the
primitive function F is called the “antiderivative” of f in I, and it is
denoted by

F(x) = [ f(x)dx, where x € I,

according to Leibniz’s notation. Hence, [ f(x)dx = F(x) + c if and only
if [F(x) + c]' = f(x), where c is an arbitrary constant. Notice that the
definition of the primitive function F of a function f includes an arbitrary
constant ¢, and, therefore, the expression [ f(x)dx is not uniquely
determined. If F is a primitive function of a function f in an interval I,
then the function F + ¢, Vc € R, is called the “indefinite integral” of f in
I. The aforementioned definition implies that the “indefinite integral” of a
given function with respect to x is a new function plus a constant (known
as the “constant of integration”) if and only if the derivative of the new
function and of the constant equals the given function, and it is based on a
principle of differential calculus, where the assumption that I is an interval
is substantial. Thus, differentiation can be used in order to verify the result
of an indefinite integral: given that integration is the reverse process of
differentiation, if the indefinite integral of a function f(x) is F(x), then
differentiating F (x) gives f(x) back.

Integrals of elementary functions:
1. [ adx = ax + c, where a is an arbitrary constant.
n+1
ii. [x"dx = );T + c over the following intervals: (i) n # —1,x >
0; (i) n#—-1,x<0; and (iii) n = 0,x € R. For instance,
3
[Vxdx = [ x'T2dx = 27

2
. +c=3x3/2+c,andfxdx=x—+c.
z 3 2

dx
iii. —=lIn|x|+c.
. * a*
iv. [a*dx =—+c.
Ina
v.  [sinxdx = —cosx + c.
Vi. [ cosxdx = sinx + c.
.. dx
vi,  f = tanx +c.
cos2x
dx
vill.  [—= = —cotx +c.
sin?x
. dx . s
ix. f\/ﬁ = arcsinx + ¢ =7 — arccosx + c.

dx
x. [—5=arctanx +c.
1+x
Xi. [ sinhxdx = coshx + c.
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xii.  [coshxdx = sinhx + c.

Let f:1 - Rand g:1 =» R be two functions. If their indefinite integrals
exist over I, then there exists the indefinite integral of af + bg, where a
and b are constants, and

flaf(x) + bg(x)]dx = a [ f(x)dx + b [ g(x)dx.

Proof: Given the definition of the indefinite integral, if F(x) = [ f(x)dx
and G(x) = [ g(x)dx, then F'(x) = f(x) and G'(x) = g(x) forall x € I,
and, therefore,

;—x [aF(x) + bG(x)] = aF'(x) + bG'(x) = af (x) + bg(x) , quod erat
demonstrandum.

Corollary: [ X1, ¢;f; (x)dx = Y-, ¢; [ f;(x)dx.

Examples:
. x 1 2x 1 02x+1-1 1 02x+1
i. [—dx=-[—dx == dx == [=—dx —
2x+1 27 2x+1 ( 2 ) 2x+1 2Y 2x+1
1, dx 1 1 rd@x+1) 1 1
Sf—=-fdx—-[——=-x—=In|2x+ 1] +¢ ,
27 2x+1 2 4 2x+1 2 4
1 1
where x > —5orx < -5
.. dx sin?x+cos?x dx dx
1. = dx = —— = tanx —
fsinzx-coszx f sin2x-cos?x fcoszx + fsinzx
T T
cotx + ¢, where km < x < kﬂ+;orkn+;<x < km + .
dx
dx 2 dtanx
iii. [= = [esx - | = In|tanx| + ¢ , where x €
sinx-cosx tanx tanx
T
R—{kZ|k € z}.
d d dz
. x x > x
iv. [—=[—= X=f,x2x=ln|tan—|+c ,  where
sinx ZSlnECOSE sin>cos7 2

kn <x <km+m.
v. [ cos*xdx = f% (1 + cos2x)dx = %f(l + cos2x)dx =

1 sin2x 1 1 . .

3 (x + 2 ) +c= 7 + Zstx + ¢, and, because sin2x =
, . 2 1 1.

2sinxcosx, we can write fcos xdx = Ex + Esmxcosx +

C.

Integration by substitution: The method of integration by substitution (or
change of variable) is based on the following theorem: Let A and B be two
real intervals, and let f: A — R be a continuous function. If g: B - Ris a
differentiable function such that g'(t) # 0 for all t € B and the range of g
is a subset of A, then
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[ r@ax= [ £lo®)g'@rce

(where, ultimately, after the computation of the last integral, we shall
return to the original variable via the substitution t = g~1(x)). The proof
of this theorem follows directly from the definition of the indefinite
integral by applying the chain rule for the differentiation of composite
functions: Let F(x) = [ f(x) dx, so that F'(x) = f(x) Vx € A. By setting
Gt)=F (g(t)) and applying the chain rule for the differentiation of
composite functions, we obtain G'(t) = F’(g(t))g’(t) = f(g(t))g’(t),
quod erat demonstrandum.

For instance, given the integral f\/l —x%dx,—-1<x<1, we setx =
sint, —% <t< g, so that the range of x = sint is the interval —1 < x <

T

1,and x' = cost >0Vt € (—g,;). Hence,
[V1—x?dx = [V1—sin?t- (sint)'dt = [ cost - costdt =

2 1, 1, 1 >, 1 ,
[ cos?tdt = ;sint - cost +-t =-xV1l—x*+-arcsinx +c, -1 <x <
1.
Notice that, sometimes, we may need to make the linear substitution t =
ax + b, where a,b € Rand a # 0, so that [ f(ax + b) dx = iff(t)dt.
For instance, for x € R, and setting t = ax+ b, [sin(ax + b)dx =
f%sintdt = —écost +c= —%cos(ax +b) +c.
Furthermore, notice that, if the integrand is the quotient of two functions
such that the numerator is the derivative of the denominator, then the

indefinite integral is equal to the logarithm of the denominator. In other

words, given the indefinite integral f’;(—(;))dx, where f(x) # 0, we set
f(x) =t to obtain f];(—(:))dx = % = In|t| + c = In|f(x)| + ¢ in the
intervals where f(x) # 0. For instance: (i) [tanxdx = [ sinx

cosx

(—cosx)' » )
J——dx = —Inlcosx| + c = In|(cosx)"!| + c = In|secx| + ¢ ; (i)

CcoSsXx

similarly, [ cotxdx = [ dx = | %dx = In|sinx| + ¢ ; and (iii)

sinx

[ = f(lnlxl), dx = In|in|x|| + c.

xln|x| In|x|
In general, the choice of a suitable substitution depends on the integral that
we have to compute. However, we can highlight the following cases:
Case 1: In integrals containing a term of the form (ax + b)™, set ax +
b=t
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Case 2: If the integral includes the expression va? — x2, then we set x =
|a|sing or x = |a|cosB, so that: (i) if x = |a|sind, then dx = |a|cos6dO
and va? — x? = |a|cos#; (ii) if x = |a|cosO, then dx = —|a|sin6dO and
va? — x? = |alsiné.

Case 3: If the integral includes the expression va? + x2, then we set x =

la|

|a|tan® (or x = |alcotf ). If x = |a|tand , then dx = ~——5 df and
VT =l
cos@’

Case 4: If the integral includes the expression Vx? — a2, then we set x =
o 3
|al ﬁ, so that dx = |a| ~—=d8 and Vx2 — a2 = |q| Sinb |a|tan®.

cos26 cosf

Case 5: If the integral includes the expression vax + b, then we set

Vax + b = t. For instance, in order to compute the integral [ Si\r/}/} dx, we
work as follows: Setting v/x = t = x = t?, and dx = 2tdt. Hence,

sinvx sint ,
J =7 dx = [=-2tdt = 2 [ sintdt = —2cost + ¢ = —2cosvx + c.

Case 6. If the integral includes the expression v2ax — x2, a > 0, then we
set x = a(1 — cosB), so that dx = asinfd6 and V2ax — x? = asinf.

Case 7: Integrals of the form [ d% can always be reduced to one or

ax?+bx+c

other of the three standard forms: [ y jx =, [ y Zx =, [ y Zx = (and we
ac—=x a“+x xXc—=a

work as above).
dx

or [——
a+bcosx a+bsinx

Case 8: In case of integrals of the form [

t.
Case 9: In case of integrals of the form f+ setpx +q = !

px+q)\ax2+bx+c’ t

X
, settan> =

Integration by parts: The method of integration by parts is based on the
following theorem: If two functions f and g are differentiable on a real
interval I, and if the indefinite integral of the function f’g exists in I, then
the idefinite integral of the function f g’ also exists in /, and it holds that

[ r@ g @ax =g - [ 1 @gtdxx e
(this theorem can be immediately verified by the definition of the
indefinite integral, since ;—x [f()gx) — [ f (x)g(x)dx] =
L)) — [ f (g @)dx = f'(x)g(x) + f(x)g' (%) —
frx)g(x) = fx)g' (x)).
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Remark: For convenience, the formula of integration by parts is often
stated as follows:

udv = uv — f vdu

(in order to use this formula, the integrand must be expressed as the
product of a function and the differential of another function; and, in
particular, we often follow the LIATE rule, which tells us to choose u to
be the function that appears first in the following list: Logarithmic
functions, Inverse trigonometric functions, Algebraic functions,
Trigonometric functions, and Exponential functions).

For instance, given the integral [ xe*dx, we set u = x and dv = e*dx.
Then du=dx and v = [e*dx =e* . Hence, [xe*dx = [xde* =
xe* — [e*dx =xe* —e* +c.

Similarly, we can compute the integral [ xcosxdx using the method of
integration by parts as follows:

[ xcosxdx = [ xd(sinx) = xsinx — [ sinxdx = xsinx — (—cosx) +

¢ = xsinx + cosx + c.

Integration by reduction formulae: A reduction formula is applied to a
given integral in order to express it in terms of a much simpler integral,
using the rule for integration by parts, namely, [udv =uv — [vdu.
When we have to compute integrals of higher order, we usually have to
look for a reduction formula, such as the following (by successive
applications of the corresponding reduction formula, the integral of any
power of the integrand can be obtained):

Case 1: [ x™ e*dx. We shall apply the rule for integration by parts, setting
u = x™ and then du = nx™ 1dx. Similarly, we can set dv = e*dx, so
that [ dv = [ e*dx, and, differentiating both sides, we get v = e*. Hence,

x"e*dx = x"e* — nf x"leXdx
(and, thus, we have obtained a reduction formula). Notice that
[x"e™dx = %x"emx - %f x"te™*dx.
Case 2: [ In"™ xdx. We shall apply the rule for integration by parts, setting
u = In"x and then du = nln™ 1x - idx = glnn‘lxdx. Similarly, we can

set dv = dx, so that v = x. Hence,
n
fln" xdx = In"x-x — f x;ln”‘lxdx :>f In™ xdx
= xIn"x — nf In" xdx

(and, thus, we have obtained a reduction formula).
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Case 3: [ x™In"xdx. We shall apply the rule for integration by parts,

n-1

setting u = In™x and then du = ¥ dx. Similarly, we can set dv =

xm+1 *
x™, so that v = . Hence,

m+1

x™nnx n
x™ In"xdx = - x™In™ xdx
m+1 m+1

(and, thus, we have obtained a reduction formula).

Case 4: [ sin™x dx. In this case, in order to apply the rule for integration
by parts, we shall separate the integrand into two parts by writing sin™x =
sin®1x - sinx, so that [ sin"xdx = [ sin™ 'x - sinxdx. Now, we are
ready to apply the rule for integration by parts, setting u = sin™ 1x, dv =
sinxdx , and then du = (n — 1)sin™ 2x - cosxdx , and v = —cosx .
Hence, we obtain

fsinnx dx = fsin”‘lx-sinxdx
= —sin™ lxcosx + (n — 1) f cos? xsin™ 2xdx
= —sin™ lxcosx + (n — 1) f(l — sin?x) sin™ 2xdx
= —sin™ lxcosx + (n — 1) f sin™ 2 xdx
-—(n—-1) f sin™ xdx & nf sin™x dx

= —sin™ lxcosx + (n — 1) f sin" 2 xdx © f sin™x

n—1

1
——sin™ xcosx + f sin™? xdx
n

(this is the reduction formula for this type of integrals; so that, writing
I, = [ sin"xdx and I,,_, = [ sin™ % xdx, the reduction formula can be
written as  follows: nl, = —sin®* lxcosx + (n— DI, &I, =
- % sin® 1xcosx + nT_lln_z).

Case 5: [cos™xdx. By rewriting the given integral as [cos™ 'x -
cosxdx, we can apply the rule for integration by parts by setting u =
cos™ x, dv = cosxdx, and then du = (n — 1)cos™ %x - (—sinx)dx,

and v = sinx. Hence, we ultimately obtain
n—1

1
f cos™ xdx = —cos™ xsinx + f cos™? xdx
n

(this is the reduction formula for this type of integrals).
Case 6: f sin™ xcos™xdx, where m and n are natural numbers. Let us call
this integral I,,, ,, where m represents the power of the sine term in the
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integrand, and n represents the power of the cosine term in the integrand.

Then the following reduction formulae hold:

sin™xcos™'x n-—-1

I = + ) A
mn m+n m+n ™2
forn > 2; and
! sin™*xcos™'x m-—1
mn m+n m+n MmN

form = 2.

Let us prove the first reduction formula (applying the rule for integration

by parts):
Lyn = | sin™xcos™ ! xd(sinx)

m+1

= sin™xcos™ 1x

- f sinx[msin™ xcos™x

m+1

— (n— Dsin™xcos™ %x] dx

m+1

=sin xcos™ 1x —m | sin™ xcos™xdx

+(n-1) f sin™*2xcos™ 2 xdx

— cjpm+1 n-1
= sin™  xcos™ x —mly, ,

+(n-1) f sin™x(1 — cos?x) cos™ 2xdx

= sin™*xcos" 'x —mly,, + (M — Dy
- (n - 1)Im,n < Im,n
sin™*lxcos™'x n-—-1

m+n m+n ™2

(this is the required reduction formula). In case m = 0, this reduction
formula implies that

sinxcos™x n-—1 ,
cos™ xdx = + cos™ “ xdx
n n

(which we obtained in Case 5).
If we set I, , = [ sin™ xcos™xdx = [ cos™ xsin™ *xsinxdx, and if we
work in a way analogous to the way we proved the first reduction formula,

then we obtain the second reduction formula, namely: I, =

sin™t1xcos™1x  m-1 . .
- ~ Tlm—Zn- In case n =0, this reduction formula
m+n m+n ’

implies that

) cosxsin™'x m-—-1(
sin™ xdx = — + sin™ ™ “ xdx

m
(which we obtained in Case 4).
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Case 7: [tan™xdx. We work as follows (based on the formula of
integration by parts):

= [tan™xdx = [ tan™*xtan? xdx = [ tan™ %x (sec’x — 1)dx =
J(tan™ %xsec?x — tan™ 2x)dx = [ tan™ 2xsec*xdx — [ tan™ *xdx.
In case of the integral [tan™ 2xsec?xdx, let us apply the rule for
integration by parts with u = tan™ ?x and dv = sec?x, so that du =
(n — 2)sec?xtan™ 3x and v = tanx. Then, by the rule for integration by
parts,  [tan"*xsec®xdx = tan™'x — (n — 2) [ sec’xtan™ *xdx =
tan™ *x — (n — 2) [(1 + tan?x) tan™ 2xdx = tan™ 'x —
(n—2) [(tan™ %x + tan™x) dx.
Therefore, returning to I, = [ tan™x dx, we have found that

f tan™x dx = tan™ 1x
—(n—-2) f tan™ 2xdx
—-(n—-2) f tan™xdx — f tan™ 2xdx (:)f tan™x dx

+(n—-2) f tan"xdx =(n—1) f tan™x dx

= tan™ 'x
tan™ 1x

—(n— l)ftan"‘zxdx o f tan™x dx = —]

— | tan™ ?xdx

(this is the required reduction formula; so that, writing I, = [ tan™x dx
and I,_, = [ tan™ 2xdx, the reduction formula can be written as follows:

tan™ 1x
L, =——

n-1 _n2)~

Case 8: [ ——— 7 2+ Y where 7 is a natural number. If n = 1, then we have

fm, and we can compute it by making the substitution x = atanf and

— 2 dx _ _ 2 —
dx = asec?0df® , so that = fa2+(atan9)2 asec*0df =
asec?6d6 = [

—-asec?0dd =~ [d6 =~6 +c , and,
a a

fa2(1+tan29) a?s
1

x dx
because x =atanf & 0 =tan"'= ; and, therefore, [—— =
a a“+x
1 X
—arctan=+ c.
a a

If n = 2, then we find a reduction formula as follows: Let us call this
integral I,,, where n represents the power of the denominator. Then
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! _f dx 1 a2+x2—x2d
n - (a2 + x2)n - a? (az + xZ)n x
1 f dx 1 f x?
=— -= dx
a2 (aZ + x2)n—1 a2 (aZ + x2)n
1 1 X

B Fln_l Caz x (a® + x?)n dx

1 11 d(a? + x?)
Tt x(a2+x2)”

1 1 f (a? + x*)1™n
==h,s-—5=|xd—F—7"—

a? 2a? 1—n

1 1 X 1

=—] ,——": +
a2’ ™' 2a?2 (1-n)(a?+x2)*1 " 2q2

1 f dx
1—-n) (a? +x?)n1
_ 1 I 1 X 4 1
T a2 ™ 2a2 (1-n)(a? +x2)n 1 2a2

T e h

_ x 4 2n—-3 1 I
“2mn—-1a? (@ +x2)v1 2(n—1) a2 "'

(this is the required reduction formula for n > 2).

Integration of rational functions: In general, expressions of the form%

where f(x) and g(x) are rational integral algebraic functions of x can be
resolved into partial fractions, provided that the degree of f(x) is less than
the degree of g(x), and g(x) itself can be expressed in terms of linear and
quadratic factors. Hence, the aforementioned expression % can be
integrated if each of the corresponding separate partial fractions can be
integrated. In fact, the following types of partial fractions will arise:

A A Ax+B Ax+B

ax+b’ (ax+b)™ ax2+bx+c’ (ax2+bx+c)™
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Table 8:1: Partial fractions decomposition.

Form of the rational function  Form of the partial fraction

px+q A B
——— a+*bh
(x—a)(x=b) x—a x—b
px+q A N
(x — a)? x—a (x—a)?
px2+qx+r A B C
(x—a)(x—b)(x—c) x—a x—b x-c
px*+qx+r A N B N C
(x —a)?(x — b) x—a (x—a) x-b
px2+qx+r A . Bx+C
(x —a)(x + bx + ¢ x—a x*>+bx+c
Examplel

= f—(x+2)(x_2) dx = fmd x + f;dx, and we

have to determine the constants A and B. Thus, ——— = —+ —
(x+2)(x-2) x+2  x-2

- -n(A+ L =
(x+2)(x —2) ——— (m) = G+D(x-2) (x+2 + H) 1=
A(x — 2) + B(x + 2). Given the linear factors, x — 2 and x + 2, we shall
find the values of A and B as follows: Plugging in the value x = 2
(derived from x —2=0ox=2), 1=Ax—-2)+B(x+2)>1=
0+B(4)=>B= %, Plugging in the value x = —2 (derived from x + 2 =
0Oex=-2), 1=A(x—-2)+B(x+2)=>1=A4(-2-2)+0=>A =

1

A B

=, dx = [—%dx +
4-1 4 xX+2
[Z—dx=—-2[2 42 ﬂ——lln|x+2|+1ln|x—2|+c=
x-2 47 x+2 47 x-2 4
—(lnlx—2| ln|x+2|)+c——ln| |+c
Example 2: | Z—dx We need to factor the denominator, and,
x“+2x-15

therefore, in this trinomial, the leading coefficient being 1, we need to find
two numbers whose product is equal to the constant term, that is, —15, and
whose sum is equal to the linear coefﬁcient, that is, 2. These two numbers
are 5 and —3 , so that x +2x—15=(x+5)(x —3) . Thus,

[= Tt dx = f —dx + f dx and we can determine A and B as
x +2x—15 4
xX—
follows: sremeie bt el CR R CRO b
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(x+5)(x—3)(x'%+x%) =>x—4=A(x—3)+B(x+5). As in the
previous example, we shall plug in values of x to calculate A and B; and,
specifically, given the linear terms x — 3 and x + 5, let us firstly plug in
x = 3 (derived from x —3 =0 x =3), so that x —4 =A(x—-3) +
B(x+5)=>3—4:0+5(3+5)=>3=—§ . Plugging in x=-5
(derived from x +5=0x=-5), x—4=A(x—-3)+B(x+5) =
—5—-4=A(-5-3)+0=24= g. Now, the given indefinite integral

9 1
becomes Zx;‘ldx=f 8 dx+ [—Sdx=- gx _1pdx _
R ) x“+2x-15 x+5 x-3 x+5 8Y x-3
—ln|x+5| ——ln|x—3| +c.
Example 3: fm f dx+f—dx+f 5z dx, so that

x - A L B — — 2—" =
(x-1D(x-2)2  x-1 + x—2 + (x— 2)2 = Gx-Dx-2) (x—1)(x—2)2

(x — 1)(x — 2)? [ﬁ+g+ 2)2]=>x_A(x—2)2+B(x—1)(x—

2) + C(x — 1). In order to determine A, B, and C, we must plug in some
values of x. Let’s focusonx —2 =0 x=2,andx—-1=0 x = 1.
Plugging in x=2, we get: x=A(x—-2)2+B(x—-1)(x—-2)+
Cx—1)=22=04+0+C=>C=2. Plugging in x =1, we get: x =
Ax—2)2+B(x—1Dx-2)+Cx—1)=>1=41-2)>+0+0=>
A=1. In order to determine B, let’s plug in x =3, so that x =
Ax—2)2+B(x—1Dx—-2)+C(x—-1)=>3=A0)+B2)(1) +

C(2)=1+ZB+4$3—5+28:B——1 Now, the given indefinite
—f—— —+fﬁdx, where

integral becomes fm

=lnlx—1]+cy, [ d_ In|x — 2| + ¢,, and, in order to compute

f#dx =2 & wesetu = x — 2 and du = dx, so that we obtain
(x-2)? (x-2)2

—o [ _ -2 gy — “__1 —_2 —__2
Zf(x 7 2fu—2fu du=2—+c¢; = “+eo= -+

Hence, —f—— —+fﬁdx=ln|x—1|—

f(x 1)(x— 2)2
lnlx—2|—;+c.

2
Example 4: fzx—wdx. We cannot factor x? + 4, but we can factor
(x2-1)(x2+4)

2 _ x2+9 _ x2+9
x*—=1as (x+1)(x—1), so that D0 DG
thus, in the denominator of the integrand, we have two linear factors and

x2+9 A

one quadratic factor. We work as follows;: ——————=—+ L4
(x+1)(x-1)(x2+4) x+1  x-1

and,
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Cx+D x2+9 A B Cx+D
PErvia f(x+1)(x—1)(x2+4) dx = fmdx + f;dx +/ x2+4 dx . Then,

x2+9 A B Cx+D
P A DE-D@2+4) x4l x—1 Y Ce+ Dlx -

x*49 1) (x? A LB
=+ D -Dx +4)(x+1+x_1+

working as before

D2+ 4)

(x+1)(x—1)(x2+4)
Z:I:) Sx2+9=A(x—1)(?+4)+B(x+1D(x2+4) +
(Cx+ D)(x +1)(x — 1). In order to determine A4, B, C, and D, we must
plug in some values of x. Let’s focusonx —1 =0 x =1,andx + 1 =
0 e x=-1. Plugging inx =1, we get: x2+9 =A(x — D(x2+4) +
Bx+1D?+4)+(x+D)x+1D(x—-1)=>1+9=0+B(2)(5) +
0= B =1. Plugging inx = —1, we get: x2+9 =A(x— D(x2+4) +
Blx+1D?+4)+(Cx+D)x+1)(x—-1)=>10=A(-2)(5) +0+
0 = A = —1. In order to determine C and D, let’s plug in x = 0 (since, for
x = 0, C disappears in Cx + D, and we can solve for D). Indeed, for x =
0, and given that we have found that A = —1 and B = 1, we have: x2 +
9=Ax—1D*+4)+Bx+1Dx?*+4)+(Cx+D)(x+ D(x—
D=>0+9=-1-D@+ OO+ (- 0+D)(D)(-1)=>D =
—1. Finally, we need to determine C, and, for this reason, let’s plug in x =
2, so that, for x = 2, and given that we have found that A = —1,B =1,
and D=—1, we have: x2+9=A(x—1)(x?>+4)+B(x + 1)(x? +
H+(Cx+D)(x+1)(x—1)=>C=0. Now, the given indefinite

x2+9 -1 1 -1
E;;:;ﬂ;;:z;(ix ::j‘;1;<ix +'J.;:I(1X +'J.zgzz(ix .
where f_—ldx =-Inlx+1| +c¢, fidx =lIn|lx —1|+c,, and, in
x+1 x-1

integral becomes [

- d
order to compute fxz—;dx, we shall use the formula | .a2+xx2 =

-1
>—dx =
xX“+4

%arctan§+c (which was proved earlier), so that [
x2+9

mdx = —ln|x+ 1| + lnlx— 1| -

1 x
—=arctan= + c; . Hence, |
2 2

1 X x-1 1 X
—arctan=+c = In|—| — >arctan=+ c.
2 2 x+1 2 2

Remarks:
i In case of [ 2Ax+B dx with p? —4q < 0, wesetx +2 =t.
x“+px+q 2
il. In case of [ R(e™) dx, where R is a rational function, we set

e¥ =t

Integration of irrational functions: Some types of integrals of irrational
algebraic functions are reducible to integrals of rational functions via
suitable substitutions.
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Case I: [ R ( n’:z:b> dx, where R is a rational function, n is a positive

ax+b

b—dt™ n(ad—bo)t™ 1
= tn SO that X =—— and dx =
cx+d ’ cth—a’ (a—ct™)?

.. . nlax+b
original integral becomes IR (x, ’Cﬂd) dx =n(ad —

bo) [ R(EE 1) .

tht—a’ ") (a—ct™)?

For instance, given the integral

3x+1
f dx
x—1

3
(which is of the above form), we set — =t>, so thatx = ::_t ,

dt . Hence, the

6t2

~ o dt, and then the original 1ntegra1 becomes

3 x+1 —6t3 2t dt 2t
f f(t3 1)2 dt =2 f td T 3.1 2 f 3-1  t3-1
2 dt 2 2t+1
= ‘f e dt = Ny T Farctan ==

and, finally, we make the substitution t = 3’% to get the result as a

function of x.

Case 2: fR( ’aHb n’a“b )dx where R is a rational function,
cx+d cx+d

= tp’

m,n, ... are natural numbers, and ad # bc. In this case, we set -

where p is the least common multiple of m, n, ...

For instance, given the integral
x

dx
Vitl-Yx+1

(which is of the above form), we set x + 1 =t®, so that we obtain

to-1)6t5
f\/m —f(tS 22 dt=6[(t3+t7 +to+t>+t* +¢t3)dt ,
which can be computed very easily, and, finally, we make the substitution
t = Yx + 1 to get the result as a function of x.

Case 3: fR(x,\/ax2 + bx + c) dx, where R is a rational function, a, b,
and c are real numbers, and a # 0. In this case, we apply the so-called
“Euler’s substitutions,” namely:
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. If a>0, then we set Vax?+bx+c=t—+ax or
vax? + bx + ¢ =t + +vax. Notice that, if Vax? + bx + ¢ =

t —Vax, then by raising both sides to the square, we see

- \/—t2+bt+C\/E
that x = \/—t+b and dx = Wdt
ii. If a < 0 and b? — 4ac > 0, then we set Vax? + bx +c¢ =

t|x — r;|, where ry is a root of ax? + bx + ¢ = 0.
iii. Ifa < 0and c >0, then we set Vax? + bx + ¢ = tx ++/c
or Vax2 + bx + ¢ = tx —+/c. Moreover, by setting x = 3,

t
the situation reduces to case (i).

Binomial integrals: [ x™ (a + bx™)Pdx, where m, n, and p are rational
numbers, and a and b are non-zero real numbers. Integrals of this type can

be computed only if at least one of the numbers p, m—“, m—“ +pis an

integer (Chebyshev conditions). If p is an integer, then we set th =x,
where k is the least common multiple of the denominators of the numbers

m and n. IfmTJr1 is an integer, then we set a + bx™ = t*, where 1 is the
denominator of p. If mTH + p is an integer, then we set ax™" + b = t*,

where A is the denominator of p.
For instance, the integral

f dx

V(1 + V)

can be written as [x72/3 (1 + x1/3)_3dx, where m = —%, n= %, and
p = —3. Because p is an integer, the above methodological rules imply
that we should set t3 = x, and then we obtain: [ x~2/3 (1 + x1/3)_3dx =
Jt2(A+6)733t2dt = 3f(1+t)3 =~ te= —3(1;&)2 +c

Definite Integrals in R

The “definite integral” is written as

f?mm

a
and represents the area bounded by the curve y = f(x), the x-axis, and the
ordinates x = a and x = b if f(x) = 0. If f(x) is sometimes positive and
sometimes negative, then the definite integral represents the algebraic sum
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of the areas above and below the x-axis. In particular, the areas that are
above the x-axis are considered to be positive, whereas the areas that are
below the x-axis are considered to be negative.
The development of analytic geometry gave rise to a new method for the
calculation of the area of a curvilinear figure. The old method for the
calculation of the area of a curvilinear figure consisted of a series of
approximating polygons. The new method for the calculation of the area of
a curvilinear figure consisted of a sequence of sums of approximating
rectangles, as illustrated in Figure 8-16. The area of each of these
rectangles can be represented by the product f(x;)Ax; (corresponding to
the product height X width), and the sum of these rectangles is given by
S, = X f(x;)Ax;. Then the area of the figure can be defined as the limit
of the infinite sequence of sums S, as the number of subdivisions n
increases indefinitely and, thus, as the intervals Ax; approach zero.
Moreover, in this context, the use of infinitesimal rectangles is intimately
related to the explanation and treatment of an arbitrary curve as the limit
of or a sum of infinitesimal bits (infinitesimal straight line segments), so
that an arbitrary curve is locally (i.e., at the infinitesimal level) straight (in
fact, this is the underlying idea of Riemann’s theory of integration). In this
way, the analytic representation of the curve set the stage for the
development of the “definite integral” on the basis of the ordinary
operations of arithmetic and on the basis of the concept of the limit of an
infinite sequence of terms (S,,).
As shown in Figure 8-16, the definite integral f: f(x)dx can be defined as
follows:
We subdivide the closed interval [a, b] into n subintervals
[a, %, 1, [x1, %51, o [Xi—0, ] [0 X4 ], e [ X1, D]
by means of the points x4, x,, ..., x;, ..., X,_1, Which have been chosen
arbitrarily (and, obviously, x, < x; < -+ < x,_; < x;,). Hence, the set of
points
P ={a = Xq, X1, X, e, Xjy eve, Xp_q, X, = b}
is a “partition” of [a, b]. Let Ax; be the length of the ith subinterval, that
is, Ax; = x; — x;_;. Then the “norm” of the partition P is denoted by ||P||,
and it is equal to max{4dx;|i =1,2,..,n}. Now, in each of the n
subintervals mentioned in the aforementioned partition, we choose points
&1, &5, ..., &, In an arbitrary way, and we form the sum

SP,f. &) =

f&)Ax, + f(fz)szn+ o fEDAX + -+ f(§R)Ax,

- Zf(a-)ﬂxi
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where Ax; = x; — x;_,. In other words, an arbitrary domain value, ;, is
chosen in each subinterval, and the corresponding function value, f(¢;), is
determined, so that we can define the product of each function value times
the corresponding subinterval’s length (4x;) and then add these n products
to determine their sum. This sum is called a “Riemann sum,” and it may be
positive, negative, or zero, depending on the behavior of the function on
the given closed interval. Notice that the subintervals of the partition can
be taken to be of equal length Ax = b%a (in this case, ||P|| = 4x).

In general, as the number of subdivisions n increases, ||P|| vanishes—that
is, [|[P|| = 0 as n — oo (and, obviously, if the subintervals of the partition

have been taken to be of equal length Ax = b_Ta, then 4x — 0 as n — ).
Hence, if lim)p5oS(P, f,¢;) exists and is independent of the mode of

subdivision of [a, b], then this limit is said to be the integral of f on [a, b];
symbolically:

b
lim”P”_,OS(P,f, fl) = f f(x)dx

where f(x)dx is called the “integrand,” [a, b] is called the “range of
integration,” and a and b are respectively called the lower and the upper
“limit of integration.” Leibniz symbolized the definite integral of a

function f(x) on [a, b] as f; f(x)dx, because the sign [ is an elongated S

standing for the word “sum,” since Leibniz defined f: f(x)dx as the

summation of infinitely many rectangles of height f(x) and infinitesimally
small width dx (see Figure 8-16).
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Figure 8-16: The integral as the limit of a sum (Wikimedia Commons: Author:
Helder, Marcos Antonio Nunes de Moura;
https://commons.wikimedia.org/wiki/File:Integral de Riemann.svg).
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The above definition of the definite integral can be, equivalently, restated
as follows (the epsilon-delta definition of the definite integral): A function
f is called “integrable” on the interval [a, b] if and only if there exists a
number A such that: for every € > 0, there exists a § > 0 such that every
Riemann sum of f that corresponds to a partition P = {a =
X0» X1, Xgy ey Xiy ey Xn_1, Xy = b} of [a,b] with ||P|| < § satisfies the
inequality
|S(P,f,f) _Al <g

for any choice of sample points ¢ of P. Then the number 4 is called the
definite (or the Riemann) integral of f on [a, b], and it is written as

fbf(x)dx

(thatis, A = [ f(x)dx).

Remark: Intuitively, the epsilon-delta definition of the definite (or
Riemann) integral means that, as the partition becomes finer and finer, the
Riemann sums converge to a limit, which is the definite (or Riemann)
integral of f on [a, b] (given a partition P of the interval [a, b], another
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partition Q of [a, b] is said to be “finer” than P, or a “refinement” of P, if
Q contains all the points of P and possibly others).

Hence, if f:[a,b] » R is integrable on [a,b] according to the
aforementioned definition, then f is bounded on [a, b]. This theorem can
be easily proved by reasoning as follows: As outlined above, the definite
integral is calculated by partitioning [a, b] into smaller intervals, and then,
in each such subinterval, we choose a value of f, we multiply it by the
length of the subinterval, and, finally, we sum all of these products. If, for
the sake of contradiction, we assume that f is unbounded, then, in one of
these subintervals (of the partition), f will still be unbounded, and,
therefore, in this subinterval, we can choose a value for f so large that the
resultant sum will also become analogously large, meaning that, among all
the approximations of the integral, there will be sums of arbitrarily large
size, thus rendering the function f unintegrable, which contradicts the
assumption that f is integrable. Therefore, “integrable” on [a, b] implies
“bounded” on [a, b].

For a given continuous function f(x), of a real variable x, defined on the
interval [a, b], the definite integral is

b
[ redx = Feolt = Fo) - F@

where F(x) is the antiderivative (i.e., the indefinite integral) F(x) =
[ f(x)dx, so that we calculate a definite integral as follows: (i) we
calculate the antiderivative F(x), (ii) we calculate the values F(b) and
F(a), and (iii) we calculate F(b) — F(a). For instance, we calculate the

value of f23 x?dx as follows:

3 3
x
fxzdx=—|§=
2 3
33 28 19

(value oféwhenx = 3) - (value of?whenx = 2) =555

Properties of the definite integral: The study of the definite integral was
placed in a rigorous mathematical setting in the nineteenth century by
Bernhard Riemann, Thomas Joannes Stieltjes, and Jean-Gaston Darboux,
and their work underpins the following theorems (the properties of the
definite integral).

Property I: f: fx)dx = — fba fx)dx.

Proof: By the definition of the definite integral,

[} f@dx = lim,_,, S £(£) Ax where Ax =2,
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and similarly

[} feo)dx = limy,_,, S, £ (&) Ax where Ax = “T‘”
Hence,

[ Fydx = limy,_,, Ty F(E) =2 = lim,,_,,, 21 /6 )|
iy, (= Dt f(E) ) = —lim, Ty f(E) =2 = = [ f(x)dxm

—(a—b)] _

Property 2: f; f(x)dx =0.
Proof: By the deﬁnition of the definite integral,
Ji fo)dx = lim,,_,, B7y (&) Ax where Ax = 22 =0,

and, therefore, f f(x)dx =lim, ., 2y (&) (0) =0.m

Property 3: f: cf(x)dx =c f; f(x)dx.
Proof: By the definition of the definite integral (and the properties of
summations and limits) we have:

[ of Qydx = lim,,_,,, Xy of (&) Ax = lim,,_c X7 1f(§l) Ax =
climy, . iz, f(§) Ax = Cfa f(x)dx, where Ax = T,.

b b b
Property 4: [ [f(x) £ g()]dx = [ f(x)dx £ [ g(x)dx.
Proof: Firstly, we shall prove the formula for “+” (using the definition).
Indeed, by the definition of the definite integral, using Ax = b_Ta, we have:

L0 + g0l dx = limy,_, T, [f(8) + g(6)] Ax =
Mo (B0 f(E) Ax + Xy g(€) Ax 1= [ f(X)dx + [, g(x)dx.

The formula can be proved for “—” by repeating the above work with a
minus sign.m

Property 5: f: cdx = c(b — a), where c is a real number (constant).
Proof: 1f we define f(x) = c (a constant function), then, by the definition
of the definite integral, using Ax = b;a , we have:

[J cdx = [} f(x)dx = lim,,_,,, 1f(fl) Ax = limy, (T1y 0) =2 =

limn_)w(cn)b%a =lim, ,c(b—a)=c(b—a).m

Property 6: If f(x) = 0 for x € [a, b], then f:f(x)dx > 0.
Proof: By the definition of the definite integral, using Ax = b_Ta, we have:
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b ,

f f(X)dX = llmn—mo i 1f(€1) Ax

and, because f(x) =0 and Ax = 0, it holds that }}7, f(&;) Ax = 0. Thus,
by the properties of limits, lim,_, >, f(&)4x = lim,.,, 0 <

[ f)dx > 0.m

Property 7: If f(x) = g(x) for x € [a, b], then f;f(x)dx > f: g(x)dx.
Proof: Because f(x) = g(x), it holds that f(x) —g(x) =0 for x €
[a, b], and, therefore, by Property 6, ff [f(x) — g(x)] dx = 0. Moreover,
by Property 4, f: [f(x)—g()]dx = f: fx)dx — f: g(x)dx. Therefore,
fff(x)dx - ffg(x)dx >0=> f:f(x)dx > f:g(x)dx.l

Property 8 (Extreme Value Theorem for Definite Integrals): If m <
f(x) < M for x € [a,b], thenm(b — a) < fff(x)dx <M(b—a).
Proof: Given that m < f(x) <M, we can use Property 7 on each
inequality to obtain f: mdx < ff f)dx < f; Mdx. Then, by Property 5,
we obtain m(b — a) < f: f(x)dx <M —a)m

Property 9: | < f;lf(x)l dx.
Proof: By the definition of the absolute value,

—IfI < f) < If ).

Therefore, using Property 7, we obtain
[ =1f@ldx < [ f()dx < [ 1f @)ldx = — [} 1f(0)ldx <
[, f@dx < [[1f @ldx.

Hence, given that, in general, |u| < v & —v <u < v, we obtain the
. b
required result: |fa f (x)dx| < f:l f(x)| dx.m

Remark: The Cauchy—Schwarz—Bunyakovsky inequality for definite
integrals: If f and g are continuous real-valued functlons on [a b], then

f FOOllg()ldx < f £2 (x)dx] U g (x)dx]

(this is a very useful result for proving oher inequalities in real analysis).
The proof of this inequality can be obtained as follows: For a variable 4,

let’s define the function p(1d) = f;[/lf (x) + g(x)]*dx . Hence,
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LIAF GO + g2 dx = [ [22£2(x) + 2Af () g (x) + g7 (x)] dx =

A2 f: f2(0)dx + 22 f;f(x)g(x)dx + f: g?()dx =1.

Notice that [ is a quadratic polynomial (in A), and I = 0 if the discriminant
is less than or equal to zero. Recall that: if the discriminant is positive,
then we have two distinct real roots; if the discriminant is equal to zero,
then we have a double root; and, if the discriminant is negative, then we do
not have any real roots. The discriminant of [ is D =

200 f (x)g(x)alx]2 —4[f} fr@dx| [ g*@dx] < 0=
|12 eogeoas] <[} £ oax] 17 g o] = |1} reogar| <

[f: fz(x)dx]E [f: gz(x)dx]E. Then, by Property 9, we receive the

1
2

required result: fflf(x)l lg()| dx < [f;fz(x)dx]E [f: gz(x)dx] .

Property 10: 1f a function f: [a, b] = R is integrable on [a, b], and if a <
a, < b; < b, then f is integrable on [a,, b,].

Proof: This property follows directly from the epsilon-delta definition of
the definite integral (and it can be demonstrated by contradiction, since the
lack of integrability over a subinterval results in the lack of integrability
over the whole interval).m

Property 11 (additivity of domain for definite integrals): If f: [a, b] - R is
a continuous function, and if a, b, and c are real numbers such that a <
¢ < b, then f(x) is integrable on [a, b] if and only if f(x) is integrable on
both [a, c] and [c, b], and then it holds that

f: fx)dx = facf(x)dx + fcb f(x)dx.

Proof: Geometrically, this property means that, if we consider the signed
area bounded by the graph of y = f(x) and the x-axis fromx = atox =
b, then this signed area is equal to the sum of the signed area from x = a
to x = ¢ plus the signed area from x = c¢ to x = b. Algebraically, this
property means that, if F(x) is an antiderivative of f(x), then F(b) —
F(a) = [F(c) = F(a)] + [F(b) — F(0)].

Let P ={a = Xy, X1, X3, «es, Xjy ey Xp_1, X, = b} be a partition of [a, b]
such that c coincides with some point belonging to P, say x,, = ¢. Then P
can be divided into the following two partitions:

P, = {a = xy, x4, .., x,} with norm ||P; || and

P, = {x,,%41,.., X, = b} with norm || P, ||.
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For any choice of sample points £ of P, we shall have the following
Riemann sum:
SP,f,8) = Xica f(ED) Oy — x;_1) = Xieq f(§D) (xy — x34) +

imra1 f(ED) (i — x21). (1)
If we assume that f is integrable on [a, b], then, by Property 10, it is also
integrable on [a, c] and [c, b]. If ||P|| < &, then, obviously, ||P;|| < & and
[|P,]| < &, and, therefore, by the epsilon-delta definition of the definite
integral, we have:

|s.£.6) = [} fFOodx| <2,
ISPy, £,8) = [ f(x)dx| < £, and
|52 £, = [ FOo)dx| <5,

Due to relation (1), the above three inequalities imply that
b b

| J, ) dx — facf(x)dx —J. f0) dx| <e,

and, because ¢ is arbitrary, we obtain the required result:

b b

J, fl)dx = facf(x)dx +J_ f(x) dx.

The converse, starting from the assumption that f is integrable on [a, c]
and [c, b], can be easily established from relation (1).m

First Fundamental Theorem of Calculus: 1f a function f(x) is continuous
on [a, b], then the function

900 = f fF(Odt

is continuous on [a, b] and differentiable on (a, b), and it holds that
g9'(x) = fx)

(the first formulations of this theorem are due to Isaac Barrow, Isaac
Newton, Gottfried Leibniz, and James Gregory, independently of each
other; and this theorem establishes the relationship between differentiation
and integration).
Proof: Suppose that x and x + h are elements of the open interval (a, b).
Then

x+h

gx+h)—g@) = [ f()dt — [ f(©) dt. (1)

Using Property 11, we can rewrite relation (1) as follows:

X x+h X
g(x+h)—g(x)=(f F(O) de+ f(t)dt)— f () de

x a
x+h

= f()dt
pa
and, assuming that h # 0, we obtain:
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g(x+h’3—g(x) — %fxx+hf(t)dt. (2)

If we assume that h > 0, and given that x and x + h are elements of the
open interval (a, b), then f(x) is continuous on [x, x + h]. Therefore, by
Weierstrass’s Extreme Value Theorem, there exist numbers ¢ and d in
[x,x + h] such that f(c) = m is the minimum of f(x) in [x,x + h], and
f(d) = M is the maximum of f(x) in [x, x + h]. Then, by Property 8, it
holds that

x+h x+h
mh < f f(H)dt < Mh = f(c)h < f F(O)dt < f(dh = f(c)

1 x+h
<3| rodsr@
X

and, by relation (2), we obtain:
fle) < L0 < £(a), 3)
If we assume that h < 0, then we can follow the same reasoning, except
we shall be working on [x + h, x] in order to obtain the same inequality as
above. Consequently, we have proved that inequality (3) is true provided
that h # 0.
Now, consider the case in which h — 0. In this case, c = x and d — x,
since ¢ and d are between x and x + h. Therefore,
limy_of () = lim¢, f (c) = f(x) and
limy_of (d) = limg_,, f (d) = f(x).
Then, by the Squeeze Theorem,

limy o Z200 = £ (). )
The left-hand side of relation (4) is the definition of the derivative of g(x),
and, therefore,

9'(x) = f(x). &)
In other words, we have proved that g(x) is differentiable on (a,b).
Moreover, in the section on differential calculus, we proved that, if a
function f is differentiable at x (having a finite derivative), then f is
continuous at x. For this reason, relation (5) implies that g(x) is also
continuous on (a, b). Finally, if we setx = a or x = b, we can follow a
type of reasoning similar to the one we followed in order to obtain relation
(4) using one-sided limits in order to obtain the same result, and, thus, the
fact that “differentiability” implies “continuity” will lead us to the
conclusion that g(x) is continuous at x = a or x = b, so that it will be
ultimately established that g(x) is continuous on [a, b].m

Second Fundamental Theorem of Calculus: 1f a function f(x) is
continuous on [a, b], and if F(x) is any antiderivative of f (x), then
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b
[ fedx =Feo k2 = F) - F@

(the first formulations of this theorem are due to Isaac Barrow, Isaac
Newton, Gottfried Leibniz, and James Gregory, independently of each
other; and this theorem complements the First Fundamental Theorem of
Calculus).

Proof: Let g(x) = f; f (x)dt. Then, by the First Fundamental Theorem of

Calculus, g'(x) = f(x), meaning that g(x) is an antiderivative of f(x) on
[a, b]. Additionally, suppose that F(x) is any antiderivative of f(x) on
[a, b] that we want to choose. Thus, g’'(x) = F'(x). Then, by Corollary 2
of Lagrange’s Mean Value Theorem, we know that g(x) and F(x) can
differ by no more than an additive constant on (a, b). In other words, for
x € (a,b), it holds that F(x) = g(x) + c. Because g(x) and F(x) are
continuous on [a, b], if we compute the corresponding limits as x —» a*
and as x = b~, we realize that the last conclusion is also true at x = a and
x = b. Therefore, for all x € [a, b], F(x) = g(x) + c. This conclusion
and the definition of g(x) imply that

F(b) —F(a) = [g(b)b+ c]—[g(@)+c]=gb) —g(a)
=f f(t)dt+f f(t)dt

= Lbf(t)dt+0 = Lbf(x)dx

(in the last step, the change of t’s into x’s is legitimate, because the name
of the variable used in the integral does not matter) .m

The Average Value of a Function on a Compact Interval: The average
value of a function f(x) over the compact interval [a, b] is given by

_ 1 b
f=rr f F)dx

(in its modern form, this theorem is due to A.-L. Cauchy).

Proof: First of all, recall that the average value of n numbers is the sum of
all these numbers divided by n. Now, let’s divide the interval [a, b] into n
subintervals each of length

Ax = b%a.

From each of these subintervals, we choose the points &,,¢,, ..., §,, and the
manner in which we choose these points does not matter as long as they
come from the appropriate interval. The average of the function values

G, f(E2)s s f(§) s
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FED+(E2)+-+f(En) (1)
- .
The above definition of Ax implies thatn = %. Hence, the fraction (1)
becomes
fGD)+ )+ -+ f(§)
b-a
Ax

1
= = [F(E)8% + F(E) A% + -+ F(§,)4x]
1 n
l— izlf(fi)ﬁx
where, by increasing n, we can compute the average of more and more
function values in the interval [a, b], and, in fact, the larger we choose n
the better approximation of the average value of the function we shall
obtain. If we take the limit as n tends to infinity, we shall actually obtain
the average function value f; symbolically:

f = Uity s = Ty f(E) A% = = lim,, o, Ty f(E) A2,

where lim,,_,, i, f(§)Ax is the standard definition of the definite
integral f: f(x)dx. Therefore, f = lea f: f(x)dx.m

Example: The average value of the function f(x) =8 — 2x over the
interval [0,4] is ﬁf;(B — 2x)dx =4. The point x, at which f(x,) is
equal to the average value of f over [0,4] can be found as follows: 8 —
2xg =4 >xy = 2.

The Mean Value Theorem for Integrals: 1f a function f(x) is continuous
on [a, b], then there exists a number c in [a, b] such that

b
[ redx =@ -

(in its modern form, this theorem is due to A.-L. Cauchy). This means that
f(c) = f, that is, f(c) is equal to the average value of f(x) over the
interval [a, b].

Proof: Let F(x) = f; f(t)dt. Because f(x) is given to be continuous on
[a, b], the First Fundamental Theorem of Calculus implies that F(x) is
continuous on [a, b] and differentiable on (a, b), as well as that F'(x) =
f(x). From Lagrange’s Mean Value Theorem, we know that there exists a
number ¢ such that a<c<b and F(b)—F(a)=F'(c)(b—a) .

Additionally, we know that F'(c)=f(c) , F(b)= [ f(t)dt=
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fff(x)dx, and F(a) = f;f(t)dt = 0. Hence, we obtain f;f(x)dx =
f(c)(b — a), as required.m

Applications of the definite integral: In this section, we shall study a few
applications of the definite integral.

1. The area of a region in R?
Suppose that f is a non-negative continuous function defined on the
interval [a, b]. Let R be the set of all points (x, y) such that
0<y<f(x)anda<x<b,
meaning that R is a plane region bounded by the straight lines x = a and
x = b, the x-axis (y = 0), and the curve of the function y = f(x). As
stated previously, the area of R (being approximated by Riemann sums) is
ultimately equal to

A= [] feodx. (1)
For instance, let us consider the area of a rectangle whose sides are parallel
to the axes of a Cartesian (rectangular) co-ordinate system. If the height of
the rectangle is h > 0, and its width is b — a, then we set f(x) = h over
the interval a < x < b, and, therefore, the area of this rectangle is
f; fx)dx = f: hdx = (b — a) h. The area of a square, in particular, can
be calculated as follows: if a is the length of the side of the square, where
a is the distance from the origin of the coordinate system to x = a, then
the area of the square is given by A = foa adx = ax|§ = a?. Similarly, if
we are given a right-angled triangle with height h and base b, where the
base of this triangle is equal to the distance from the origin of the
coordinate system to x = b, then, in order to calculate its area, we think as
follows: in this case, our function is a straight line (the hypotenuse), and
the general equation of a straight line is f(x) = mx + ¢, where c is a
constant, but, in this case, c = 0 because y passes through the origin of the

coordinate system, and the slope m = — (smce m= :l—n as we explained
in Chapter 6), so that the area of this trlangle is fo f(x)dx = fo ;xdx =

% (by analogy, we can compute the area of any triangle; and, using
analytic geometry and infinitesimal calculus, we can prove that the area of
basexheight

2 )-
The definition of the area of a region in R? that is expressed by formula

(1) is applicable for any function f (x) that is non-negative and integrable
over the interval under consideration (the function need not be continuous,

any triangle is given by
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although it is usually the case in applications that the function is
continuous). The restriction that f(x) is non-negative is not essential.
Indeed, if f(x) <0 and a < x < b, then, because the regions R, =
fa<x<bf(x)<y<0} and R,={a<x<bh0<—-y=<—-f(x)}
have the same area, it is sufficient to work with the function —f (x), which
is positive. In the general case where f(x) does not have a constant sign
over [a, b], we divide [a, b] into subintervals in which f(x) has a constant
sign, and we calculate the corresponding areas, so that, in this case, we
have the following formula for the calculation of the area of a region in
R2:

b
A= [ If()ldx. 2
For instance, in order to calculate the area of the region bounded by the
curve of f(x) = x2 — 4x + 3, the x-axis, and the straight lines x = —2

and x = 4, we work as follows: because f(x) = 0 when x € [-2,1] U
[3,4] , and f(x) <0 when x €[1,3], we have A = f_42|x2 —4x +
3ldx = f_lz(x2 —4x + 3)dx — ff(xz —4x +3)dx + f:(xz —4x +
3)dx = 18.

The area between two arbitrary curves can be calculated as follows: In the
first case, we want to determine the area A between the equations y =
f(x) and y = g(x) over the interval [a,b] under the assumption that
f(x) = g(x), meaning that the graph of f(x) is above the graph of g(x).
Then

b
A= f [(upper function) — (lower function)]dx

¢ b

= [ 1760 - g ax
a

where a < x < b.
In the second case, we want to determine the area A between the equations
x = f(y) and x = g(y) over the interval [c, d] under the assumption that

f(y) = g(y), namely, x = f(y) is on the right-hand side of x = g(y).
Then

A= fd[(rightfunction) — (leftfunction)]dy
‘ d
= f [f ) —g9()]dy

wherec <y <d.
For instance, in order to calculate the area of the region bounded by the
parabola f(x) = x%2 — 3x and the straight line g(x) = x, as shown in
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Figure 8-17, we work as follows: Firstly, we consider the system of
equations
{f(x) =x?— Bx}

gx)=x J
which gives the abscissas of the common points of the two curves. Thus,
here, we have: x2 —3x=x© (x; =0,x, =4), and g(x) = f(x) =
x = x% — 3x © x € [0,4]. Therefore, the required area is
A= f:[x —(x? = 3x)]dx = f04(4x —x2)dx = 33—2

Figure 8-17: The area between two curves.

YA

\4

y = x2-3x

Now, as another example, let us use integral calculus in order to calculate
the area of a triangle ABC whose vertices are A(2,5), B(4,7), and C(6,2).

Recall that, if (x;,y,) and (x,,y,) are any two points, then the equation of

a straight line y passing through these two points is given by 2= 3;1 =
-1

. Thus, firstly, we must find the equations of the three 51des of the

X—X1
X2=X1

triangle using the formula 2=2% = ==L

Y2=V1 X2—X1

The equatlon of the line AB is

7-5  4-2
The equation of the line BC is
oy =—2x+17.
The equation of the llne AC 1s
Y-S5 _x72 _3 _|_ B
25 62 V" x
Thus,
Area of ABC

= (area under AB) + (area under BC) — (area under AC)
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6

:f4(x+3)dx+f6(—;x+17)dx—f

= 7square units.

If the function of a region is given in a parametric form, then we work as
follows in order to calculate the area of that region using integral
calculus: Let us consider the equations x = g(t) and y = f(t) where t €
[t t,]. If g'(t) # O for all t € (t;,t,), then the equations x = g(t) and
y = f(t) define y as a function of x, and, if this is the case, then we apply
the following rule: If y is a continuous function of x over the interval
[a, b] where x = g(t) and y = f(t), then the area of the region defined by
y and the x-axis (along b — a) is

b ts
A= f yax = f©g®dt

under the conditions that g(t,) = a, g(t,) = b, and the functions g’ and f
are continuous on [ty, t,].

When a region is defined in polar coordinates, its area can be calculated
by using integral calculus as follows: If a function f is continuous and
non-negative over the interval [a, b] with 0 < b — a < 2m, then the area
of the region bounded by r = f(¢), ¢ = a, and ¢ = b is given by the
formula

1 b
a=5[ oy

(regarding polar coordinates, see Chapter 6). In other words, if a curve’s
radius function can be expressed as a function r(¢) of its angle with the
positive side of the x-axis, then the area of the curve between two half-

linesp =aandp =fisA = %ff 72 (¢)dg, because it is the summation

of infinitely many infinitesimally small triangular pie wedges (sectors)
such that: the arc length of the base of each triangular pie wedge is rde,
the height of each triangular pie wedge is (@) = r, the apex angle of each

pie wedge is d¢, and (using the formula of the area of a triangle: %base X
height ) the area of each triangular pie wedge is (approximately)

A(dp) =r2d7(p. In fact, the area of each triangular pie wedge is

%r%ind(p, but, since d¢ is infinitesimally small, sindg = d¢, and, thus,
the area of each such small triangle is approximately r2 %p. Hence, in

polar coordinates, the area of a circle of radius r (r(@)=r) is
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fozn%rquo =%r2 fozn dp =r?m (in essence, this is ancient Greek
mathematicians’ method of exhaustion formulated in modern
mathematical language).

Moreover, if the functions f and g are continuous over the interval [a, b],
and if 0 < g(p) < f(¢) for all ¢ € [a,b], then the area of the region
bounded by r = f(¢), r=g(¢), ¢ =a, and ¢ = b is given by the
formula

1 b
A=§Lﬂﬂ@P—wwWﬁw

(regarding polar coordinates, see Chapter 6).

Finally, it is worth mentioning that integrals can be thought of as inner
products on infinite-dimensional spaces. In fact, if C[a, b] denotes the
vector space of continuous functions on the interval [a, b], then we obtain
an inner product on C[a, b] by defining, for all f, g € C[a, b],

b
(.90 = | rag@dx

(notice that (f,f) = [, f()f(x)dx = [ [f(x)]* dx, which gives the
(signed) area between the graph of y = [f(x)]? and the x-axis from x = a
to x = b). An integral is a linear operator that takes one thing (specifically,
a function) and returns a number; and an inner product is a bilinear
operator that takes two things and returns a number, so that here we see
that it is the integral of the product of two inputs.

2. The Arc Length of a Curve
Let us consider a curve y defined by the parametric equations
x=g(t)andy = f(t) where t € [a, b],
as shown, for instance, in Figure 8-18, and let P = {¢t,, t;, ..., t,} be a
partition of [a,b]. Intuitively, if we regard parameter t as the time
variable, then the curve may be thought of as the path of a moving point
whose position vector at time t is y(t) = (g (1), f(t)).
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Figure 8-18: The arc length of a curve.
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Let P, = [g(ty), f(t,)] be the corresponding points of y, as shown in
Figure 8-18. Then these points define a polygonal line. The sum
n

Lp = Z \/[g(tl-) — gt DI?+ @) = fti_)]?

i=1

is the length of the polygonal line that is defined by the points P,
(corresponding to a partition P); and the finer the partition P, the more the
corresponding polygonal line tends to be identified with the curve y. Now,
let us consider the set L of all the numbers Lp, which correspond to all
possible partitions P of [a, b], symbolically:

L = {Lp|P is a partition of [a, b]}.

If this set L is bounded, then the curve is said to be “rectifiable,” and the
supremum S = L(y) of this set is said to be the length of the curve y.
Moreover, we write S = L2(y) in order to denote the arc length of the
curve that is defined on the interval [a, b].

Notice that, if y is a rectifiable curve on [a, b], and if a < ¢ < b, then
L) = L5 () + L2(y).

Given a curve y defined by the parametric equations

x=g(t)andy = f(t) where t € [a, b],

if the derivatives g’ and f' are continuous on [a, b], then the curve y is
rectifiable on [a, b], and its length is given by

b
s=10) = [ T @F + 7 @F de

where t € [a, b].

If a curve y is defined by y = f(x), where x € [a, b], and if the derivative
f'(x) exists and is continuous on [a, b], then, setting x =t and y = f(t)
in the aforementioned formula, we obtain the following formula:
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b
S =f 1+ [f'(x)]?>dx

where x € [a, b].
If a curve y is defined in polar coordinates r = r(¢), ¢ € [¢4, ¢,], then

P2
s= [ VE@F T @Fd
P1

where ¢ € [@4, @,].

3. The volume of a solid of revolution
As shown in Figure 8-19, in order to obtain a solid of revolution, we start
out with a curve y = f(x) on an interval [a, b], and then we rotate this
curve (360°) about a given axis, so that a volume is generated. In order to
determine the volume of a solid of revolution on the interval [a, b], we

work as follows: we divide the interval [a, b] into n subintervals, each of

which has width Ax = b;na, and then we choose a point &, (where k =

1,2,...,n) from each subinterval. When we want to determine the area
between two curves, we approximate the area by using rectangles on each
subinterval. Understandably, when we want to calculate the volume of a
solid of revolution, we use discs on each subinterval to approximate the
area. The area of the face of each disc is given by A(&,), and the volume
of each disc is given by V,, = A(§,)Ax, where Ax is the thickness of the
disc. Hence, the volume of the corresponding solid of revolution on the
interval [a, b] can be approximated by V = Y.}, A(§,)Ax. Then, its exact
volume is

n b
V=Ilim,,, ) A()Ax = | A(x)dx
2,10,

where a < x < b.

In other words, in this case, the volume is the integral of the cross-
sectional areaA(x) at any x, and x € [a,b]. Given that A =nr?, r =
f(x), and f(x) is a non-negative continuous function from [a, b] to R, the
volume of the solid generated by a region under y = f(x) bounded by the
x-axis and the vertical lines x = a and x = b via revolution about the x-
axis is

V= 1be[f(x)]2 dx

(we take discs with respect to x, and r = y = f(x); dx indicates that the
area is rotated about the x-axis).
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Figure 8-19: A solid of revolution (source: Wikimedia Commons: Author: Pajs;
https://commons.wikimedia.org/wiki/File:Integral _apl rot objemI.svg).

If we rotate a curve about the y-axis, thus obtaining a cross-sectional area
that is a function of y instead of x, then the aforementioned formula
becomes

V= f “aG)dy

where ¢ <y < d. Given that, in this case, A = nr?, and r = f(y), the
volume of the solid generated by a region under x = f(y) bounded by the
y-axis and the horizontal lines y = ¢ and y = d via revolution about the
y-axis is

d
V= ﬂf [f )] dy

(we take discs with respect to y, and r = x = f(y); dy indicates that the
area is rotated about the y-axis).

If we have two curves y; and y, that enclose some area, and we rotate that
area about the x-axis, then the volume of the solid formed is given by

b
V=n f [(7,)2 - ()] dx

a
where y; = f(x), y, = g(x), x € [a, b], and we assume that y, and y,
are continuous on [a, b], and y, = y, over [a, b].
For instance, a sphere of radius r centered at the origin (0,0,0) can be
generated by revolving the upper semicircular disc enclosed between the
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x-axis and x% + y% = r2 about the x-axis. If we revolve the semi-circle

given by

y=f()=Vri-x?
about the x-axis, we obtain a sphere of radius r. A cross-section of the
sphere is a circle with radius f(x) and area m[f (x)]%. If we slice the
sphere vertically into discs, then each disc has infinitesimal thickness dx,
and the volume of each disc is approximately [f (x)]?dx. If we add up
the volumes of the discs, then we obtain the volume of the
sphere—namely:
V= 7tf:|'f(x)]2 dx = nf_rr(rz —x)dx=m (rzx - ?) T = gnr3.
Similarly, the volume of a cone can be calculated as follows: A cone with
base radius r and height h can be formed by rotating a straight line
through the origin (0,0,0) about the x-axis. The slope of the straight line is

tand = %, so that the equation of the line isy = %x, and the limits of

integration are x =0 and x =h . Therefore, the volume of the
corresponding cone is

2 2 3
V= nfoh (%x) dx = %(x?) |h = gm‘zh.
Similarly, the volume of a cylinder with base radius r and height h
(assuming that the plane xOy is the cylinder’s base plane) is V =
T foh r?dx =nr?h,
since the volume of an infinitesimal circular strip of a cylinder having
radius 7 and infinitesimally small height dx is dv = area X height =
nr2dx.
Following the same reasoning, the volume of a pyramid of height h with a
b X b square base can be calculated using integration as follows: If y is the
vertical distance from the top of the pyramid (placed at the origin of the
rectangular coordinate system), then the square cross-sectional area A(y)

2 2
is given by A(y) = (% y) = %yz , and, hence, the volume of this
2
pyramid is given by foh A()dy = Z—Z foh y2dy = gbzh.

4.  The physical significance of the definite integral and basic
applications of integral calculus in mechanics

The development of infinitesimal calculus by Newton and Leibniz is

intimately related to the study of celestial mechanics (and physics in

general) by them. Infinitesimal calculus, also known as the differentiation-

integration method, is concerned with the limits of applicability of

physical laws. The content of a physical law is not absolute, and the
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validity of a law is restricted to the framework of the applicability limits
(i.e., certain conditions). However, a physical law can be expanded by
changing its form beyond the limits of applicability by means of
infinitesimal calculus. This method is based on the following two
principles: (i) the principle that a law can be represented in a differential
form, and (ii) the superposition principle, according to which the quantities
that enter into the law are additive.

Suppose that a physical law has the form

X=YZ, ©)
where X, Y, and Z are physical quantities, and, in particular, Y is a
constant representing the given law’s limits of applicability. We can
generalize the given law to the case where Y is not a constant but a
function of Z, that is, Y = Y(Z), as follows: As shown in Figure 8-20, we
isolate an interval dZ so small that the variation of Z over this interval can
be ignored. Hence, in the interval (“infinitesimal”) dZ , we can
approximately assume that Y is constant, and that the law () is valid in
this interval. Therefore, as shown in Figure 8-20,

dX =Y(2)dz, (*x)
where dX is the variation of X over dZ. Due to the superposition principle,
that is, by summing the quantities (**) over all the intervals of variation of
Z, we obtain an expression for X in the form

X = fZZfY(Z)dZ,

where Z, and Z, are the initial and the final values of Z, respectively, as
shown in Figure 8-20.

Figure 8-20: The method of infinitesimal calculus.
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As a conclusion, the method of infinitesimal calculus consists of two parts:

in the first part of the method, we find the differential (**) of the quantity
under investigation; in the second part of the method, we sum, or
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“integrate,” having properly determined the integration variable and the
limits of integration (in order to determine the integration variable, we
must analyze the quantities on which the differential of the investigated
quantity depends and choose the most important variable; and the limits of
integration are the lower and the upper values of the integration variable).

Eaxample 1: The work done by any force F(x), assuming that F(x) is
continuous, over the rangea < x < b is

W = be(x)dx

(the force is parallel to the displacement). This formula can be proved,
using the method infinitesimal calculus, as follows: We divide the range
[a, b] into n subintervals of width Ax, and, from each of these intervals,
we choose the points &;,¢&,,...,&,. If nis large enough, and given that
F(x) is continuous, the variation of F(x) over the ith interval (i =
1,2, ...,n) can be ignored, and we can assume that, over such an interval,
the force is approximately constant, so that F(x) = F(&;). Thus, the work
on each interval is approximately W; =~ F(§;)Ax, and then the total work
over [a, b] is approximately W = %, W; =XI-, F(§;)4x. If we compute
the limit of this summation as n — oo, then we shall get the exact work
done, namely: W = lim,,_,, 2.7=; F(&;)Ax, which is the definition of the

definite integral, and, hence, W = f; F(x)dx.

Example 2: Using the method of infinitesimal calculus, we can compute
velocity from displacement, acceleration from velocity, displacement from
velocity, and velocity from acceleration: Since, as I have already
mentioned, the time derivative of the velocity function v(t) is acceleration
a(t), that is,
dv(t)
— = a(®),
we can integrate both sides to obtain
[29 gt = [a()dt +c,,

dt
where c; is a constant of integration. Since fdi;—(:)dt = v(t), velocity is
given by
v(t) = [a(t)dt + c;.
Additionally, as I have already mentioned, the time derivative of the
position function s(t) is the velocity function,

ds(t) _
2 v(t),
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and, similarly, by integrating both sides, we obtain the displacement
function

s) = [v(t) dt + c,,

where c, is another constant of integration.

Using these integrals, we can derive the three fundamental kinematic
equations for a constant acceleration a(t) = a as follows: Since

a= Z—: S dv = adt,
integrating both sides with proper limits, we obtain
fIZ)dv = fotadt =sv|) =atlf=>v—v, =a(t—0)=>v=1v,+at, (1)
where v, denotes initial velocity, v denotes final velocity, t = 0 denotes
initial time, and t denotes final time. Moreover,
das

v=— ds = vdt,
and, similarly, integrating both sides with proper limits, and using
equation (1), we obtain

s t t t
fs@ ds = [Jvdt =53 = [ (v + at)dt = 5|3 = [ vodt +

2
fotatdt = 5|5, = votlh +a%|6 =5 -5, =1,(t—0) +§(t2 -0),

which ultimately yields

s :so+v0t+§t2, )
where s, denotes initial position, and s denotes final position. We can also
write

— v _dvds
Tdt dsdt
and, similarly, integrating both sides with proper limits, we obtain

dv
a=v—o vdv = ads,
S

v s v?
va vdv = st ads = — 3, = asl§,,
which ultimately yields
v?2 =v¢ + 2a(s — sp). 3)
The aforementioned kinematic equations refer to an object moving
horizontally. Notice that, in case of strictly vertical motion, the only
difference is that the acceleration will be the acceleration due to the
Earth’s gravity (i.e., ® —9.8m/sec?). In case of projectile motion,
however, we deal with objects moving in both directions (i.e., moving
along a curved path under the influence of gravity). For instance, consider
a cannonball that is fired at some angle from the horizontal: it will travel
some distance up into the air before eventually falling back down and
hitting the ground, a distance away from the cannon. The path of this
object (projectile) can be represented by a parabola. In projectile motion,
the horizontal motion and the vertical motion are independent of each
other, and, therefore, we use separate equations in order to study motion in



341

each direction (one equation that corresponds to the x-coordinate of the
object, and one equation that corresponds to the y-coordinate of the
object). The time a projectile spends in the air relates only to its y-
direction behavior, whereas the distance it travels from its initial position
to its final position on the ground depends only on its x-direction behavior
(horizontal velocity). Thus, in projectile motion, we use the above
equations (equations (1), (2), and (3)), but we split up the velocity vector ¥
into x and y components, i.e., ¥, and 13y (the initial launch angle can be
anywhere between 0 and 90 degrees). Notice that, in projectile motion, the
horizontal velocity will be the same at every moment in the corresponding
trajectory (as long as we ignore wind resistance), whereas the vertical
velocity will be the greatest at the moment the projectile is launched, and
then it will be decreasing until it reaches zero at the zenith, after which it
will become increasingly negative until it hits the ground (since there is a
constant acceleration in the negative direction due to gravity); and, of
course, the angle at which the object is launched affects the range, the
height, and the time of flight it will experience while in projectile motion.

Example 3: We shall use the method of infinitesimal calculus in order to
find the “center of mass” or “centroid” of a thin plate with uniform density
p. Given a homogeneous region, its center of mass is the average position
of all the parts of the given system weighted according to their masses. An
object with mass m and volume V has density p = % Hence, given an
object of constant cross-sectional area whose mass is distributed along a
signle axis according to the function p(x) (whose units are units of mass

per unit of length), the total mass, M, of the given object between x = a
andx = b is givenby M = f: p(x)dx.

Assume that the plate under consideration is a region bounded by the
curves f(x) and g(x) on the interval [a, b]. In order to find its center of
mass, we work as follows: Firstly, we find the “total mass” of the plate,
using the following formula:

b
M = p X area of the plate = pf [f(x) — g(x)]dx

(without loss of generality, we assume that the curve f(x) is above the
curve g(x)). Secondly, we find the two “moments” of the region, namely,
M, and M,,, which measure the tendency of the region to rotate about the
x-axis and the y-axis, respectively. The two moments are given by:

b1
Me=p [ FU@P - [g@Pax
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and

b
My =p [ *1fG0 - 9] dx

a
(note: in its most basic form, Moment = Force X Distance, meaning
that the magnitude of the moment of a force acting about a point or an axis
is directly proportional to the distance of the force from the point or the
axis, and it measures the tendency of a force to cause a body to rotate
about a specific point or axis). Thirdly, we find the coordinates of the
“center of mass” (X, ¥) by using the following formulae:

X =

|

and
y =
M, M,, and M,, are defined as bove, that is: M = pfab[f(x) —g()]dx
My =p J, S COI = [90013dx, and My = p [ x[f () — g(0)] dx.

Hence, we can write:

x|=

F=r f x[fG0) — g0O)]dx

and

1 .
y‘Ef (FCOT2 - [9 0012 dx

where

b
=fvwrg@mu

(the center of mass helps us to analyze how objects move and interact; for
instance: when we are going to lift something with a crane, we have to
center the lifting cable over the center of mass, or the center of mass of the
load plus the counterweights must be within the crane’s stabilizing struts,
since otherwise the object will shift and tumble when we lift it, and it
might fall, or the crane itself will tip over; the center of mass plays a
critical role in designing cars in order to make sure that they have control
and stability in dangerous conditions; and an airplane must be balanced
around its its designed center of mass, since otherwise it may not fly
correctly or may not fly at all).

5. Basic applications of integral calculus in the social sciences
In economics, the integral shows how to find total revenue, TR, from
marginal revenue, MR, and how to find total cost, TC, from marginal cost,
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MC. Since, MR can be defined as the derivative of TR with respect to
quanty Q sold, that is,

MR = 2%

daqQ

it follows that, if we know the marginal revenue function MR (Q), the total
revenue is

TR(Q) = [ MR(Q)dQ.

Similarly, since MC can be defined as the derivative of TC with respect to

quanty Q produced, that is,
drc

MC =—

dQ’
it follows that, if we know the marginal cost function MC(Q), the total
cost is
TC(Q) = [ MC(Q)dQ.
Moreover, if I(t) denotes the rate of investment (where t denotes time),
then the total accumulation of capital K during the time interval [t;, t,] is

given by the formula

K= f tz[(t)dt

1
(the business investment rate is defined as gross investment (gross fixed

capital formation) divided by gross value added of non-financial
corporations, and, thus, this ratio relates the investment of non-financial
businesses in fixed assets (e.g., buildings, machinery, etc.) to the value
added created during the production process).

Approximate integration: When the integrand f(x) is known only at
certain points (e.g., those obtained by sampling), or when a formula for the
integrand is known but it is difficult or impossible to find an antiderivative
that is an elementary function, we may use numerical methods of
integration—that is, approximate formulae for definite integrals. The
simplest approximate formula for definite integrals is

b
[, f@dx =< (b - )f (@) + F(B)],
which is exact when f(x) is linear. However, a much better approximate
formula for definite integrals is

a+b

[ FGodx =2 (b - a) [f(@) +4f (Z2) + £ ).

which is known as “Simpson’s Rule,” named after the eighteenth-century
British mathematician Thomas Simpson, who formulated it. Before him,
however, Johannes Kepler had already used similar formulae. For this
reason, “Simpson’s Rule” is sometimes called “Kepler’s Rule.” Simpson’s
Rule derives from the observation that, if p(x) = Ax2 + Bx + C, then
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a+b
2

b b-
[2 o) dx = =2 [p(a) + 4p
approximate any integral f: f(x)dx, where f is an arbitrary function, and
not necessarily a quadratic polynomial (i.e., a parabola).

)+p(b)], and it is used in order to

Generalized integrals: A “generalized integral” (also known as an
“improper integral”) is an integral with one or more infinite limits of
integration and/or discontinuous integrands (specifically, integrands with
vertical asymptotes).
First Case:f is discontinuous at some points or at one point in the closed
interval of integration [a, b] C R.
i. If f(x) is discontinuous at x = x,, that is, if f(x,) — o (and,
thus, f has a vertical asymptote at this point), and a < x, < b,
then

2 foodx = limgo [2°7° FO0)dx + lim, fxb0+s £ (x)dx.

ii. If f(x) is discontinuous at x = x, = b, that is, if f (b) — oo, then
ff f(x)dx = lim,_, f:_g f(x)dx, or, equivalently,
[y feOdx = limy .y [} f()x.

iii. If f(x) is discontinuous at x = x, = a, that is, if f(a) — o, then
ff f(x)dx = lim,_, f;g f(x)dx, or, equivalently,
L2 f(odx = limy_ g+ [ f(x)dx.

For instance, in fon \/%, the integrand is discontinuous at x = n, and,

therefore,
n dx _ ;. n-e& dx _ 4. . X n—g _
I e lim,_, [, = lim_oarcsin= |57 =

li . n—& .O_l. . N—& inl =
Mg, arcsmT—arcsm; = Lms_)oarcsmT—arcsm =

SR

Second Case: the interval of integration is infinite, that is, (—oo,b],
[al +OO)7 or (_ooi _OO)
i. If f(x) is continuous on (a, b) where b = +oo, then

7 f(0dx = limy, [ f(x)dx.

ii. If f(x) is continuous on (a, b) where a = —oo, then
b , b
I, fG)dx = limy,_, [ f(x)dx.
iii. If f(x) is continuous on (a, b) where a = —oo and b = 4o, then

JZ fGdx = limye o [ FOOdx + Limy, ., fzfz F(x)dx, where p
is any number; in other words, fjooo f(x)dx = f_pw f(x)dx +
fpw f(x)dx.
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For instance,

[ S = Uiy, [} 2 = limyey (=) ¥ = limysoo (1-3) = 1.

Integration of Multivariable Functions

We can integrate functions of several variables as follows: suppose that
the domain of a bivariate function is the Cartesian product of two closed
intervals—that is, a rectangle—say

R=[ab]x[c,d]={(x,y) ER}|la<x<bhc<y<d}

If R =[a,b] X [c,d], whenever the integrand is f(x,y), we have to
integrate over two variables, x and y, so that, for each variable, we have
an integration sign. In order to indicate the variables involved, we have dx
and dy, symbolically:

[l fGey) dxdy = [7 ] f (x,y)dxdy,

where f(x,y) is an integrable function of two real variables. In this case,
we compute the innermost integral first, and then we work our way
outward. In particular, we compute the dx integral inside first, while
treating y as a constant, and then we integrate the result over y as we
would do with any variable. One interpretation of the double integral of
f(x,y) over the rectangle R is the volume under the function (surface)
f(x,y) and above the xy-plane.

For instance, foz f01 x?y?dxdy can be calculated as follows: We focus on

the inner integral first: foz [f; xzyzdx] dy; and, treating y as a constant,

3,2
we integrate normally for x2dx , thus obtaining foz [%ﬁ] dy =

foz [13: - 03:2] dy = foz [g] dy . Now, we are left with an ordinary

2 3 3 3 3
definite  integral: fzy—dy =X Xz X g . Therefore,

4 G 03 3310 " 79 9 9
2,2 —
fo fo x2y?dxdy =5
Recall that ordinary integration, such as f; f(x)dx, gives us the area

under the curve y = f(x), above the x-axis, and between the lines x = a
and x = b; that’s when f is a positive function (when f also takes
negative values, we get a signed area). Double integration, such as

fcd f; f(x,y)dxdy, gives us the volume under the surface z = f(x,y),

above the xy-plane, and above the region described by the limits of
integration (thus, we refer to this volume as the “volume under the
surface”). The limits of integration in case of
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fa ' L bf (x, y)dxdy

indicate that the corresponding region is the rectangle consisting of the
points (x,y) such thata < x < b and ¢ <y < d; and the fact that dx is
written before dy means that the function f(x,y) is firstly integrated with
respect to x (using the “inner” limits of integration a and b) and then the
resulting function is integrated with respect to y (using the “outer” limits
of integration ¢ and d).

Double integrals can be used in order to compute areas, too. Recall that, if
a region R is bounded from below by the curve y = h;(x) and bounded
from above by the curve y = h,(x), and if a < x < b, then the area of R
is given by

A= [Ty ()~ (0] dx.

However, we can obtain the same result using double integrals as follows:

b rhy(x)
= f f dydx
hq(x)
(which gives the area of the same region R), since f f
f2 (12 de = [ Tho(0) = by ()] .

Therefore, the area A of a plane region R = {(x,y) E R?|a < x <
b,hi(x) <y < h,(x)} is given by

= ffRdydx = fab fh’::)dy dx = Lb[h2 (x) — hy(x)] dx

(i.e., R lies between two vertical lines and the graphs of two continuous
functions h, (x) and h,(x)).
Example 1: We can use double integrals in order to calculate the area

hz(x) dydx =

between the curves y = %xz (which is a parabola that opens upward) and

y = 3x — x? (which is a parabola that opens downward) as follows:

Firstly, we have to find where these two curves meet by solving %xz =
2

3x—x2:§x2 =3x$x7:x:>x2—2x=0:x(x—2)=0$

(x = 0 or x = 2). Therefore, these two curves meet at x = 0 and at x =

2; and the given region (which is enclosed by these two curves) is
bounded from above by y = 3x — x2 and bounded from below by y =

3 x2. Then the area of this region is given by

A= fy 2 dydax = [ (y|y Sxox )dx=f02(3x—x2—

—x2) dx = fo (3x —Exz) dx = (ﬁ—ix ) |3 = 2 square units.

2 23
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Example 2: Now, we shall use double integrals in order to find the volume
between the xy-plane and z = 6 — 3x — 2y (i.e., z is the height function)

above

the wunit square R={(x,y)[0<x<10<y<1} : V=

1,01 ot 1. 7 . .
Iy J, (6 =3x = 2y)dydx = [ [6y — 3xy — y*] |sdx = > cubic units.

In summary, it is important to understand and keep in mind the following:

f; dx represents length, specifically, b — a (one could say that

f; dx is the area under the curve f(x) = 1 over the region of
integration [a, b]).

f; f(x) dx represents area, specifically, it is the area of a
curvilinear trapezoid bounded by the straight linesy = 0, x = a,

and x = b and by the graph of the function y = f(x), assuming
that f (x) is continuous and non-negative on the interval [a, b].

fcd fab dxdy represents area associated with the region of
integration [a, b] X [c, d].

fcd fab f(x,y)dxdy represents the (three-dimensional) volume
under the surface z = f(x,y), above the xy-plane, and above the
region described by the limits of integration, in the three-
dimensional space (we assume that f(x,y) is continuous and
non-negative on the region of integration). Remark: For a
function f(x, y) that is continuous over a region of the type R =

{(x,y) ER?*la<x<bh(x)<y<h,(x)} , we have

. f(x,y)dydx = f: f:l 2(55)) f(x,y)dy dx. For a function f(x,y)

that is continuous over a region of the type R = {(x,y) € R?|c <
y<dh(@)<x<h,(y)} , we have [[ f(x,y)dxdy=
fcd I :1 Z(S/)) f(x,y) dxdy.

fkl de f: dxdydz  represents  (three-dimensional)  volume
associated with the region of integration [a, b] X [c,d] X [k, (], in
the three dimensions (x,y,z). For instance, the volume of the
tetrahedron bounded by the planes x = 0,y = 0, and z = 0, and
by the equation x +y +z =1 can be calculated using triple
integrals as follows: In this case, the limits of integration can be
determined as follows: (i) limits forz:x+y+z=1=z=1-
x — y, and, therefore, z varies from 0 to 1 — x — y; (ii) limits for
y:x+y=1=>y=1-x, and, therefore, y varies from O to
1 — x; (iii) limits for x: x varies from O to 1. Hence, the required
volume is given by
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V= f f f dzdydx
K 1 pl—x pl-x-y
=f f f dzdydx
0 J0 0

B f f ) dya
folfol (1= x— y) dydx
- | 1 [(1 —DOI) - (y )] dx
- a0 -5

fl(l 4 1
. 2 P76

fkl de f: f(x,y,2)dxdydz represents the four-dimensional

(in cubic units).

hypervolume under the hypersurface t = f(x,y,z), above the
xyz -space, and above the region described by the limits of
integration, in the four dimensions (x,y,z,t) (we assume that
f(x,y,2z) is continuous and non-negative on the region of
integration). For instance, in order to understand the physical
significance of this triple integral, consider the following:
J [ J.p(x,y,2)dxdydz is the total mass of a region R in space,
where p is the density (i.e., mass per unit volume), which may
vary from one point to another (R is the region occupied by the
solid under consideration).

Of course, the area, the volume, and the hypervolume are usually taken to
be signed, so that parts below the axis, or the plane, or the space,
respectively, are negative, and those above are positive (however,
integrating the absolute value of the function gives the unsigned
corresponding quantity).

The order in which we do the integrations does not matter, provided that
we keep track of the limits of integration of each variable. For instance, in

the double integral fcd ff f(x,y)dxdy , dx is associated with the x

integrand, which runs from a to b, while dy is associated with the y
integrand, which runs from c to d, and, therefore,

fa ' f  f e y)dxdy = f ' f e y)dydx
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(meaning that the limits of integration of each integrand remain the same).
This result is known as Fubini’s Theorem: given that a definite double
integral can be thought of as a process of adding up all the infinitesimal
elements of a Cartesian area dxdy (imagine little rectangles) over the
required region, thus obtaining the area of that region, the equality
between the aforementioned two iterated integrals (i.e., Fubini’s Theorem)
can be thought of as an infinite version of the idea that addition is
commutative and associative. By analogy, Fubini’s Theorem applies to
triple integrals, etc.

Increasing the number of integrals in the context of multiple integration is
the same as increasing the number of dimensions, so that a single integral
gives a two-dimensional area, a double integral gives a three-dimensional
volume, a triple-integral gives a four-dimensional hypervolume, etc. In
general, the multiple integral of a function f (x4, ..., x,) in n variables over
a domain U is represented by n nested integral signs in the reverse order of
computation (in the sense that the leftmost integral is computed last),
followed by the function and the integrand arguments in such an order that
indicates that the integral with respect to the rightmost argument is
computed last; and the domain of integration is either represented
symbolically for every argument over each integral sign or it is indicated
by a characteristic letter (variable) at the rightmost integral sign:

v | f(xg, e, x)d xq . dxy,
U

(%4, .., xp, € U). We take for granted the obvious generalizations of the
theorems of integration to two or more variables.

Line integrals: Let C be a continuous curve. Then C is said to be
“piecewise smooth” if it is a finite union of smooth curves. Curves are said
to be “smooth” if they have no corners, or cusps, associated with them. In
general, the “smoothness” of a function is a property measured by the
number of continuous derivatives that a function has over its domain (e.g.,
a function is said to be of “differentiability class” C¥ if it has a kth
derivative that is continuous over its domain, and then it is also said to be
of smoothness at least k).

A “line integral” (or “path integral,” or “curve integral”) helps us to
calculate the area of a fence that lies above a piecewise smooth curve C
and under the graph of a continuous non-negative function f(x,y). In
general, by a “line integral,” we mean an integral where the function to be
integrated is evaluated along a curve.

For instance, suppose that it has snowed, and there are snowbanks; at some
spots, the snow is higher, and, at some other spots, the snow is less high.
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You want to walk out into the snow shoveling as you move. The question
is the following: how much snow do you have to actually shovel when you
go out and walk? The answer to this question depends on the path you take
(in particular, it depends on the length of the route you take and on the
concentration of snow at various points along the route). The concept of a
line integral captures this notion of snow accumulation along a path
(simply put, we have some path and a function that gives us the “height”
of snow above every point along that curve).

When the function to be integrated is a scalar field, the value of the line
integral is the sum of values of the field at all points on the curve,
weighted by some scalar function on the curve, commonly arc length.
Thus, line integrals generalize definite integrals.

The line integral with respect to the arc length of a continuous function
f(x,y) along a piecewise smooth curve whose parametric expression is
c(t) = (x(t),y(t)), where a < t < b, is defined to be

[renas= [ 16wy [(G) +(2) a

where ds represents an element of arc length along the curve (notice that,
if we set f(x,y) = 1, then we obtain the formula for the calculation of the
length of the curve c). Line integrals do not depend on the parametrization,
as long as the curve is traversed once (counter-clockwise).

For instance, in order to compute the line integral fc xy?ds where c is the
right half of a circle with radius 2, that is, of the circle x2 +y% =4
(traversed once counter-clockwise), we work as follows: Firstly, we
parametrize c, and, thus, we set

c(t) = (2cost, 2sint), that is,

x = 2cost and y = sint,

so that

dx

ds = (E)z + (dt) dt = \/( 2sint)? + (2cost)?dt = 2dt.

Since t here represents the angle, and we have the right-hand side of the
circle, our t will go from —mt/2 to + /2, thatis, —m/2 <t <m/2.

Now, we are ready to make the corresponding substitutions in the line
integral:

fxyzds = fz 2cost(2sint)?2dt = 8[2 sin? tcostdt
c _n

2
which can be calculated by setting u = sint and du = costdt, thus
obtaining



351

n 3 I n
u 8 . 8 . T . T
8 [Zutdu =8—|*, = =sin’t|*, = —[sm3 (—) — sin3 (—5)] =
— 3 -2 3 I3 2

2
2 [sin® (5) +sim* ()] =3 @ =%
By analogy, the line integral with respect to the arc length of a continuous
y 2y g P

function f(x,y,z) along a piecewise smooth curve whose parametric
expression is c(t) = (x(t),y(t),z(t)), where a < t < b, is defined to be

2

[t = [ 1x0,y0,0) (22) +(2) + (&) a

etc.

Surface integrals: Recall that, whereas a curve in R3 is a set of points
having an one-dimensional character, a surface is a set of points such that
each point has two degrees of freedom. Moreover, a surface S can be
represented in the following ways:

i. Explicit representation: S is the set of points {(x, y, z)} such that

z = f(x,y) for a smooth function f with domain U,,, in R?

ory = g(x, z) for a smooth function g with domain V,, in R?

or x = h(y, z) for a smooth function h with domain W, in R?.

il.  Implicit  representation: S is the set of  points
{(x,y,z) such that F(x,y,z) = 0} where F is a smooth function on a
domain D in R3.

iii. Parametric representation: S is the set of points {(x, y, z)} such that

x =x(s,t)
y=y(st)
z=1z(s,t)

where a <s<b,c<t<d, and the terms x, y, and z are smooth
functions on the rectangle [a, b] X [c, d].

Surface integrals generalize double integrals to integrating over a surface
that lies in an n-dimensional space. The double integral of a function of
two real variables over a region D in R? is written as ffD f(x,y)dA or
ffD f(x,y)dxdy, and these integrals can be evaluated as iterated single
integrals, but we need a generalization similar to how line integrals
generalize definite integrals. This need is satisfied by the concept of a
surface integral. Whereas double integrals work when the region of
integration is on a plane and, therefore, flat, surface integrals also work
when the region of integration is not flat and, therefore, does not sit on a
plane (in case of surface integrals, the region over which we integrate is an
arbitrary smooth surface).



352

Recall that the concept of a line integral means that we integrate over a
curve that has a range of movement in, for example, two dimensions, and,
thus, our input curve being in two dimensions (i.e., parametrically defined
by (x(t),y(t))), we compute the surface area of something that looks like
a fence or a curtain as it moves through three dimensions. However, in
case of a surface integral, our surface is already a three-dimensional shape,
and, thus, if we want to represent the function evaluated at some point on
this shape, which exists in three dimensions, we require a fourth
dimension in order to represent the corresponding “height.” The “surface
integral” of a scalar field (in this case, a function of three real variables) is

written as follows:
ffF(x,y,z) as
s

where S is the surface over which the integral is evaluated, and dS is an
element of S. This surface integral (i.e., the integral of a smooth scalar
field F (x, y, z) over a smooth surface S) can be calculated as follows:

f.LF(x, y,z)dS = ffuxyF(x, y, f(x, y)) \/(Z—i)z + (Z—i)z + ldxdy

in case the surface S is given by z = f(x, y);

fLF(x,y,z) as = ffVXZF(x,g(x, 7),7) \/(g—z)z + (g—‘z)z + ldxdz

in case the surface S is given by y = g(x, 2);

2

ffF(x y,z)dS = ffw F(h(y,2),y,7) \/(ah) (Z—Z) + 1dydz

in case the surface S is given by x = h(y,z). Notice that, if we set
F(x,y,z) = 1, then the surface integral yields the exact surface area of S,

2 P
that is: foXy \/ (Z—i) + (2—5) + 1dxdy is the surface area of the surface

az
surface area of the surface y = g(x,z) over the region V,, , and

z = f(x,y) over the region Uy, [ [ Ves \/ 6_g + 1dxdz is the

ah . _
fnyz \/ 5 + 1dydz is the surface area of the surface x =

h(y, z) over the region W,,, .

Numerical approximations of multiple integrals: Frequently, when we
have to integrate multivariable functions, we cannot calculate multiple
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integrals exactly, and, therefore, we approximate their values by applying
numerical methods, which are based on the concept of the average value
of a function. By analogy with single variable calculus, the “average
value” of a bivariate function f (x, y) over a region R is

f=ﬁfﬁf(x.y)dfl

where A(R) is the area of the region R; and, thus,
| [reda=fa)
R

where f over the region R represents the sum of all the values of f(x,y)
divided by the number of points in R, and, because there are infinitely
many points in every region, we need an approximation method that will
be based on determining a very large number N of random points in the
region R (which can be generated by a computer), calculating the average
value of f for those points, and using that average value as the value of f
in the above formula. This is the so-called Monte Carlo method. Hence,
we obtain the following approximation formula:

| f fxy) dA ~ AR + AR) |- (f)

where
f — W
and

(the sums are taken over N random points (x, ¥;), ..., (Xy, Yn), and the +
“error term” in the above approximation formula represents a single
standard deviation from the expected value of the integral).

Similarly, the average value of a trivariate function f(x,y, z) over a solid

Sis
ey | [ [reyaav
=— X,z
ve) ) I
where dV is the volume of the solid S; etc.

Differentiation and Integration of Vector-Valued
Functions
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When a function takes a real number and sends it to a vector, then it is said
to be a vector-valued function. In the real plane, or in the xy-plane, the
general form of a vector-valued function is the following:

() = fOi+ g(0)]; (M
and, in the real 3-dimensional space, or in the xyz-space, the general form
of a vector-valued function is the following:

() = f(O)i+ g(6)f + h(D)k; 2)
where the component functions f, g, and h are real-valued functions of the
parameter t, and 1, f, and k are the corresponding unit vectors on the x-
axis, the y-axis, and the z-axis, respectively. The standard unit vectors in
the direction of the x, the y, and the z axes of a 3-dimensional Cartesian
coordinate system are

1 0 /0
i= (O),f = (1), and k = (O)
0 0 1

The “limit” of a vector-valued function 7(t) is L as t tends to a ,
symbolically:
lim,_,7(t) = L

if and only if

lim,_4||7(t) — L|| = 0.
Therefore, (1) implies that
limt—m?(t) = [limtaaf(t)]i + [limt—mg(t)]ja
and (2) implies that
limt—m?(t) = [limtaaf(t)]i + [limt—mg(t)]j + [limtaah(t)]ka
provided that the limits of the component functions f, g, and hast = a
exist. Similarly, we can define the limit of a vector-valued function of n
component functions for n > 3.
A vector-valued function #(t), where t € [a, b], is said to be “continuous”
at a point t, € [a, b] if and only if lim,_, 7(t) = 7(t,); and 7(t) is said to
be continuous on [a, b] if and only if it is continuous at every point of
[a, b].
The derivative of a vector-valued function 7(t), where t € [a,b], is

defined as follows:

— o _drt) 7(t + At) — 7(t)

T =g = Lmjf*" At
provided that the limit exists. If r'(t) exists, then 7(t) is said to be
differentiable at t. If P(t) exists Vt € (a,b), then #(t) is said to be
differentiable on the interval (a, b). In order for #(t) to be differentiable
on [a,b], 7#(t) must be differentiable on the interval (a,b), and the
following two limits must exist as well:
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(@) = limy, g+ "2 g
— T 7(b+4t)-7(b)
r'(b) = limye o~ —

Consequently, (1) implies that
r(©) = O +g' (O],
and (2) implies that
() = f'©O1 +g' O + K Ok,
where i, f, and k are the unit vectors for the x-axis, the y-axis, and the z-
axis, respectively.
The properties of the derivative of a vector-valued function are analogous
to those of the derivative of a scalar-valued function.
If C is a smooth curve represented by the vector-valued function 7(t) on
some interval I, then the “unit tangent vector” ?(t) at t can be found by
taking the derivative of 7#(t) and then normalizing it (i.e., we divide it by
its magnitude in order to become a unit vector); symbolically:
!
o) = L
[l
(i.e., the normalized derivative; and, in physical terms, this is the
normalized velocity vector). Notice that the smoothness of the curve C
guarantees that F(t) 0.
In general, the equation of the tangent line to a curve C at the point #(¢,)
is given by the formula
R =#(ty) + kr'(t,), where k € R.
The angle of intersection between two curves is the angle of intersection
between their tangent vectors. Hence, given two curves C; and C,
represented by the vector-valued functions #(u) and S(v), respectively,
the angle of intersection between them at the point that corresponds to the
parameter values u, and v, is given by the formula

77>(uo) ) ?(Uo)

|7 (uo) |5 (vo)]

CoOSw =

(w is the required angle).

A vector-valued function #(t) is perpendicular to its derivative F(t) if
and only if the magnitude of #(t) is constant; symbolically:

I7(®)|l = constant
(intuitively, the magnitude of a vector in space with tail at the origin and
head moving changes if and only if the direction of its motion is not
orthogonal to itself). Indeed, notice that a vector of constant magnitude is
orthogonal to its derivative because 7(t) - 7(t) = |[|#(t)]|? = ¢ for some
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constant vector ¢ independent of t, and, therefore, differentiating with
respect to ¢, we obtain 27(t) - 7 (t) = 0.

A vector-valued function 7(t) # 0 has a “constant direction” if and only
if the cross product

t —

7(t) x ( ) =0
(i.e., if and only if #(t) is parallel to 1ts derivative). We can prove this
theorem as follows: Let # be the unit vector in the direction of vector 7.
Then, by the definition of a unit vector, # = ||#||#, where 7 has a constant

direction, and so 7 has also a constant direction. Thus,
d# dr d||17|| d? ( dr d||?|| A)

=t =>—= — =7 X —
7l = = = IFll = + = == x (Il + =

=WWxnni wm
dt
T X

L2 dF qﬂw
= I x —+ II7|

—

ar
a SN2
r=|rl|*F xX—+0
(171l T

dt
since 7 X # = 0. This means that

L df 17127 dar
X — = ||F||*F X —
dt dt
and, since 7 also has a constant direction,

ar
dt
we obtain
L df d
X —=
err
as required (therefore the condition is necessary). Conversely, suppose:
( )3 d df
r(t) X X — =0= X —=0
7(t) = |I7lI# T (17117 717 x (17l T

~ 2~

I (7 x ) = 0= #x =0
S|P (fx—)]=0=>Ffx—=
dt dt
since ||7]|> # 0. Moreover, since # is a unit vector of constant length,
_dar
Fo—=
dt . . .
(i.e., this dot product is equal to zero, as we explained in the previous
theorem). Hence, we have:

. ar G=p dr dar g
FX—=0=f—=—=
dt dt dt
which implies that the unit vector # is of constant direction, and, therefore,

the vector #* (where 7 = ||#||#) is also of constant direction, as required
(therefore, the condition is sufficient); quod erat demonstrandum.
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Recall that
T -T® = |7
(here T(t) is a unit vector, namely, the unit tangent vector, as above, but
this formula holds in general), and, since T(t) is a unit vector, its
magnitude, namely, ||?(t)||, is equal to 1, and, therefore, ||?(t)||2 =1.
Therefore, T(t) -T(t) = constant, and then, as I have already proved,
T(t) -F(t) =0. As I have already mentioned, when the dot product of
any two vectors is equal to zero, these vectors are perpendicular (or
orthogonal) to each other (Chapter 7). In this case, ?(t) 1 F(t) (where
the symbol L means “perpendicular”). If we normalize this F(t), then we
obtain the “principal unit normal vector”:
) =
1Tl
(where T(t) is the unit tangent vector T(t) at t on the smooth curve C
represented by the vector-valued function #(t) on some interval I). Notice
that the principal unit normal vector points in the direction in which the
curve is curving, as shown, for instance, in Figure 8-21. Once you know a
tangent vector (a, b), there are two obvious vectors that are normal (i.e.,
perpendicular) to (a, b), namely, (b, —a) and (—b, a); so that, if you pick
the one that points in the direction in which the curve is curving and you
divide it by its magnitude (norm), then you have the principal unit normal
vector.
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Figure 8-21: The unit tangent vector and the principal unit normal vector (source:
Wikimedia Commons: Author: https://math.libretexts.org;
https://commons.wikimedia.org/wiki/File: Curvatura_PQR.png).

Let f, g, and h be integrable real-valued functions on [a, b]. Then (1)
implies that the indefinite integral of a vector-valued function 7(t) =
fOI+g)] is

[IF @t +g(Of dt = [[ f@©)de]i + [f g©)del],

and the definite integral of a vector-valued function 7(t) = f(¢)i + g(t)]
is

LIF®1+ g®lde = [f, Feyde|t+[f] g(®ae] .

By analogy, (2) implies that

[[f®t+ g(®©)f + h(Dk] dt = [[ f(&)dt]i + [[ g(©)dtlf + [f h(t)dt]k,
and

J2IF @1 + () + h(OR]de = [ f©de] i + [ [ g(@yde]j +
[ I h(t)dt] k.

The properties of the integral of a vector-valued function are analogous to
those of the integral of a scalar-valued function.

Differential operators and their applications in physics: Let us consider a
function f(x,y); f depends on both x and y, and its graph is a surface in
space. Then, in order to interpret and compute the rate of change of
f(x,y), we find the rate of change of f(x,y) in a specific direction
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independently. If we want the rate of change in the x-direction, then we
differentiate f(x,y) with respect to x while treating y as a constant. In

other words, we compute the partial derivative %. Similarly, if we

want the rate of change in the y-direction, then we differentiate f(x,y)
with respect to y while treating x as a constant. In other words, we

compute the partial derivative B%J;y). The “gradient” of f(x,y) is denoted

by Vf, and it is a concept that combines the aforementioned two partial
derivatives; specifically, the gradient of f(x,y) is a vector consisting of
both partial derivatives of f in their associated positions, symbolically:

gradf = Vf = afé’;' Dy afé"’ 2;

(where { is the unit vector in the x-direction, and j is the unit vector in the
y -direction). By analogy, we can define the gradient of a function
f(x,y,2), etc. If you draw a little disc on the surface at the point you want
to find the gradient, then the axis of the disc is normal (i.e., perpendicular)
to the plane of the disc, and, therefore, it is also normal to the
corresponding surface; and, in fact, the axis of the disc is said to be the
gradient vector of the corresponding surface at the given point. Therefore,
the “outward unit normal vector” to a given surface defined by a function
f ata given point P (on this surface) is
vi(P)
vl

(i.e., we normalize the gradient at P in order to turn it into a unit vector).
In general, a normal vector is a vector that points directly away from the
corresponding plane, and, thus, if we know the normal vector, we know
the orientation of the corresponding plane. If we have a normal vector 71
emanating from a fixed point Py(x,, ¥y, Zo) On a plane, then there exists a
vector that emanates from the same point P, (x,, ¥, Z,) and terminates at
another point P(x, y, z) lying in this plane. Obviously, the normal vector 71

is orthogonal to the vector PO—[-; (for any terminal point P(x, y, z), since 71
is orthogonal to every vector that lives in this plane), and, therefore, their
dot product is equal to zero. Consequently, in vector notation, the formula
of a plane, in general, can be written as follows:

ii-PoP =0,

that is, by setting the dot product between the normal vector 7 and the
generic vector PO—[-; that lies in the plane (and emanates from the point
Py(x4,¥0,2,) and terminates at the point P(x,y,z)) equal to zero (see
Figure 8-22). Furthermore, normal vectors help us to find the equations of
tangent planes to surfaces at given points, as shown in Figure 8-22.
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If the components of the normal vector are a, b, and c, that is, if 1 =
(a, b, c), then we can expand the aforementioned formula of a plane as
follows:

a(x —xo) + b(y —yo) + ¢c(z —2) =0,

and we make the simplifying assumption that ¢ = —1, so that we obtain
a(x —xo) + b(y —yo) + 2o = z,

which is a linear function z = z(x,y), where z represents “height” and
depends on x and y in a linear way.

Figure 8-22: Tangent plane to a surface at a point (source: Wikimedia Commons:

Author: A2569875;
https://commons.wikimedia.org/wiki/File:Vertex_tangent, bitangent_and_normal _

vector.svg).

TxM

y(t)

We can use the gradient vector for a function in order to find the tangent

plane equation for the function at a particular point. If we have a function

in two variables and the gradient vector is Vf(x,y) = <Z_£'Z_3fz)’ where
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(x,y) denotes the point in which we are interested, and if the result of
evaluating the gradient vector at the point (x, y) is
Vf(x,y) = {a,b),
then a and b represent the slope of the original function f in the x and the
y directions, respectively. Hence, the equation of the tangent plane at a
particular point P(x,,y,) can be found by substituting the corresponding
values a and b together with the point P(x,,y,) into the equation of the
tangent plane
a(x —xo) +b(y —yo) = (z2—2) =0
where a and b come from Vf (x,y) = (a, b), x, and y, are the coordinates
of the given point P, and z, is obtained by substituting P(x,,y,) into
f(x,y). In other words, the equation of the tangent plane to the surface
z= fa(x, y) at the point (xo,go,f(xo,yo)) is
Xo, Xo,
T g+ LEE (4 y) =5+ £ 30) =0
(as above).
For instance, let us use the gradient vector in order to find the equation of
the tangent plane to the surface x* — 5x3y — y? + 3y* = 6 at the point
P(3,4). The corresponding function is
fGy) =x* = 5x%y —y? + 3y* — 6,
and, thus, Z—f = 4x3 — 15x?%y, and g—;: = —5x3 — 2y 4+ 12y3. Then the

X
gradient vector is
VF(x,y) = (4x3 — 15x2%y, —5x3 — 2y + 12y3),
and its value at the point P(3,4) is
Vf(3,4) = (—432,625),
which is the vector that is normal to the curve at the point P(3,4); and, in
order to find the equation of the tangent plane to f(x,y) at this point, we
work as follows: The equation of the tangent plane is
a(x —xo) +b(y —yo) —(z—20) =0,
and, in this case, a = —432, b = 625, x, = 3, and y, = 4, so that we
obtain
—432(x—3)+625(y—4)—(z—2y) =0>z—z, = —432x +
625y — 1,204.
In order to find z,, we have to substitute P(3,4) into f(x,y), and, thus, we
obtain f(3,4) = 287. Therefore, setting z, = 287 in z — z, = —432x +
625y — 1,204, we obtain the equation of the tangent plane to the surface
x* — 5x3y — y2 4+ 3y* = 6 at the point P(3,4), namely:
z = —432x + 625y — 917.
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By analogy, if a surface is defined implicitly by an equation of the form
F(x,y,z) = 0, then the tangent plane to the surface at a point (x,, ¥, Z)
is given by the following equation:

OF (xo, Yo, Zo) OF (xo, Yo, Zo)

T(x_xo) +T(Y_YO)

0F (x,, Vo, Z
+—( %;/0 0)(2—20) =0

(recall that the equation of a plane that contains the point (x,, o, Zo) With
normal vector 71 = {a, b, c) is a(x —xy) + b(y —y,) + c(z — z5) = 0).
Thus, we observe that the equation % (x —x9) + %‘;yd (y -

Vo) — Z + f(xg,¥) = 0 (which we formulated previously) is the special
9F (x0,¥0.20)

case of the equation % (x —x) + oy (y—y) +
—aF(x‘;':O'ZO) (z—2)) =0 where F(x,y,z)=f(x,y)—z , and z,=
f(x0,¥0)-

Since the gradient of a function is given by the vector field whose
components are the partial derivatives of the function (and, thus, the
gradient attaches a vector to each point of the domain of the corresponding
function), we can, more precisely, use the term “gradient vector field”
rather than simply “gradient” or “gradient vector.”

In physics, the term “field” refers to an area in which forces are exerted on
things in its midst. The modern concept of a physical field was originally
formulated in the nineteenth century by the English physicist Michael
Faraday. An electric charge creates an “electric field” in the region of
space surrounding it, in the sense that the properties of space are modified
by the presence of an electric charge. “Electric field” (sometimes called
“electric intensity”) is defined as the electric force per unit charge. In
particular, the “electric field” is a vector field that associates to each point
in space the force per unit of charge exerted on an infinitesimal test charge
at rest at the given point. Therefore (in SI unites), the unit of electric field
magnitude is one newton per coulomb (i.e., 1N -C~1). According to
Coulomb’s Law, the magnitude of the force of interaction between two
point charges (i.e., electric charges) is directly proportional to the product
of the charges and inversely proportional to the square of the distance
between them, symbolically:

1912 |

r2

F=k

where F denotes the magnitude of the force that each of two point charges
q, and q, a distance r apart exerts on the other, and k is a proportionality
constant, whose value is (in SI units) approximately 8.988 x 10°N - m? -
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C~2. Due to the rigorous description of the electrostatic force of attraction
and repulsion by the French military engineer and physicist Charles-
Augustin de Coulomb (1736-1806), the SI unit of electric charge, the
coulomb (denoted by C), has been named in his honor; it is approximately
equivalent to 6.24 X 1018 electrons. “Charge” is a property of matter (just
like mass, volume, or density), and it can come in two types: positive (+)
or negative (—). In particular, a positive charge occurs when the number of
protons exceeds the number of electrons, and a negative charge occurs
when the number of electrons exceeds the number of protons. The
fundamental building blocks of ordinary matter are the negatively charged
“electron,” the positively charged “proton,” and the uncharged “neutron.”
In a neutral atom, the number of electrons equals the number of protons
that exist in the nucleus, and the net electric charge is zero. If one or more
electrons are removed (resp. added), then the remaining positively (resp.
negatively) charged structure is called a “positive ion” (resp. a “negative
ion”).

For instance, consider static electricity (triboelectric effect): Friction can
give loosely bound electrons enough energy to leave their atoms and get
attached to others, migrating between different surfaces. When this
happens, the first object is left with more protons than electrons and, thus,
becomes positively charged, whereas the object with more electrons
accumulates a negative charge. This situation is called “net charge
separation.” However, when one of these newly charged bodies comes into

4 In simple terms, to construct an atom, one needs some protons and neutrons for
the construction of the nucleus, and then one has to put some electrons around the
nucleus until the whole system is electrically neutral (in fact, once you have a
positively charged nucleus, it attracts electrons, which automatically form shells
around the nucleus). In 1911, the New Zealand physicist Ernest Rutherford
discovered the basic structure of the atom: it consists of a small and dense core of
positive electric charge called the nucleus, surrounded by a “cloud” (probability
distribution) of negatively charged electrons; and, in particular, electrons move in
orbitals around the nucleus in an energy level (precisely, an electron has a
probability of being in various locations based on its energy). However, it should
be mentioned that the construction of an atomic nucleus is a complex process,
because protons, being positively charged, repel each other. As a result, they have
to come very close to each other in order for the nuclear force to start operating
and, thus, keep them together, given that there exist sufficiently many neutrons.
This process requires extremely high temperatures (hundreds of millions of
degrees Kelvin). Such high temperatures existed briefly after the Big Bang. The
“atomic number,” which defines the identity of an element, is the number of
protons in the nucleus of an atom, and, since atoms are electrically neutral, the
atomic number also indicates the number of electrons in an uncharged atom.
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contact with another material, the mobile electrons will take the first
chance they get to go where they are most needed, thus relocating from the
negatively charged object to a positively charged one, restoring the neutral
charge equilibrium. This quick movement of electrons is called “static
discharge,” and it is recognized as a sudden spark. This process happens
only with specific objects. In particular, “conductors,” such as metals and
salt water, tend to have loosely bound outer electrons, which can easily
flow between molecules, whereas “insulators,” such as plastic, rubber, and
glass, have tightly bound electrons, which do not regularly jump to other
atoms. “Static buildup” is the phenomenon wherein electric charges are
exchanged between the surfaces of two objects that come into contact with
each other; and it is most likely to occur when one of the materials
involved is an insulator. For instance, when you shuffle your feet across a
rug, you are creating many surface contacts between your feet and the rug,
and, thus, electrons relocate from your body to the rug (due to friction),
whereas the rug’s insulating wool will resist loosing its own electrons.
Your body and the rug together constitute a system that is electrically
neutral, but there is a charge polarization between your body and the rug
(your body representing the positive pole, and the rug representing the
negative pole), so that, when you reach to touch the metal door knob, you
will experience an electric shock, since the metal door knob’s loosely
bound electrons will relocate to your hand in order to replace the electrons
that your body has lost. Similarly, when you rub a plastic comb on your
head, it causes opposite static charges to build up both on your hair and the
plastic comb, and, therefore, when you pull the plastic comb slowly away
from your head, you can see these two opposite static charges attracting
each other and making your hair stand up. Charge separation may happen
in clouds, and, in this case, it is neutralized by being released towards
another body, such as a building, the earth, or another cloud, in a giant
spark that we know as a lightning.

“Eelectricity” is the flow of electric charge along a path provided by a
conductor (conductors are materials with high electron mobility). If you
have two charges, one positive and one negative, then they have an electric
field between them.

The amount of work needed in order to move a unit of electric charge from
a reference point to a specific point in an electric field without producing
acceleration is called an “electric potential.” In terms of SI units, it is

represented by
__ potential energy _ joule
- charge ~ coulomb’

where joule is the wunit for work done, and 1joule=
(1 newton)(1 meter); coulomb is the unit for the charge; and V denotes
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“volt,” the derived unit for electric potential (electromotive force), and it is
named after the Italian physicist Alessandro Volta (1745-1827). The
motion across the field is supposed to proceed with negligible acceleration
in order to avoid the test charge acquiring kinetic energy or producing
radiation. When we move a charge at constant speed, it becomes a current,
and it generates a magnetic field (actually consisting of attraction and
repulsion of electric fields) that is perpendicular to the motion of the
charge; whereas, if we accelerate the charge, then the charge produces a
squeezed electric field, which is no longer spherical, but is shaped like an
hour glass.
The key to the flow of electricity is making a continuous electric circuit:
connecting a wire between a source of electrons and an attractor of
electrons (for which reason, for instance, a battery has two poles: a source
(a negative), and an attractor (a positive); and, similarly, an electric plug
has at least two tongs, one for incoming electrons and one for outgoing
electrons). Electrons do not cease to exist. Rather, being carriers of charge,
they move from the negative (source) to the positive (attractor), and they
are useful as they follow the path to their destination in the context of a
continuous electric circuit. By contrast, connecting two poles of a power
source directly can actually be very dangerous: this is what is called a
“short circuit,” because there is no electric device between the source and
the destination of electrons to power, such as a PC or a TV set. In case of a
short circuit, the electron flow does not encounter any resistance, therefore
the release of energy is instant, often paired with the involved wire heating
dangerously.
The electric field at a point can be calculated by using Coulomb’s law in
order to find the total force F on a test charge g’ placed at the point, and
then we divide F by q' to obtain the electric field E. If q is positive, then
the direction of E is the direction of F. The force on a negative charge,
such as an electron, is opposite to the direction of E.
In order to analyze the motion of a particle with charge g in an electric
field, we need to use Newton’s Second Law of Motion, F = ma, with F
caused by the electric field E, so that the magnitude of the electric force F
is given by

F =qE
(in vector notation, F= qE ). If the field is uniform, then the acceleration
is constant.
In simple terms, electric interactions can be described as follows: a charge
distribution sets up an electric field E, and the field exerts a force F = qE
on any charge q that is present. The same pattern can be followed in order
to describe magnetic interactions (phenomena of attraction or repulsion



366

that arise between electrically charged particles because of their motion).
A moving charge, or a current, sets up a magnetic field in the space around
it, and this field exerts a force F on a moving charge. Like electric field,
magnetic field is a vector field (a vector quantity associated with each
point in space). The symbol for magnetic field is B.

Whereas the electric-field force is the same whether the charge is moving
or not, the magnetic force is proportional to the particle’s speed. Thus, a
particle at rest experiences no magnetic force at all. Furthermore, the
magnetic force F acting on a charge ¢ moving with velocity v does not
have the same direction as the corresponding magnetic field B, but it is
perpendicular to both the magnetic field B and v. Hence, the magnitude of
the magnetic force F is given by

F = |q|vBsing,

where |gq| is the magnitude of the charge, and ¢ is the angle measured
from the direction of v to the direction of B. The SI unit of B is 1N - sec -
C~'-m™1, where N stands for newton, sec stands for second, C stands for
coulomb, and m stands for meter. This unit is called 1 tesla (1T), in honor

of the prominent Serbian-American scientist and inventor Nikola Tesla
(1857-1943).

Using vector notation, the force that a magnetic field B exerts on a charge
q with velocity ¥ is given by

F=qbxB,

where ¥ x B denotes the cross product of the velocity and the magnetic
field.

In 1831, the English scientist Michael Faraday discovered electromagnetic
induction: he placed a stationary magnet inside or outside a coil, and he
observed no deflection in the galvanometer. However, at the moment that
he moved the magnet towards (into/above/below) the coil, he saw the
pointer deflecting in one direction, and, at the moment that he moved the
magnet way from the coil, he saw the pointer deflecting in the opposite
direction. Using the aforementioned notation, the entire electromagnetic
force F on the charged particle is called the Lorentz force (after the Dutch
physicist H. A. Lorentz), and its magnitude is given by

F = Feectric + Fmagnetic
. - = >
(and, as I have already mentioned, Foioctric= qE, and Fragnetic = quv X

B ). Faraday’s discovery was really amazing, because one could make
something move without ever touching it, only by using the field. Indeed,
we can affect things far away and develop telecommunications using
electromagnetic fields. Notice that the operation of antennas is based on
electromagnetism (by an “antenna,” we mean anything that transfers
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electricity from the air to a wire, or from a wire to the air). In other words,
antennas are a way of transmitting and receiving information through
changes in the electromagnetic fields that surround them. Moreover,
Faraday was the first to understand that waves of the electromagnetic field
are what we call light.

By the term “wave,” we mean a disturbance or oscillation that travels
through space-time accompanied by a transfer of energy. The basic
properties of a wave are its amplitude (i.e., the distance from the center
line, that is, the still position, to the top of a crest or the bottom of a
trough), its frequency (i.e., the number of cycles occurring per second;
specifically, it can be measured by counting the number of crests of waves
that pass a fixed point in one second), and its length (i.e., the distance over
which the wave’s shape repeats; for instance, the distance between two
adjacent crests). According to the theory of wave mechanics, which was
formulated in the 1920s by the Austrian-Irish physicist Erwin Schrédinger,
a wave itself does not have units of matter or energy, but it is just form,
specifically, a pattern of information.

In simple terms, electromagnetic radiation consists of electric and
magnetic fields oscillating around each other, creating a freely propagating
wave that can travel from one place to another. This event explains light,
the operation of radio stations, the operation of microwave ovens, etc.
These are electromagnetic phenomena, and they differ from each other
only with respect to the wavelength of the corresponding oscillation, so
that we use different names for electromagnetic radiation depending on the
corresponding wavelength; for instance, if we can see electromagnetic
radiation, then we call it light, light with large wavelengths is red, light
with larger wavelengths that is invisible is called infrared, while, at even
larger wavelengths, electromagnetic radiations are called microwaves, and,
if the wavelengths are even larger, then electromagnetic radiations are
called radio-waves.

By the term “radiation,” we generally mean energy transferred by waves
or particles. For instance, radiation may take the form of electromagnetic
waves—which, however, are made of particles, photons specifically. A
photon is a type of elementary particle that serves as the quantum of the
electromagnetic field and the force carrier for the electromagnetic force.’

5 The term “quantum” derives from the Latin language, and it means an amount of
something. In the context of quantum mechanics, the term “quantum” means the
smallest amount of energy that can be measured. In fact, light is made up of
photons, which we can think of as small packets (“quanta”) of energy. For
instance, when I point a flashlight at an object, I direct photons (which make up the
given beam of light) to hit the object. In opaque solids, when photons hit the
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In particular, quantum electrodynamics describes the manner in which
electrically charged particles interact by shooting photons back and forth
between each other. Electrons, being zero-dimensional, lack spatial
extension (that is, they have practically zero volume). Therefore, they
interact with each other by exchanging photons. As two electrons move
towards each other, a photon is passed from one to another, and it changes
the momentum of both of them, thus pushing them off.

In Figure 8-23, we see the graph of a linearly polarized electromagnetic
wave going in the z-axis with E denoting the electric field (corresponding
to the x-axis) and B denoting the magnetic field (corresponding to the y-
axis). In electrodynamics, by the term “linear polarization,” we refer to a
confinement of the electric field vector or the magnetic field vector to a
given plane along the direction of propagation, and this term was coined
by the French civil engineer and physicist Augustin-Jean Fresnel (1788—
1827).

surface of the material, the energy of the photons is absorbed by the electrons to
excite themselves to the next atomic orbital, and, when this happens, the photons
lose all of their energy (and there are not any photons any more; this is the reason
why an opaque solid is opaque). Due to the structure of opaque solids, the electron
orbitals are not far enough from each other (in terms of energy), and the photon has
enough energy to push the electron up to a higher energy orbital (and, thus, the
electron absorbs the photon). However, due to the amorphous structure of glass
(silicon dioxide), the energy gap between the atomic orbitals is too large, and,
therefore, when a photon hits the glass, the electron does not absorb it, because the
photon does not have enough energy to push the electron up to a higher energy
orbital. Hence, in this case, the photon retains its energy, and the electron lets it
pass; and this is the reason why the glass is transparent.
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Figure 8-23: A linearly polarized electromagnetic wave (source: Wikimedia
Commons: Author: Bumonvo Mypamos;
https://commons.wikimedia.org/wiki/File:%D0%93%D0%B5%D0%BD %D0%B5
%D1%80%D0%B0%D1%86%D0%B8%D1%8F %D1%8D%D0%BB%D0%B5%
D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D
0%B8%D0%BD%D0%BE%D0%BY9 %D0%B2%D0%BE%D0%BB%D0%BD %D
1%8B.jpg).

Now, let us consider a vector-valued function (vector field) 7#(x,y,z) =

f(x,v,2)i + g(x,y,2)j + h(x,y, 2)k such that the partial derivatives a_;
Z—‘;, and Z—Z exist and are continuous on U € R3. Then the “divergence” of
7(x,y,z) is a vector operator that operates on a vector field, producing a
scalar field that gives the quantity of the vector field’s source at each

point; and it is defined as follows:

o . _Of 9g oh
divr =V r—§+@+g

(where, in particular, we have: V-7 = (:—xi + %j + % 12) (f(x, v, z)T +

9(x,y,2)] + h(x,y, 2)k)).

In other words, the divergence of a function tells us how the corresponding
vector field behaves towards or away from a point: the divergence of a
vector field represents the tendency of the field to either converge or
diverge at a given point (e.g., in the context of mechanical systems,
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electromagnetism, and fluid dynamics). In particular, in physics, the
divergence of a vector field is the extent to which the vector field flux
behaves like a source at a given point, and, specifically, it is a local
measure of the extent to which, in a vector field, there are more vectors
exiting from an infinitesimal region of space than entering it (the term
“flux” refers to any effect that appears to pass or travel through a surface
or substance). A point at which the flux is outgoing has positive
divergence, and it is said to be a “source” of the field, whereas a point at
which the flux is directed inward has negative divergence, and it is said to
be a “sink” of the field. Obviously, the greater the vector field flux through
a small surface enclosing a point, the greater the value of divergence at
that point.

The divergence of an electrostatic field Eis
divE = L
€o
where p is the electric charge density (i.e., charge per unit volume), and &
is the permittivity of free space (i.e., a physical constant that reflects the
ability of electric fields to pass through a classical vacuum; g, =
8.85 x 10712 farads per meter). The divergence of an electrostatic field
provides important information: a region with zero divergence is either a
constant field or contains no charges; whereas non-zero divergence
regions indicate the presence of charges, and the sign of divergence
determines whether the charges are positive or negative.
Given a vector-valued function (vector field) 7(x,y,z) = f(x,y,2)i +

g(x,y,2)j + h(x,y,z)k such that the partial derivatives %, Z—i, and g—:

exist and are continuous on U € R3, the “curl” (also known as “rotor”) of
7(x,y, z) is the vector-valued function (vector field)

curl?zﬁxf’:(g—’;—g—‘z)i+(g—£—g—:)j+(g—i—g—§)l€
iy Ok
d a 0
“|ox oy oz
f g h

(notice that, in this case, we expand the determinant only across the first
row, and it is used as a mnemonic rule). The curl of a vector field
represents the rotation (or “circulation”) of the field around a point (it is
used, for instance, in order to analyze the rotation of a fluid flow, magnetic
fields, and stress distributions). In particular, the curl at a point in the
vector field is a vector whose length and direction denote, respectively, the
magnitude and the axis of the maximum rotation of the field. A zero curl
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implies that a vector field is irrotational (circulation is zero), and, in
electrostatics, it is indicative of electrostatic fields with no magnetic field
present (note: a moving electric charge generates a magnetic field, and a
magnetic field induces electric charge movement, producing an electric
current, but electric fields and magnetic fields may also exist
independently of each other: an electric field with no magnetic field
present exists in charges at rest; just as a magnetic field with no electric
field present exists in permanent magnets).

Line integrals of vector fields: Consider a vector field
F(x,v,2) = P(x,y,2)i + Q(x,v,2)] + R(x,y, 2)k
and the three-dimensional smooth curve C given by
() = x(©)1 + y(@®)] + z(O)k
where a < t < b. The “line integral of F along C” is

JC F-df = J bﬁ(?(t)) 7 (D)dt

where, in the integral on the left side, the dot denotes a dot product of the
vector field, and the differential is a vector. Moreover, notice that

ﬁ(?(t)) = ﬁ(x(t), y(b), Z(t)) . The line integral can be written with
respect to the arc length as follows:

fﬁ-df:fﬁ-m
C C

where T(t) is the unit normal vector, that is,
. 7 (t)

T(t) =-—=
O =l

(as we have previously explained). Line integrals of vector fields are
useful in physics for computing the work done by a force on a moving
object along a curve.

For instance, let us compute the line integral fc F - d# where F (x,y,2) =
8x2yzi + 5zf — 4xyk, and the curve C is defined by 7(t) = ti + t2 +
t3k with 0 < t < 1. Firstly, the given vector field along the given curve is
F(7(1)) = 8t2(t2)(t3)i + 5t3) — 4t(t*)k = 871 + 53] — 4¢3k.
Secondly, the derivative of the parametric expression of the curve is

7 (t) = i + 2t + 3¢2k.

Thirdly, the corresponding dot product is

F(7(©)) - 77(t) = 8t7 + 10t* — 12¢5.

Hence, the given line integral is
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[ E-di = [(8t7 +10t* — 12t%)dt = 1.
In general, as we can easily see, another (equivalent) way of computing
line integrals of vectors fields is the following: Given a vector field
F(x, y,z) = P(x,y,2)i + Q(x,y,2)] + R(x,y, 2)k
and the three-dimensional smooth curve C defined by
7() = x@©)1+y()f + z(H)k
where a < t < b, the “line integral of F along C” is

fﬁ-d?:f(pdeererRdz)
C c

since
[ F-di = [I(Pt+Qf +RE)- (x't+y'] +2'k) = [ (Px' + Qy' +
Rz')dt = [} Px'dt + [ Qy'dt + [ Rz'dt = [ Pdx +

J.Qdy + | Rdz.

Green’s and Stokes’s Formulae: Let us consider in the plane R? a smooth
closed curve K without self-intersections which bounds an open domain D
in R2, as shown in Figure 8-24. Suppose that, on K, a parameter ¢ is valid
and defines the circulation direction and, therefore, the orientation of K as
an one-dimensional manifold. Then the closure Cls(D) = D is an oriented
two-dimensional manifold with the boundary dD = K. If the orientation of
the domain D is defined by a linear coordinate system (x,y), then the
orientation on the boundary K will be compatible with the orientation of
the entire D, provided of course that the domain D lies on the left of K
when K is traversed in the direction of increasing parameter t. Let F=
(P,Q) be a C?! vector field on R?. In the coordinate system (x,y), the

vector field F can be expressed as F= P(x,y)dx + Q(x,y)dy. Then the
integral of F along the curve K is given by

t1 d d
T o2

to

ff aQ apdd
ax E xay

(this result is “Green’s formula,” named after the British mathematical
physicist George Green, who published an initial version of this formula in
1828). Hence, Green’s formula relates a line integral around a simple
closed curve K to a double integral over the plane region D bounded by K.
In other words, Green’s formula tells us the following: If U is a region in
R? whose boundary dU consists of a finite union of curves of class C?, if
we orient 0U so that, whenever we traverse the boundary in the direction
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of orientation, U remains on the left, and if F= (P, Q) is a C* vector field

on U, then
OQ 6P
f(de+Qdy) ff _—— dxdy
au ady

(where P(x,y) and Q(x,y) are the components of the given vector field
F).

Figure 8-24: Green’s formula (source: Wikimedia Commons: Author: Theon;
https://commons.wikimedia.org/wiki/File: Th%C3%A90r%C3%A8me_de Green-

Riemann.svg?uselang=eo).
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Similarly, let K be a smooth closed curve without self-intersections in the
space R3, and let this curve be the boundary of a two-dimensional surface
D. Given a C? vector field on R3, Stokes’s formula (named after the Irish
physicist and mathematician George Stokes) relates the surface integral of
the curl of the vector field over the given surface to the line integral of the
vector field around the boundary of the given surface, as follows:
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f (Pdx + Qdy + Rdz)
K

I e

4 (OP OR) dzd
> _}E_} aa ’ X]
(e, [ Fds= [ [ curlF-dS for F = (P,Q,R)).

Surface integrals of vector fields: Let us think of a two-sided® smooth (or
at least piecewise smooth) surface immersed in a vector field, so that the

vector field under consideration contains this surface. If a vector field F

contains such a surface S, then F describes the velocity of the flow at any
point across the surface. The rate of flow (i.e., the amount or the volume of
flow across the surface) is called the “flux,” and this concept is the key to
understanding surface integrals of vector fields. For instance, if the vector

field F represents the flow of a fluid, then the surface integral of F
represents the flux, that is, the amount or the volume of fluid flowing
through the surface (per unit time). This is the reason why the surface
integral of a vector field is frequently called a “flux integral.” If dS is an
element (infinitesimal) of the surface (i.e., a really small surface area), and

¢ It should be mentioned that a surface may be one-sided. For instance, a “Mdbius
strip” can be constructed by gluing together the edges of a sheet of paper with a
twist. Thus, we obtain an one-sided, non-orientable surface (within it, one cannot
consistently distinguish clockwise from counterclockwise turns), as shown in
Figure 8-25. A surface is “orientable” if and only if, during any smooth shifting
across the surface, any sufficiently small circle on the surface with a fixed
direction of the journey along its boundary preserves the original direction of the
journey along its boundary (we assume that the circle does not intersect the edge of
the surface).

Figure 8-25: Moébius strip (source: Wikimedia Commons: Author: Fropuff;
https://commons.wikimedia.org/wiki/File:MobiusStrip-01.svg).
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if 71 is the unit normal vector to dS at one of its points, then the flux of the
vector field F through the elementary region dS is given by
F-7ds

where F is taken at the same point as 7, and F - 7i denotes the dot product
between F and 7. For instance, if a fluid is flowing perpendicular to the
surface, a lot of that fluid will flow through the surface, and the flux will
be large, whereas, if a fluid is flowing parallel to the surface, that fluid will
not flow through the surface, and the flux will be zero. In order to
calculate the total amount of a fluid flowing through the surface, we must

add up (i.e., integrate) the component of the vector field F that is normal
(i.e., perpendicular) to the surface. Notice that, if 71 is the unit normal
vector to dS, the dot product F - 7 will be positive if F and 7 are pointing
in the same direction, and it will be negative if F and 7 are pointing in
opposite directions (in general, the choice of a normal vector orients the
surface and determines the sign of the flux).

Hence, by analogy, the flux of the vector field F through the whole surface
S is defined to be the integral

ﬂﬁﬁﬂ:ﬂﬁd§
S S

(this is the “flux integral,” that is, the surface integral of the vector field
under consideration).
Thus, the total flux of fluid flow through a surface S is denoted by

I F - dS, since it is the integral of the vector field F over the surface S.
Similarly, we can calculate the “electric flux” through a surface as follows:

%:ﬂiﬁ
S

where E is the electric field (having units of volt per meter), and dSis a
differential area on the given surface S with an outward facing normal
vector defining its direction. The “electric flux” through a surface is
proportional to the number of field lines crossing that surface. In other
words, its magnitude is proportional to the portion of the field
perpendicular to the surface area:

Electric Flux = (Electric Field) - (Surface Area) - (cos9),

where cos@ denotes the cosine of the angle 6 between the electric field
and the vector that is perpendicular to the area. A “field line” is an
imaginary line drawn through a region of space in such a way that, at
every point, it is tangent to the direction of the electric-field vector at that
point. In particular, in an “electrostatic field,” every field line is a
continuous curve with a positive charge at one end and a negative charge
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at the other. In mathematics, we use the term “trajectory of a vector field”
in order to refer to a curve whose tangent at every point has the same
direction as the corresponding vector field.
Suppose that a surface is defined by a function z = g(x,y). In order to
work with with surface integrals of vector fields, we have to define a new
function, namely,
f,y,z)=z—-g(xy)

(and, in this way, the surface is defined by the equation f(x,y,z) = 0).
The unit normal vector to the surface defined by the equation f(x,y,z) =
0is

L _Vf

70
and, in this case,
—gxl—gyJtk

\/(g;)z +(g5) +1

(where, of course, I, j, and k are the corresponding unit vectors on the x-
axis, the y-axis, and the z-axis, respectively). Notice that the component of
this normal vector in the z direction (that is, k in the aforementioned
formula of 77) is positive, meaning that the normal vector general points
upward, specifically, it has an upward component to it. However, in
general, “positive orientation” points out of the region under
consideration, and, sometimes, this may mean downward. Thus, if we
need the downward orientation, we can take the negative of 7 to obtain the
required result. Hence, if a surface S is defined by z = g(x,y), if the
corresponding vector field is defined by F (x,y,z) = P(x,y,2){ +
Q(x,v,2)j + R(x,y,z)k, and if the orientation in which we are interested
is the upward orientation, then the surface integral of Fover Sis computed
according to the following formula:

—
n=
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ﬂﬁ-ﬁds=ﬂﬁ-d§
S S
=ff(Pi+Qj+Ri€)
D
—-gxi—gyi +k
J (g% + (g5) +1
=ff(Pi+Qj+Rl?)-(—g,’ci—g’yj+12)dA
D

=ffD(—Pg,;—Qg'y+R)dA

(notice that this computation holds in case the surface is given in the form
z = f(x,y), but we can obviously think and work in a similar fashion
when the surface is given in the form y = g(x, z), in which case we we
define f(x,y,z) =y — g(x, z), as well as when the surface is given in the
form x = g(y,z), in which case we define f(x,y,2) =x—g(y,2)).
Given that we can consider two different orientations, there are six
possible surface integrals, that is, two for each form of the surface: z =
f,y),y=g(x,2), and x = g(y,z), so that, given each form of the
surface, there will be two possible unit normal vectors, and we have to
choose the one that matches the given orientation of the surface (but the
derivation of the corresponding formula of the surface integral is always
similar to that given above).

Now, suppose that the surface S is defined parametrically, as follows:

7(u,v) = x(u, V)t + y(u, v)j + z(u, v)k
(as always, I, f, and k denote the corresponding unit vectors on the x-axis,

\/(g,;)z +(g5) + 1dA

the y-axis, and the z-axis, respectively). In this case, the vector 171 X 17,,’ is
normal to the tangent plane to the curve at a particular point of the curve
(and, therefore, to that point of the curve itself), and the corresponding unit
normal vector is

L mXr

n=

(R ||

(and, as previously, we have to consider the adequate direction).
Therefore, if the surface S is given parametrically by 7(u,v) with
parameter domain D, the surface integral of F over S is computed
according to the following formula:
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” <|r ><r||>”r xiillda
y

fF-(n;xr,,’)dA

(as previously, we may have to change the sign of 1} . X 7 in order to
match the orientation of the surface).
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Chapter 9
Complex Numbers and Complex Analysis

As I have already mentioned, the concept of a number has been extended
from natural to real numbers, both because of human practice and because
of the needs of mathematics itself. In particular, the concept of a number
grew out of the counting of objects. Counting gave rise to the numbers 1,
2, 3, and so on, which are called natural numbers. Then the necessity of
performing the operation of division led to the concept of positive
fractional numbers; furthermore, the necessity of performing the operation
of subtraction led to the concepts of zero and negative numbers; finally,
the necessity of taking roots of positive numbers led to the concept of
irrational numbers. The aforementioned operations are feasible in the set
of real numbers. However, there are still impracticable operations—for
instance, taking a square root of a negative number. Hence, there is a need
to extend the concept of a number even further, specifically, to invent new
numbers different from the real numbers.

Indeed, if we adjoin to the real system R a root i of the polynomial x2 +
1 =0, which is irreducible to R, we obtain the system of complex
numbers C = R(i). The symbol

z=a+ bi,wherea,b € Rand i = v—1,

is called a “complex number”; the number a is called the “real part” of
z=a+bi, and it is denoted by Re(z); the number b is called the
“imaginary part” of z = a + bi, and it is denoted by Im(z); and i = V-1
is called the “imaginary unit.” As we can see in Figure 9-1, a complex
number is a two-dimensional number. The number i = v/—1 signifies a
90° rotation about the real axis, turning 1 into —1. Hence, i = v/—1 done
twice, or squared, is equal to —1. Two complex numbers z = a + bi and
w = ¢ + di are “equal” if and only if a = c (that is, Re(z) = Re(w)) and
b = d (that is, Im(z) = Im(w)).
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Figure 9-1: A complex number (source: Wikimedia Commons: Author: Zgyorfi;
https://commons.wikimedia.org/wiki/File: Depicting complex_numbers.JPG).

z=a+tib

ib

a

Any polynomial equation with coefficients can be solved in the system of
complex numbers, and the system of complex numbers is the fundamental
connection between geometry and algebra. The development of the system
of complex numbers is originally due to the sixteenth-century Italian
mathematicians Gerolamo Cardano and Rafael Bombelli; and, in the
nineteenth century, the system of complex numbers was put in a more
rigorous and conceptually richer mathematical setting by Cauchy and
Riemann.

As shown in Figure 9-1, we picture the complex number z = a + bi by
putting a on the x-axis and b (or rather bi) on the y-axis.

The “modulus” or “absolute value” of a + bi is Va? + b?, and it is
denoted by mod(a + bi) or |a + bi|. The square of the modulus of a
complex number z = a + bi is called its “norm,” and it is denoted by
Nm(z); so that, if z = a + bi, then Nm(z) = a? + b2.

Now, let us consider Figure 9-2. The “argument” of z = a + bi, denoted

by arg(z), is a quantity 8 such that cos6 = % and sinf = I:;I' It is many-

valued and determined only up to multiples of 2. In other words, the
argument of a complex number is the inclined angle developed in between
the real axis and the complex number in the direction of the complex
number; and, given a complex number z = a + bi, its argument is 8 =
b

tan™t (Z)

As shown in Figure 9-2, the angle (in radians) that 8 intercepts forms an
arc of length s, so that s =70 (where r denotes the radius of the
corresponding circle), and, if r = 1, that is, for the unit circle, s = 8. The
study of the unit circle implies that the sine of an angle 8 equals the y-
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value of the endpoint on the unit circle of an arc of length 6, and the
cosine of an angle 0 equals the x-value of the endpoint. Therefore, using
the unit circle, and given Figure 9-2, we obtain the following
trigonometric form of a complex number:

z = a+ bi = |z|cosO + |z|sin@ - i = |z|(cosO + isinf) = |z|e?,

where |z| is the modulus of z, |z| is equal to the radius vector of the point
z (in the case of the unit circle, |z| = 1), and e is the base of the natural
logarithm. Hence, we obtain Euler’s formula:

e™ = cosx + isinx for any real or complex number x. It is noteworthy
that, when x = w, Euler’s formula yields e™+1 =0 ™ = —1.
Moreover, in polar coordinates, for some r and 8 depending on x, Euler’s
formula can be written as follows:

e =r(cos@ + isinf ).

Figure 9-2: The complex plane (source: Wikimedia Commons: Author: Lickyvi;
https://commons.wikimedia.org/wiki/File: Nthrootofunity.png).

Im 1

sin 0

Re

In general, a circle of radius r (where r is a positive real number) centered
at a point a € C is given by the equation

|z—al =71
(where || denotes the complex modulus).
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Notice that the periods of hyperbolic functions are complex numbers: the
functions sinhx and coshx have period 2mi, and tanhx has period mi,
where i = /—1.
In 1833, at the Royal Irish Academy, the Irish mathematician and
astronomer Sir William Rowan Hamilton presented the complex numbers
as ordered pairs of real numbers, thus denoting a complex number by an
ordered pair (a, b), and denoting the imaginary unit by i = +/—1, so that
i?=(0,1)-(0,1) = (-1,0) = —-1.
The zero of C is (0,0), and the unit of C is (1,0).
The (complex) “conjugate” of a + bi is a — bi, and the conjugate of a
complex number z is denoted by Z or by z*; so that, if z = a + bi, then:
z+zZ=2a,z—7Z=2ib,and z-Z=a? + b? = |z|?.
As shown by Hamilton, the complex number system C is the set R X R
with operations defined as follows:
(a+bi)+(c+di)=(a+c)+ (b+d)i,
(a+bi)—(c+di)=(a—c)+ (b—4d)i,
(a + bi)(c + di) = (ac — bd) + (ad + bc)i, and
(a+bi) (a+bi)(c—di) (ac+ bd)+ (bc—ad)i
(c+di) (c+di(c—di) c? + d?
where a,b € R,and i = V—1.
The algebraic form of a complex number enables us to easily carry out
such arithmetic operations on complex numbers as addition, subtraction,
multiplication, and division, but raising a complex number to a natural
power is more convenient in trigonometric form. For this purpose, we
usually use “De Moivre’s formula” (named after the French
mathematician Abraham de Moivre):
(cosx + isinx)™ = cosnx + isinnx
(where i =+/—1). De Moivre’s formula can be easily proved using
mathematical induction and the angle sum and difference trigonometric
identities. Moreover, we can obviously derive De Moivre’s formula from
Euler’s formula and the exponential law for integral powers: (e™*)" =
e'™  where, by Euler’s formula, (e™)" = (cosx + isinx)™, and e =
cosnx + isinnx.

Complex Vector Spaces: The set of complex numbers C with addition and
multiplication as defined above is a field with additive and multiplicative
identities (0,0) and (1,0), respectively (the notion of a “field” was
discussed in Chapter 7). Thus, we can define complex vector spaces. A
“complex vector space” is a vector space whose scalar field is the complex
numbers. The set C" is the set of column vectors
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where z; € C, i = 1,2, ...,n. Such vectors can be added componentwise,
and any such vector can be multiplied by a complex scalar. Hence, this is
the fundamental example of a complex vector space; and a complex vector
space V € C" is a subset such that: for any v,w € V, it holds that v + w €
V, and, for any v € V and any z € C, it holds that zv € V. The concepts of
vector basis and of linearly independent and linearly dependent vectors
can be defined in the case of complex vector spaces in the same way as
they are defined in the case of real vector spaces (see Chapter 7). The
algebra we have done with matrices over the real numbers works perfectly
for matrices over C, without any change (see Chapter 3). The dot product
of complex vectors is defined as follows:

U W = Y; v;w,, where W, is the complex conjugate of w;.

Letz; = a, + byi and z, = a, + b,i. The “cross product” of z; and z, is
defined as follows:

21 X 2, = a;b; — bya, = |z4]|z,|sind,

where || denotes the complex modulus, and 8 denotes the angle from z;
to z, measured in the positive direction.

The nth Roots of Unity: The solutions to the equation z™* = 1, where z € C
and n is a positive integer, are said to be the “nth roots of unity,” and each
root of unity is given by

2k 2km 2kmi
Z=cos——+isihn——=¢e n
n n )
21 . . 2T 2mt
where k = 0,1,2,...,.n— 1. If we set w = cos— + isin—=en, then the

n roots are 1, w?!, w?, ..., w™ 1, and, geometrically, they represent the n
vertices of a regular polygon of n sides inscribed in a circle of radius 1
centered at the origin (the circle is given by the equation |z| = 1, and it is
the “unit circle” in the complex plane).

Differentiation and Integration of Complex-Valued Functions: 1f a
function f takes real inputs and gives complex outputs, then the
“derivative” with respect to its real input is computed by taking the
derivatives of the real and the imaginary parts separately, namely:

df dRe(f) .dim(f)

dx  dx T dx
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where i = /=1, Re(f) is the real part of f, and Im(f) is the imaginary
part of f. In other words, if f = u + iv is a complex-valued function of a
real variable x, then the derivative of f at the point x,, is defined by
f'(xo) = ' (x0) + iv' (o)
where u’ and v’ are the derivatives of u and v, respectively, and i = v—1.
However, the situation becomes more complicated when we consider
functions that take complex inputs and give complex outputs. Let us
consider a complex-valued function f = u + iv of a complex variable z =
x + iy. As in real analysis, we can define the “derivative” of a complex-
valued function f = u + iv of a complex variable z = x + iy as follows:
zo+A4z) — f(z
f’(ZO) = limAz—>0 f( > * A; f( 0)

where Az, being a complex number, can approach zero in more than one
way; specifically, if we write Az = Ax + idy, then we observe that we can
approach zero along the real axis Ay = 0, or along the imaginary axis
Ax = 0, or indeed along any direction. Therefore, this derivative exists if
and only if its value does not depend on how Az approaches zero, and, in
particular, if and only if the following equations are satisfied at the point

(X0, Y0):

6u_6v

6x_@
and

617_ Ju

ox @

(where f = u+ iv). These equations are called the “Cauchy—Riemann
equations” (the first formulation of these conditions appeared in an essay
on fluid mechanics that was published by Jean-Baptiste le Rond
d’Alembert in 1752). A complex-valued function f = u + iv of a complex
variable z = x + iy is “differentiable” at z, if and only if f'(z,) is well-
defined at z;, and, in view of the foregoing,
, dou dv OJdv Jdu

f (Z)_6x+L6x_6y lay
(according to the Cauchy—Riemann equations). The function f is said to
be “analytic” (or “holomorphic”) in a neighborhood U of z, if it is
differentiable everywhere in U (i.e., a function can be differentiable at a
point, but analyticity of complex functions only makes sense in an open
set). If a function is analytic in the whole complex plane, then it is called
“entire.”
Having discussed differentiation of complex-valued functions, let us now
discuss integration of complex-valued functions. Suppose that f(x) =
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g(x) + ih(x) is a complex-valued function of a real variable x. Then the
“integral” of f(x) between the limits a and b is defined by

b b b b
f flx)dx =f [g(x) + ih(x)]dx =f gx)dx + if h(x)dx

where i = +/—1, and x is a real variable. Obviously, the properties of such
integrals may be deduced from the properties of the real integrals.

Now, let us consider a complex-valued function f = g + ih of a complex
variable z = x + iy. Let z, and z; be two points in the complex plane. A
curve joining z, and z, can be defined as follows: imagine a point-particle
moving in the complex plane, starting at some time t, at the point z,, and
ending at some later time ¢, at the point z;, so that, at any given instant in
time t, < t < 't,, this point-particle is at the point z(t) in the complex
plane. Thus, a curve joining z, and z; can be defined by a function z(t)
that takes points t € [t,, t;] to points z(t) in the complex plane in such a
way that z(t,) = z, and z(t;) = z;. In other words, a “(parametrized)
curve” joining z, and z; is a continuous function z: [t,, t;] = C such that
z(ty) = z and z(t;) = z;; and, obviously, z(t) can be decomposed into
its real part, which is the continuous real-valued function x(t), and into its
imaginary part, which is the continuous real-valued function y(t). The
curve z(t) is “smooth” if and only if its velocity (first derivative with
respect to t), that is, z'(t), is a non-zero continuous function [t,, t;] = C.
Suppose that y is a smooth curve joining z, and z,, and let f(z) be a
complex-valued function that is continuous on the curve y (z € C). Then
the “integral of f(z) along y” is defined as follows:

ff(z)dz=f1f(z(t))z’(t)dt
14 to

(as I have already mentioned, t € [ty,t;], z = x + iy, x(t,) = xo, x(t;) =
x1, ¥Y(to) = Yo, Y(t1) = Y1, 2o = X + iy, and z; = x; + iyy).

The Fundamental Theorem of Algebra
(originally due to Carl Friedrich Gauss)

The Fundamental Theorem of Algebra (also known as the D’Alembert—
Gauss theorem) is the statement that every univariate polynomial of
positive degree with complex (possibly real) coefficients has at least one
complex (possibly real) zero. Therefore, any non-zero polynomial p(z)
over C can be written uniquely (except for order) as a product

p2) =k(z—2)(z—-1)..(z—1,), where k, A; € C,and n = deg(p),
meaning that a polynomial in a single variable of degree n > 0 with
complex (possibly real) coefficients has exactly n complex (possibly real)
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zeros, counting multiplicity (i.e., zeros of multiplicity k are counted k
times).

In G. H. Hardy’s book 4 Course of Pure Mathematics, Appendix II
(entitled “The proof that every equation has a root”), we can find an
explanation of the proof of this theorem that is based on the concept of
continuity and can be summarized as follows: In essence, we want to
prove that every algebraic equation must have a root. First of all, we have
to realize that a polynomial equation in the complex variable z = x + yi is
equivalent to a pair of real equations in the variables x and y, whose loci
are curves in the plane. The proof of the Fundamental Theorem of Algebra
involes the idea of curves winding around the origin. In the case of real
functions, we can visualize the action of functions by sketching graphs in
the plane. But, since the space of complex numbers has two real
dimensions, the visualization of the action of functions of complex
variables requires a four-dimensional space in which we have to construct
the graph of a complex function of a complex variable. Alternatively, we
can consider two complex planes, one for the domain of the function (the
“input plane”) and the other for the range of the function (the “output
plane”). In other words, if f(z) is a function of the complex variable z,
and if w = f(z), then, for each z in the complex plane of the domain (i.e.,
in the “input plane”), we plot the corresponding point w = f(z) in the
complex plane of the range (i.e., in the “output plane”), and we write z =
x + yi and w = u + vi. However, in order to understand the behavior of
the function f, we must envisage z as a moving point in the “input plane”
(z-plane) and consider how the image point f(z) moves correspondingly
through the “output plane” (w-plane). In fact, as z traces out a certain
curve in the “input plane,” f(z) traces out a curve in the “output plane,”
and, by examining the images of special curves, we can analyze the
behavior of the function f. In particular, if a curve in the “input plane” (z-
plane) passes through a zero of f(z), then its image in the “output plane”
(w-plane) must pass through the origin. Hence, the problem of showing
that f has a zero reduces to the problem of showing that some image curve
must pass through the origin.

Now, let us become more specific: We shall continue thinking in terms of
a complex plane called the “input plane,” on which we locate the input
values of the polynomial, and these inputs are mapped to outputs on
another complex plane, the “output plane.” For, instance, given a
polynomial p(z) = agz™ + a;z"t + -+ a,, if z= 0, then p(2) = a,.
Hence, we know that the zero point on the input plane goes to the point a,,
on the output plane (a, is a complex constant). This is not really helpful,
because we wanted to get a point to go to zero, not to a,,. However, we
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know that, if we take z to have an enormously large magnitude, then z"
will have that magnitude to the nth power, and it will be very much bigger
than z"~1. Therefore, for sufficiently large z’s (i.c., |z| > 0), z ranges
around a big circle centered at the origin of the the input plane (we get a
circle because we can have any argument, any angle), and z"™ would be
even bigger. Let the constant term a,, of p(z) be non-zero; otherwise, z =
0 is a root. Consider the circuit created by p(z) as z ranges around a very
small circle centered at the origin. If we make the circle sufficiently small,
then all the terms involving powers of z are insignificant compared to the
constant a,, and, therefore, we realize that the image of the circle is
contained in a circle winding around a,, that cannot wind around the origin
(this follows from the (epsilon-delta)-definition of continuity, setting, for
instance, € = a,,/2). However, for a very large circle (i.e., when |z]| > 0),
the highest power of z dominates, and, therefore, the image of the circle
will wind around the origin (n times, where n is the degree of p(z)). Due
to the continuity of p(z), as the radius of the circle grows, there must be
some point in between where the image passes through the origin, namely,
there must exist a zero of the polynomial (as required).

Regarding the exact number of zeros, we can think as follows: If A is
complex (possibly real) zero of the polynomial p(z), where deg (p(z)) =
n =1, with complex (possibly real) coefficients, then, by dividing this
polynomial by z — A4, we obtain p(z) = (z — 1)q(z) + r, where q(2) is a
polynomial of degree n — 1, and r is a constant. But p(1) =r = 0, and,
therefore, p(z) = (z — 1)q(z). Continuing by induction, we conclude that
p(z), which is an arbitrary polynomial of degree n > 1, has exactly n
complex (possibly real) zeros (although some might be repeated), quod
erat demonstrandum.

The Applications of Complex Numbers in
Quantum Physics

Everything that we can definitively say about the physical world, and
about the past of the physical world, is based on the classical worldview,
which is founded on two major theoretical pillars, depending on the scale
of our analysis: Newtonian mechanics and the general theory of relativity.
In fact, the general theory of relativity is a geometric theory of gravitation
and of space-time, explaining the behavior of the universe on the large
scale. On the other hand, the quantum world is not directly observable, and
it can be used only for calculating probabilities. Hence, quantum
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mechanics, pioneered by Niels Bohr, Werner Heisenberg, Wolfgang Pauli,
and Erwin Schrddinger, is a theory of physical probability.

In quantum physics, everything is described in terms of wave functions, a
wave function is a vector in a complex Hilbert space, and the vector
coefficients are complex numbers. According to Paul Dirac’s notation, in
quantum physics, vectors are symbolized in the following way, known as
the bra-ket notation:

1 0 0
[¥)=a;|0]+a, 1) +a, (0), where a4, a,, a; € C.
0 0 1

The aforementioned type of brackets helps us to keep track of whether a
vector is a row vector or a column vector: |¥') is a column vector, whereas
(¥] is a row vector. In quantum mechanics, if we convert a row vector to a
column vector, then we have to take the complex conjugate of each
coefficient. In other words, for instance,

a,

) = <a2> and (¥| = (aj, a3, a3), where aj, a3, aj are, respectively, the
as

complex conjugates of a,, a,, as.

In quantum mechanics, all vectors describe probabilities. Usually, we

choose the basis of the space under consideration in such a way that the

basis vectors correspond to possible measurement outcomes; for instance:

1 0 0
[¥)=a,;|0]+a, (1) +a, (0) corresponds to
0 0 1

1) = a;1X) + a,|Y) + a;12).
Hence, the probability of a particular measurement outcome is the absolute
square of the scalar product with the basis vector that corresponds to the
outcome; so that, for instance, the probability of measuring X is
IX|P)? = ayai,
and this is known as Born’s Rule. In other words, the probability density
of finding a particle at a given point, when measured, is proportional to the
square of the amplitude of the particle’s wave function at that point. In
quantum physics, the gradient of a wave function is denoted as follows:

] N N, 0 ~
VI¥) = P [P)i + o [P)] + p [P)k.
In order to understand quantum physics, we must understand the
difference between the potential mode of being and the actual mode of
being. In the context of quantum mechanics, a molecule can be thought of
like a mountain range (described by a wave function) filled with infinitely
many energy steps, where each energy step, representing a quantum of
energy, is a quantum state. A molecule stands on one of these quantum
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states, and all the other infinitely many quantum states are empty, they are
virtual states. Moreover, each quantum state is characterized by a wave
form. When a system stands on one of these states, the other states also
exist, but potentially. This means that they cannot be observed, and they
actually look empty. Those virtual states are potential modes of being, by
virtue of which a molecule can jump into other quantum states. Due to
Heisenberg’s uncertainty principle, we know that molecules can make
“quantum jumps,” because they have empty states into which they can
jump. Of course, understanding the difference between “actuality” and
“potentiality,” we must never confuse the realm of potentiality with the
realm of actuality—that is, we must never attribute actuality to probability;
and quantum physics is a physical probability theory.

A successful scientific theory (such as the general theory of relativity,
quantum mechanics, etc.) is a mathematical framework—that is, an
abstract system—from which we can derive predictions that agree with
observation. Therefore, physical objects, such as time, black holes, quarks,
bosons, etc., which are said to “exist actually” in the physical world are
names that physicists give to mathematical structures or concepts that are
necessary parts of successful hypothetico-deductive systems. In physics, a
hypothetico-deductive system is said to be successful if the predictions, or
the generalizations, that derive from it agree with observations and logic,
and then the physical objects that constitute necessary parts of such a
hypothetico-deductive system (which is consistent with both observation
and mathematics) are said to exist actually in the physical universe.

As already mentioned, in quantum physics, every system is described by a
wave function, usually denoted by the Greek letter ¥, from which
physicists calculate the probability of obtaining a specific measurement
outcome. In other words, this wave function is a way of studying the realm
of potentiality in a scientifically rigorous way. For instance, from this
wave function, one can calculate that a particle that enters a beam-splitter
has a 50% chance of going left and a 50% chance of going right. This is a
way of analyzing that particle’s potential mode of being. On the other
hand, we can analyze that particle’s actual mode of being by measuring
the given particle.

After measuring the particle, we know with 100% probability where it is.
Therefore, we must update our probabilistic study of the particle under
consideration accordingly and with it the wave function. This update is
known as the “wave function collapse,” and it is an observational
requirement that stems from the fact that, by measuring the particle, we
have achieved a transition from potentiality to actuality. At the level of
potentiality, or when we study the potential mode of being of a particle,
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that particle may be 50% at point A and 50% at point B; but, at the level
of actuality, or when we study the actual mode of being of a particle by
managing to measure it, that particle is 100% in a particular position, and
we never observe a particle that is 50% at point A and 50% at point B. If
we observe a particle at all, then we find that it is either in a particular
position or not.
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Chapter 10
Basic Principles of Ordinary Differential
Equations

The Fundamental Theorem of Infinitesimal Calculus is a rigorous
explanation of the dialectical relationship between integration and
differentiation, and, thus, it is a major underpinning of the theory of
differential equations. Moreover, in Chapter 8, I explained the significance
of the method of infinitesimal calculus in general.

By the term “ordinary differential equation,” we refer to any equation that
contains an unknown function, some of its derivatives, and an independent
variable. The “order” of a differential equation is the order of the highest-
ordered derivative occurring in the given differential equation. The
fundamental problem of the theory of differential equations is to find all of
the functions y = f(x) that satisfy some differential equation. Every
function y = f(x) that satisfies some differential equation is said to be a
“solution” of the given differential equation.

A family of functions

y=fkc) (*)
where ¢ is a constant belonging to A € R, is said to be a “general
solution” of a differential equation

Y =Z=F(xy) (+%)
if, for every c € A4, (*) is a solution to (x*). The solution that we obtain for
each particular value of c¢ is said to be a “partial solution” of the
differential equation (**).

The theory of differential equations is a branch of mathematics in which
the study of theoretical problems can hardly be distinguished from the
study of practical problems, and dynamics, which is a characteristic aspect
of modern mathematics, is clearly manifested. Moreover, the theory of
differential equations has played an important role in the transition from
the eighteenth-century infinitesimal calculus to advanced mathematical
analysis and modern geometry. One of the major advantages of differential
equations is that they constitute one of the most important underpinnings
and instruments of the “mathematization” (i.e., of the “mathematical
modeling”) of many problems both in the context of the natural sciences
and in the context of the social sciences.

The systematic study of differential equations began in the 1670s by
Leibniz. The methods that I present in this chapter are based on the
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scientific works of Leibniz, Newton, the Bernoulli brothers, Euler, Riccati,
Lagrange, and Cauchy.

General Methods for the Solution of Differential
Equations

In this section, we shall study different types of ordinary differential
equations, and we shall present general methods for finding their general
solutions.

The Method of Separation of Variables

This method was originally developed by Leibniz. If a differential
equation may be written in the form

L = Fg(),

dx
or, similarly, in the form f(x) + g(y) Z—z = 0, then it is said to be solvable
by “separation of variables” as follows:

[Z = fx)dx +c.

9

Remark: In case we have a differential equation of the form
dn

y® = f() & 22 = £(), (1
then, by integrating (1), we obtain
dn—l
—= = [ f(dx + ¢ 2)
By setting [ f(x)dx = f; (x) and then integrating (2), we obtain
dn—Z
dx"—}; = [fi(x)dx + c; x + c,.

Repeating the same process, we obtain the general solution to (1), which is
of the form

— ‘1 ,n-1 €2 .n-24 ..,
y=w(x)+ Tl + Tt + -+,

meaning that the general solution to y™ = f(x) can be obtained through
N successive integrations.

For instance, let us find the general solution to the differential equation
x2dy — ydx = 0,

and then let us find its partial solution that satisfies the condition y(2) = 4
(i.e., the integral curve that passes through the point P(2,4)). We shall
apply the method of separation of variables:
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x2dy —ydx =0=>% _if:%:x‘zdx:af'i/—yzfx‘zdx:alny:
-1 1 1 1
x—+c:lny———+c¢y—ex =>y=c¢e x=>y=ke x which

is the general solutlon to the given differential equation. In order to find
the partial solution for which x = 2 = y = 4 (i.e., the integral curve that
passes through the point P(2,4)), we must determine the constant k. If we
substitute x = 2 and y = 4 into the general solution, then we obtain 4 =

1 1
ke 2 = k = 4ez = 4+/e. Hence, if we substitute this value of k into the
general solution, then we shall obtain the required partial solution, namely,

y = 4/ee =
Homogeneous Differential Equations

The systematic study of homogeneous differential equations is originally
due to Johann Bernoulli, who first applied the term “homogeneous” to
differential equations in his research paper “On the Integration of
Differential Equations” (1726). A differential equation is said to be
“homogeneous” if it may be written in the form

fCe,y)dx + g(x,y)dy =0, (1)
where the functions f(x,y) and g(x,y) are homogeneous with respect to
x and y of the same degree of homogeneity, meaning that

f(x,y) may be written in the form x™A e) and 2)

g(x, y) may be written in the form x™B G) 3)
Thus, due to (2) and (3), (1) becomes (for x™ # 0):

A%)

dx+ B dy=0 => — =

A(3) () v = 5(2)
which ultimately reduces to the form

2=r@)ey=r@) )

dx x x

where f (%) is a homogeneous function whose degree of homogeneity is

equal to zero. In order to find the general solution to (4), we set

% =wey=Iw 5
where w is a function of the independent variable x, that is, w = w(x).
By differentiating (5), we obtain

dy = wdx + xdw,

and, after dividing by dx, we obtain

d
dz—w+x— (6)

Therefore, due to (5) and (6), the differential equation (4) becomes
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dw _ d_w _ _ aw _ d_x
w+xa—f(w):axdx—f(w) w:f(w)_w—x. @)
The differential equation (7), which is equivalent to (4), and, therefore,
equivalent to (1), can be solved by the method of separation of variables.

In particular, (7) yields:

=lncx = cx = eff(w)—w. ®)

dw
ff() lnx+lnc¢fﬂ)

In (8), we have to compute the 1ntegralf and then to make the

fw )
substitution w = % in order to ultimately find the general solution to (1).

For instance, let us solve the differential equation

(x2 — y?)dx + 2xydy = 0.

This differential equation is homogeneous, because the expressions
f(x,y) = x? —y? and g(x,y) = 2xy are homogeneous with respect to x
and y, and, in particular, their degree of homogeneity is 2. We set

% =wey=xw (*)
where w = w(x). By differentiating (*) with respect to x, we obtain
y=w+x Z—Z. (*%)
Due to (*) and (**), the given differential equation becomes

(x% — x?w?) + 2x%w (W + xd—w) =0=>x%2(1—w?) + 2x%w (W +
xd—w) = 0, and, because, by (*), x # 0, we divide the last expression by
x2 to obtain

— awy _ — w2 2 aw _
(1 w)+2w(w+xdx)—0$1 w* + 2w +2xwdx 0=

2 d_w _ 2wdw _d_x 2wdw
T+wit2xw—=0=——=—— zf—WZH
—f%ﬁln(w2+1) = —Inx + Inc > In(w? + 1) =ln(§) =

w?+1= i
By the substitution w = %, we find that the general solution to the given

differential equation is y? + x2 = cx.

It is worth pointing out that homogeneous equations have important
applications in electromagnetism, communication technology, and optics.
For instance, homogeneous equations formulated by Maxwell
(specifically, V-E= p/g, and V-B= 0, where E is the electric field, B
is the magnetic field, p is the electric charge density, and &, is the vacuum
permittivity, and, of course, V- is the divergence operator) predict the
existence of electromagnetic waves, which are fundamental in
communication technology, and they are essential in optics, too, because
they explain the behavior of light, including reflection (change in the
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direction of waves when they bounce off a barrier), refraction (change in
the direction of waves as they pass from one medium to another), and
diffraction (change in the direction of waves as they pass through an
opening or around a barrier in their path), and optics is fundamental in
various technologies (e.g., lenses, microscopes, telescopes, lasers, and
fiber optics communication). Moreover, homogeneous Maxwell’s
equations underpin our understanding of the electromagnetic spectrum,
and this knowledge is important in astronomy, medical imaging (X-rays
and MRI), and spectroscopy (the study of absorption and emission of light
and other radiation by matter). The equation V-E= p/ €, implies that the
electric field produced by electric charge diverges from positive charge
and converges upon negative charge; and the equation V-B=0 implies
that the divergence of the magnetic field at any point is zero, as well as the
assumption that there no magnetic monopoles (a magnetic flux that is
generated from magnetic materials is a closed loop, specifically, the
direction of the flux lines is from the north pole to the south pole in the
atmosphere, so that, in the absence of any poles, these flux lines are
unthinkable).

Differential Equations Reducible to Homogeneous
Differential Equations

The following methodology is originally due to Johann Bernoulli. The
differential equations of the form

dy — f (a1x+b1y+(:1)’ (*)

dx azx+byy+cy

where a4, by, ¢4, a,, b,, ¢, are real constants, are reducible to homogeneous
differential equations. In order to solve (*) by reducing it to a
homogeneous differential equation, we distinguish the following two
cases:

Case I: f L 2 o a;b, —a,b; # 0, then we can find the general
a; by

solution to (*) as follows: We solve the system of equations

{alx +by+c = O} |

a,x + b,y +c, =0) @)

Let (x,y) = (xg,y,) be the solution to (1). Then we set

{x =Xy + W} @)
Y=Y tv)h

where w = w(x) and v = v(x), and, by differentiating (2), we obtain

{dx = dw} 3
dy =dv) 3)



396

so that, by (2) and (3), the differential equation (*) becomes
dv aq(xg+w)+b1(yo+v)+cq dv _ aixg+bi1yg+ci+aiw+bqv
aw (az(x0+w)+b2(y0+v)+cz) aw =1 (a2x0+bzy0+cz+a2w+b2v)'
But a,x, + by, + ¢; = 0 and a,x, + b,y, + ¢, = 0, because (xg,y,) is
the solution to (1), and, therefore,
a;w+bv

- f(a2w+b2v) (4)
The differential equation (4) is homogeneous with respect to v and w, and,
in order to find its general solution, we set% =z & v =wz, where z =

z(w), and we work according to the method of solving homogeneous
differential equations, which I have already explained. When we find the

general solution to (4), we set z = %, and then, by (2), we set w = x — x,
and v = y — y, in order to ultimately find the general solution to (*).

Case II' f2 =21 = ) a;b, —a,b, = 0, then we can find the general
a by

solution to (*) as follows: Because a; = Aa, and b; = Ab,, (*) becomes
dy — f (A(a2x+b2y)+cl). (5)

dx azx+byy+cy
We set a,x + b,y = w, where w = w(x), and, by differentiating with

respect to x, we obtain a, + b,y =w' &y = bi(w’ — ay), so that (5)
2

becomes

1 (dw _ Aw+cq

E(E_az) _f(w+cz ) ©)

The differential equation (6) can be solved by the method of separation of

variables, which I have already explained. When we find the general

solution to (6), we set w = a,x + b,y in order to ultimately find the
general solution to (*).

First-Order Linear Differential Equations

The following methodology is originally due to L. Euler and Leibniz. The
general form of these equations is

where A and B are functions of x, that is, A = A(x) and B = B(x). In
other words, the dependent variable and all of its derivatives appear in a
linear fashion (recall that “linearity” is a property of functions, meaning
that a function f(x) is linear if and only if f(x +y) = f(x) + f(y) and
f(kx) = kf (x) for any constant k). The general solution to (*) is:

y = g~ f4ax (c + f Be/ 4dx dx)
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where c is an arbitrary constant.

Proof: 1f B(x) = 0, then (*) becomes Z—z + Ay = 0, and it is said to be a
homogeneous linear differential equation, which can be solved by
separation of variables: dy—y =—Adx = [ % =—[Adx+c=>Iny=

—[Adx + ¢ >y = e~ JAdxtc = gcp=JAdx = co=JAdx = which is the
general solution to the aforementioned homogeneous linear differential
equation. If ¢ = 1, then we obtain its partial solution y, = e~/ Adx,

If A(x) and B(x) are constant functions, then (*) is solvable by separation
of variables.

In order to find the general solution to (*), we consider a new unknown
function z of x such that

Y =%12, ()
where, as | have already mentioned, y; is a partial solution to % + Ay =
0.

By differentiating (1) with respect to x, we obtain

Y =wmz+yz. 2)
Hence, by (1) and (2), the differential equation (*) becomes

viz+ v,z +Ay,z=B & (y; + Ay,)z + v,z = B.

But y; + Ay, = 0, since y; is a partial solution to z—z +Ay =0, and,
therefore, since y, = e~/ 4%,

y1z =B = e JA; = B = 7' = Bel 44 = 7 = [ BelAd¥gy ¢ .
Because y; = e~/ 49 and z = [ Be/44%dx + ¢, equation (1) gives the
general solution to (*), which is

y=e 4% (c + [Bel4%* dx) m

A simple example is the following: The differential equation y’ — 2xy =
x — x3 is a linear differential equation, whose general solution is given by
the above formula where A = —2x and B = x — x3, so that

1
y = ef 2xax (c + f(x —x3%) e‘fz"dxdx) = ce* + Exz

(the above formula is a general method for solving linear differential
equations).
Remark: 1f y is the general solution to (*), and if y; and y, are two partial
solutions to (*), then the ratio

Y—N

YV2—N1
is constant. The difference between two solutions of the linear differential
equation (i.e., of (x)) yields a solution of the corresponding homogeneous
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linear differential equation (i.e., of y' + Ay = 0). If y; is a partial solution
to (), then the general solution to () is given by

y=ce [4%x 4y,
(that is, the general solution of the linear differential equation is the sum of
the general solution of the corresponding homogeneous linear differential
equation and a partial solution of the linear differential equation). For
instance, given the linear differential equation
Y +Ty =,
we can find its general solution, by working as follows: Firstly, we shall
find the general solution to the corresponding homogeneous linear

differential equation, that is, to y’ +xx;1y =0, and, in particular, we

obtaln.y+xy—0:ay_xdx:afy - fdx+c¢ =y

cxX

ex’
Now, we shall find a partial solution to the original linear differential
equation, and it will be of the form

y=c()=

Thus, y = c(x)eix >y =c'@x)xe ™™ +cx)e™ —c(x)xe ™.

Then, by substituting y = % andy’ = c'(x)xe ™ + c(x)e™ — c(x)xe™™
into the original linear differential equation, we obtain
c'(@X)xe™*=—-x=>c'(x) =—e*=c(x) = — [e¥dx = c(x) = —e*,

so thaty = c(x)eix yields y = —exeix =>y=—x.

Hence, the general solution to the original linear differential equation is
cx

thesumofy=:—zandy= —x,thatis,y=e——x

Linear Systems (LS), Nonlinear Systems (NLS), and
Linearization of Nonlinear Differential Equations

By a “nonlinear system,” we mean a phenomenon whose behavior can be

described by a model that is a nonlinear differential equation. The

characteristic properties of linear and nonlinear systems can be studied in
relation to the following concepts and issues:

e The principle of superposition: This principle, originally stated

by Daniel Bernoulli (1775), consists of two properties: (i) the

sum of any number of linearly independent partial solutions of a

differential equation is also a solution of the given differential

equation; and (ii) any constant multiple of a solution is also a
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solution. This principle holds in linear systems (LS), but,
generally, it does not hold in nonlinear systems (NLS).

The global property: This property characterizes the LS, but not
the NLS; that is, in LS, the local behavior of the solutions yields
their global behavior, whereas, in general, the global behavior of
a NLS cannot be deduced from its local behavior. The solutions
of NLS may not be extendible beyond a certain time or may not
be defined for all values of time.

Limit cycles: Periodic phenomena of LS and NLS correspond to
closed trajectories, called “cycles,” whose period is a finite
number. If the cycles are isolated, in the sense that, in a
neighborhood of them, no other cycles exist, then they are called
“limit cycles.” Limit cycles may exist in a NLS but never in a LS.
If a LS has a periodic solution y, then, due to the principle of
superposition, ky is also a periodic solution for any constant k;
therefore, no limit cycles exist in LS. On the other hand, the
special nature of the nonlinearities of some nonlinear differential
equations (NLDE) may lead to limit cycles. For several
examples, see: E. C. Zeeman, “Stability of Dynamical Systems,”
Nonlinearity, vol. 1, 1988, pp. 115-155.

Self-excited oscillations: Self-excited oscillations are special
periodic phenomena corresponding to limit cycles, and, therefore,
they may be produced in NLS, but never in LS. In particular, they
may be produced in NLS where the nonlinearities appear in
damping forces (i.e., forces that act to “damp,” reduce, attenuate
the amplitude of an oscillation) and no external force is exerted.
Subharmonic phenomena: Subharmonic phenomena may be
produced in NLS, but, generally, not in LS. They occur when the
systems undergo external periodic forces. If the frequency of the
external force is w, then the system on which the force is exerted

. . . . w
may undergo periodic motions with frequency s where n =
2,3, ..., and such motions are called “subharmonic oscillations” of
1 . .
order —, where n = 2,3, ... For instance, an aerodynamical model
n

of subharmonic oscillations may be due to the fact that certain
parts of an airplane may incur violent oscillations by an engine
running with frequency much larger than the frequency of the
oscillating parts.

Amplitude and frequency of periodic solutions of free linear and
nonlinear systems: The amplitude of the periodic solutions of free
(unforced) LS is independent of the frequency, and the frequency
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is the same for all trajectories. By contrast, in NLS, the amplitude
depends on the frequency, and the frequency changes from one
trajectory to another.
Resonance phenomena: The resonance phenomena may occur in
forced LS and NLS when the free frequency of the system
becomes (almost) equal to the frequency of the external force.
For instance, when a group of soldiers marches in step over a
suspension bridge, the feet of the group exert a periodic force on
the bridge; and, if the period of marching equals the natural
period of the bridge, then resonance occurs, and the sustained
bridge oscillations may even bring on the collapse of the bridge.
However, the nonlinearity of a NLS can prevent resonance, even
in the absence of damping, because, as frequency is changed,
resonance ceases. For a detailed study of resonance phenomena,
see: J. K. Hale and J. P. LaSalle, “Differential Equations:
Linearity vs. Nonlinearity,” SIAM Review, vol. 5, 1963, pp. 249—
272.
Hysteresis phenomena: Jump discontinuities, or hysteresis
phenomena, may occur in damped forced NLS, but not in LS. In
particular, there are regions where the amplitude of the
oscillations jumps discontinuously, and, in these regions, the
oscillations are unstable. In general, “hysteresis” means a lag
between input and output in a system upon a change in direction.
In engineering, the problem of vibration is of great importance,
since it refers to the oscillation or movement of objects or
systems around an equilibrium point, and, in certain scenarios,
excessive vibrations can give rise to several issues, ranging from
discomfort and noise to catastrophic system failure. In particular,
vibration problems occur when different variables, such as mass,
elasticity, and damping, interact within a system, and, when these
variables create a disruptive back-and-forth movement, this is a
key sign that there is a vibration problem, specifically, the system
is not perfectly balanced. Mathematically, the vibration problem
can be formulated using Newton’s Second Law of Motion as
follows:

ma=F —bv
where m denotes the object’s mass, a denotes acceleration, F
denotes the net force acting on the object, and bv accounts for the
damping force, where b is the damping coefficient, and v denotes
velocity.
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o  Combination frequencies: Hermann von Helmholtz and H.
Poincaré were the first scientists to observe that, except for
certain fundamental frequencies w; and w, in a NLS, there exist
solutions of the same differential equation with frequencies w =
aw; + bw,, where a and b are integers; and these are called
“combination frequencies” of the system, and they are
phenomena of NLS (difficulties emanating from combination
frequencies may be circumvented by using viscous damping in
the system; notice that, when an oscillating body is subjected to
viscous drag, the kinetic energy of the body is dissipated at a
much faster rate than if the oscillating body was placed in the air,
and viscous drag often causes the oscillating system to be
overdamped, which results in the oscillations quickly dying down
to zero). In fact, Hermann von Helmbholtz observed that, just as
seemingly pure, white light actually contains all the colors of the
rainbow, clearly defined musical notes are composed of many
different tones, and, thus, for instance, if you play the A above
the middle C on a musical instrument, then the sound that you
hear has a clearly defined “fundamental” pitch of 440Hz, but the
sound does not only contain a simple “fundamental” vibration at
440Hz, but also a “harmonic series” of integral multiples of this
frequency, called “overtones” (e.g., 880Hz, 1320Hz, 1760Hz,
etc.).

Problems of nonlinear analysis started to exist ever since the creation of
the universe. Some of them were solved by ancient Greek mathematicians,
but many new nonlinear problems were created, both in pure mathematics
and in other sciences, such as biology, physics, astronomy, economics, etc.
The distinction between linear and nonlinear analysis is not quite clear,
because a considerable part of information about a nonlinear system can
be extracted from a linear approximation of the corresponding nonlinear
problem. Moreover, it is often possible to extract information about the
solution to a linear system from a relevant nonlinear one, and this fact was
explicitly studied by the Russian-American mathematician Victor
Lomonosov in his research paper “Invariant Subspaces for the Family of
Operators which Commute with a Completely Continuous Operator”
(published in Functional Analysis and Its Applications, vol. 7, 1973, pp.
213-214). The term “linearization” of a nonlinear differential equation
refers to the reduction of a nonlinear differential equation to a linear
differential equation that is either equivalent or almost equivalent to the
given nonlinear differential equation, that is, the solution to the linear
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differential equation may give the solution to the nonlinear differential
equation either exactly or approximately within an acceptable error.

Exact methods of linearization: Two well-known examples of exact
linearization of nonlinear differential equations are the Bernoulli equation
and the Riccati equation. The Bernoulli equation and the Riccati equation
are special because they are nonlinear differential equations with known
exact solutions, which are obtainable through linearization.

i

The Bernoulli equation:

2+ Ay = By", (1)
where A and B are functions of x, and n € R —{0,1} (ifn =0,
then the equation is linear; if n = 1, then the equation can be
solved by separation of variables). Multiplying both sides of (1)
by y™", we obtain

y 4+ Ayt =B, )
Letyl™" =w, 3)
where w = w(x). By differentiating (3) with respect to x, we
obtain

A-nmy"Z=Loymy' =w/1-n). (4)
Hence, (2), due to (3) and (4), yields
1“_"—n+Aw:B=>‘;—V;+(1—n)Aw=(1—n)B, (5)

which is a first-order linear differential equation (whose
dependent variable is w), and it can be solved according to the
aforementioned method of solving first-order linear differential
equations. When we find the general solution to (5), we set w =
y1=" according to (3), and, thus, we obtain the general solution
to (1).

Remark: The Bernoulli equation was originally discussed in a
work of 1695 by Jacob Bernoulli, after whom it is named, but the
earliest solution to this equation was obtained by Gottfried
Leibniz, who published it in 1696.

The Riccati equation:
2+ A+By+Cy? =0, (1)
where A, B, and C are functions of x. We can find the general

solution to the Riccati equation only if we know one of its partial
solutions. Suppose that y = y; is a partial solution to (1), so that
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211 A+ By, +Cy? =0. @)
Then, by setting

y=y1tw, (3)
where w = w(x), and differentiating (3) with respect to x, we
obtain

@y aw (4)

dx dx dx’

Hence, (1), due to (3) and (4), yields

da d
2+ =+ A+ By +w) +C(yy +w)? =0,

which ultimately becomes
D11 A+ By, + Cy? + 22+ (B +2Cy)w + Cw? = 0.

But, due to (2), % + A+ By, + Cy# = 0 (since y; is a partial

solution), so that we obtain

Z—:+ (B+2Cy)w + Cw? =0,

and, hence,

=2+ (B +2Cy)w = —Cw?, (5)
which is a Bernoulli equation (where w is the dependent
variable), and it can be solved according to the aforementioned
general method of solving the Bernoulli equation (in this case, we
begin by multiplying both sides of (5) by w2, etc.). By
substituting the value of w that we receive from the general
solution to (5) into equation (3), that is, into y =y, + w, we
obtain the general solution to (1).

Notice that, alternatively, we can solve the Riccati equation by
o 1 ’ 1 w' -
setting y =y, + =<y =y —— (where, as above, y; is a
partial solution to (1), and w = w(x)), but then the Riccati
equation will reduce to a linear differential equation, which is
solvable according to the aforementioned general method of

solving linear differential equations.

Remark: This equation is named after the Italian mathematician
Jacopo Francesco (Count) Riccati (1676-1754), who wrote on
philosophy, physics, and differential equations.

Approximate methods of linearization: Usually, the nonlinear differential
equations that come from applied mathematics cannot be linearized by
exact methods, and, therefore, we search for approximate methods of
linearization, which give approximations of particular solutions. Let us
consider a general nonlinear differential equation in its normal form:
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x; = fi(t, x4, ) %), (*)
where i = 1,2, ..., n, and the functions f; are such that there exists a unique
solution of (*) through any point x, in the region of the validity of (*). We
frequently write (*) as follows:

xi =Ax + X, (%)
where x;, x, and X are n-column matrices, and A is an n X n-matrix
(either constant or time-dependent). In ( **), X is the set of the
nonlinearities of (*), and X (t,0) = 0. Then the system

x; = Ax (%)
is the linear part of (x); and (***) is said to be the “first approximation” of
(*). It should be mentioned that not always the results of approximate
linearization are acceptable, depending mainly on the nature of the
problem under consideration.

Differential Equations of the Form f(y') = 0 where f(y')
Is an Integral Polynomial in y'

Suppose that the degree of the polynomial f(y") is n. If the roots of the
polynomial are ry,75,...,7,, then we obtain the relations y' =r,y' =
7y, ..,y =1, , which, by integration, yield y=nrx+cy=rx+
¢, ..,y =Tyx+c , and, therefore, y—rx—c=0y—nx—c=
0,..,y —1x —c =0 .Then the general solution to the differential
equation is

-nx=c-—nx-0c.F-—nrx-c=0,

which defines a family of n parallel straight lines on the xy-plane.

For instance, the differential equation (y')3 —2(y" )2 —y'+2=01is of
the first order and the third degree. The roots of the corresponding

algebraic equation iny' arey' =—1,y' =1, andy’' =2, or Z—Z =-1,
Z—Z =1, and Z—z = 2, and, therefore, we have dy = —dx, dy = dx, and

dy = 2dx, which, by integration, yieldy = —x+c,y=x+c, andy =
2x + c. Then the general solution to the given differential equation is
+x—c)y—x—c)ly—2x—-c¢c)=0.

Differential Equations that Do Not Include the Unknown
Function

These differential equations are of the form F(x,y") = 0. There are two
ways in which we can find the general solution to such a differential
equation:
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First way: We solve for y’, thus obtaining y' = g(x), which is solvable
by separation of variables, and its general solutionis y = [ g(x)dx + c.
Second way: We solve for x, in which case we obtain x = f(y’), and we
set

y' =p e dy =pdx. (1
Then
x = f(p), @

and dx = f'(p)dp. Substituting the value of dx into (1), we obtain dy =
pf'(p)dp, which, by integration, yields

y=[pf'(®)dp+c. ©)
The above relations (2) and (3) imply that the general solution to the given
differential equation is obtained in terms of the parameter p and in the
following parametric form:

x=f()andy = [pf'(p)dp + c.

For instance, let us consider the differential equation x(y')? —1 =0,
which can be solved both with respect to y' and with respect to x.

If we solve this differential equation with respect to y’, then we have: y’ =

1 g . . _ 1 _ 1
+ 2=, and, by integration, we obtain y = + f\/—;dx +c==%[x"2dx+

+ ¢ = +2+/x + ¢, and, hence,

"""‘lﬁp—-

(y—o)? =4x
(this is the general solution to the given differential equation).

If we solve this differential equation with respect to x, then we have: x =

and we sety' = p © dy = pdx, so that x =pi and dx = —;—3dp.

1
(yl)Z’ 22

Therefore, dy = pdx = dy =p (— %) dp = —pizdp ., which, by
integration, yields y = — fpz—z dp+c= % + c¢. Hence, the parametric form

of the general solution to the given differential equation is:

X ZF
and
2

y= E +c
(as I have already explained, p is the parameter, since x = x(p)).
In a similar fashion, we can solve differential equations of the form
F(y,y") =0, that is, differential equations that do not include the
independent variable x.
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Second-Order and Higher-Order Linear Differential
Equations

The generic second-order linear ordinary differential equation with
constant coefficients has the form

ay" +by' +cy =F(x)
where a, b, and c are real constants, F(x) is a given function of the
independent variable x, and, obviously, the differentiation of the uknown
function is symbolized as follows: y" = % andy' = %.
The systematic study of second-order linear ordinary differential equations
with constant coefficients has been significantly motivated by physics. For
instance, one physical system whose behavior is governed by a second-
order linear ordinary differential equation with constant coefficients is the
linear mechanical oscillator shown in Figure 10-1, where we see a linear
mechanical oscillator consisting of a mass m attached to a rigid wall by a
linear spring of spring stiffness ¢ and a damper of damping constant k, a
time-dependent force F(t) is applied to the mass m, and the displacemt of
the mass from its rest position is represented by x(t).

Figure 10-1: A linear mechanical oscillator (source: Wikimedia Commons:

Author: Lokilech;
https://commons.wikimedia.org/wiki/File:Feder Masse Schwinger.svg).

The behavior of the mass—spring system shown in Figure 10-1 (with an
applied external force) is governed by the second-order linear ordinary
differential equation with constant coefficients

mx"(t) + kx'(t) + cx(t) = F(t)
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where m denotes the mass of the particle attached to the spring, k is a
measure of the strength of the damper, c represents the spring stiffness,
F(t) is the applied external force, t denotes time, x(t) is the displacement
of the mass from its rest position, the term kx'(t) represents the force
exerted by the damper on the mass (and, in case of a linear damper, this
force is proportional to the velocity x’, and it resists the motion), the term
cx(t) represents the force exerted by the spring on the mass (and, in case
of a linear spring, this force is proportional to the displacement x, and it
acts in the direction opposite to the displacement, that is, it is a “restoring
force”), and this second-order linear ordinary differential equation
represents Newton’s Second Law of Motion, according to which force
equals mass times acceleration, that is, mx''(t).

The Homogeneous Equation: If F(x) = 0, then the generic second-order
linear ordinary differential equation with constant coefficients reduces to
its “homogeneous” form:
ay" +by' +cy=0. €]
A typical solution of the homogeneous equation (1) is in the form
y — eT'X

where r is a constant to be determined; and, thus, y' = re™, and y"' =
r2e™ . Hence, substituting these values of y, y', and y" into the
homogeneous equation (1), we obtain the corresponding “characteristic”
(or “auxiliary”) equation:
ar?e™ + bre™ +ce™ =0=>e™(ar’+br+c)=0>ar?+br+
c=0.
In this way, we have transformed the given ordinary differential equation
into the “characteristic polynomial”
r2+br+c=0,
which is a quadratic equation in the unknown 7, and then we have to solve
for r, using the quadratic formula
. -b+t b2—4-ac.

2a
Therefore, we have to consider three cases:

Firstly, if the discriminant b? — 4ac > 0, then the quadratic equation has
two distinct real roots, say r; and r,, and, in this case, by the principle of
superposition, the general solution to the homogeneous equation (1) is
y =ce"* + c,e"?*

for any value of the two constants ¢; and ¢, (and all we have to do is to
substitute r; and r, into this formula; and, when we have to solve an
initial-value problem or a boundary-value problem, we have to solve for ¢,
and ¢;).
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Secondly, if the discriminant b2 — 4ac = 0, then the quadratic equation
has a repeated real root, say r, and, in this case, the general solution to the
homogeneous equation (1) is
y=ce™ +cxe™
for any value of the two constants ¢; and c, (the second exponential is
multiplied by x because in this way it represents a second independent
solution).
Thirdly, if the discriminant b? — 4ac < 0, then the quadratic equation has
two complex (conjugate) roots, say ; = a + bi and r, = a — bi, and then
the general solution to the homogeneous equation (1) is
y = e™[c,cos(bx) + c,sin(bx)]
for any value of the two constants ¢; and c,. Notice that, due to the special
nature of r; and 75, and due to the fact that
e%*tht = ¢4(cosb + isinb)
(by the definition of the complex exponential and Euler’s formula), in this
case, we have:
y =ce"* +ce?* =y =e*[c,cos(bx) + c,sin(bx)]
(for (different) arbitrary constants c¢; and c;).
For instance, let us consider “simple harmonic motion™: Let us consider a
spring whose upper end is securely fastened (of natural, that is,
unstretched, length [;), and suppose that we attach to it an object of mass
m, so that the addition of the mass m stretches the spring to length [. This
static elongation of the spring is the result of two forces, namely: the force
of gravity (i.e., F, = mg), acting downward, and the spring force (F),
acting upward. The model of simple harmonic motion is based on the
following assumptions: (i) All motion is along a vertical line through the
center of gravity of the object, and the object is treated as a point mass. (ii)
There is no damping force due to the medium in which the mass is moving
(e.g., we ignore air resistance). (iii) No other forces (except for the ones
already mentioned) are applied to the mass. According to Hooke’s Law, if
a spring is stretched (or compressed) x units from its natural (equilibrium)
length, then it exerts a force that is proportional to x, so that
restoring force = —kx (where k is a positive constant, and x = x(t) is
displacement); and, therefore, by substituting this equation into Newton’s

Second Law of Motion (force equals mass times acceleration: F,.; =
d?x - . .. . .
m F)’ and, ignoring any external resisting forces, we obtain the following
second-order linear differential equation (which describes “simple

. . d?x , d%x | k .
harmonic motion”): —kx = m-—o-——S+—x= 0 , whose typical
m
solution is x = e"t, and, hence, we have:
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k k k k
rze”+—e”=0ze”(r2+—)=O$r2+—=0:r=i -
m m m m

|k

=4i |—

m

and, for simplicity, we set A = \/% Hence, the two values of r are r =

+id, which means that the two solutions (for x = x(t)) are e**t and
. 2
e~ which are two functions that satisfy the differential equation ZTJZC +

k . . o
—X= 0. However, according to the principle of superposition, the most

general solution, which describes all the solutions to this differential
equation is a linear combination of these two solutions, namely: x(t) =
c,et ™t + c,e” ™ for any value of the two constants ¢, and c,. By Euler’s
formula, we obtain
ettt = cos(At) + isin(At)
and
e~ = cos(—At) + isin(—At) = cos(At) — isin(At)
(given that cosine is even, and sine is odd). Therefore, our solution x(t)
can be written as follows:
x(t) = c;[cos(At) + isin(At)] + cy[cos(At) — isin(At)] = x(t)
= (c; + ¢y)cos(At) + i(c; — cy)sin(At)
where, since ¢; and ¢, are constants, we setc; + ¢, = Aand i(c; —¢;) =
B for some new constants A and B, thus obtaining
x(t) = Acos(At) + Bsin(At)
(and this is the general solution in terms of real functions). Notice that, in
SI units, displacements are measured in meters (m), and forces are
measured in neutons (N), and, therefore, the spring constant k is measured
in newotns per meter.
In the aforementioned model of simple harmonic motion, we assumed that
the only forces involved were gravity and the spring force. However, in
order to account for such things as friction in the spring and air restinance,
we must assume that there is a damping force (i.e., a force that tends to
slow the motion of the given object, which we still treat as a point mass),
and this damping force can be thought of as the resultant of all other
external forces acting on the given object (the magnitude of the damping
force is proportional to the velocity of the particle). Therefore, we have to

add a term & %, where ¢ is the damping constant, so that we come up with
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a new homogeneous equation, which describes (free) damped vibrations,
namely:
d’x &dx k
W + EE + ax =0
(and we can solve this homogeneous equation according to the
aforementioned method). Given that the motion of this point mass is
determined by the inherent forces of the spring—mass system and the
natural forces acting on the system, the vibrations are called “free
vibrations.” Things change dramatically if we assume that the point mass
is also subject to an external periodic force Fysingt, which is due to the
motion of the object to which the upper end of the spring is attached, so
that, in this case, the mass undergoes “forced vibrations,” which are
described by the differential equation
d’x &6dx k F,singt
dt? * mdt * m- m
(where Fysingt # 0), and, obviously, this differential equation is not
homogeneous; this is a non-homogeneous second-order linear differential
equation.

The Non-homogeneous Equation (forced motions): When we are dealing
with non-homogeneous second-order linear differential equations, that is,
with differential equations of the form
v +a,y +a,y = F(x) where F(x) # 0, 2)
the general solution to (2) is given by the formula

y(x) = yp (%) + ye(x)
where y,(x) is a partial solution to the non-homogeneous differential
equation (2), and y.(x) is the general solution to the corresponding
homogeneous differential equation, that is, to y" +a;y ' +a,y =0
(notice that, in physics, F(x) in (2) represents the forcing function).
Obviously, y.(x) can be found by applying the aforementioned method of
solving homogeneous second-order linear ordinary differential equations.
However, y,(x) can be found by considering F(x) and making the proper
algebraic tasks, since the choice for the partial solution should match the
structure of the right-hand side of the non-homogeneous differential
equation. In particular, in order to determine the form of the partial
solution ¥, (x), we distinguish the following cases:
Case 1: If F(x) has the form be®*, then y,(x) = Ae®*. Notice that y, (x)
contains the same exponential as F(x), but A is unknown and must be
determined such that the given ordinary differential equation is fulfilled.
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Case 2: If F(x) has the form ax™ + (lower order powers of x), then
Vp(X) = cpx™ + cp_gx™ ' + -+ ¢y . Notice that y,(x) is a complete
integral polynomial in x whose degree is equal to the degree of F(x), and
its coefficients must be determined such that the given ordinary
differential equation is fulfilled.

Case 3: If F(x) has the form pcosax or gsinax, then y,(x) = Acosax +
Bsinax; and the coefficients A and B must be determined such that the
given ordinary differential equation is fulfilled. Notice that the most
important form of forcing in engineering is the harmonic forcing, where
F (x) has the form pcosax or gsinax.

The aforementioned methods can be generalized to solve corresponding
nth-order linear differential equations.

Example: Let us find the general solution to the differential equation

y'—y=x*+x+1. (1)
The general solution to this differential equation is of the form y(x) =
Yp(x) + ¥ (x) where y.(x) is the general solution to the corresponding
homogeneous differential equation, that is, to y” —y = 0. According to
the above method of solving homogeneous second-order linear differential
equations, in order to find y.(x), we solve the corresponding characteristic
equation, which can be found by setting y = e™ and y" = r2e"™, so that
y'—y=0>r2e*—e™* =0=¢e™¥(r?—1)=0. The roots of 72 —

1=0arer; = 1andr, = —1, and, therefore,

Ye(x) = cre™ + e 2)
In order to find a partial solution y, (x) to (1), we set

y=Ax>+Bx+C, 3)

that is, a complete integral polynomial in x whose degree is equal to the
degree of F(x) = x2 + x + 1. Now, we must determine the coefficients A4,
B, and C in order for the given differential equation to be fulfilled, and we
can do this as follows:
By differentiating (3) twice with respect to x, we obtain
y'=2Ax + Band y" = 2A. @)
Due to (3) and (4), the differential equation (1) can be written as follows:
24— Ax?—Bx—C=x*4+x+1
S —Ax?—Bx+24-C=x?*+x+1. 3)
We want both sides of the equation (5) to be identically equal to each
other, and, therefore, the coefficients of the corresponding x’s must be
equal to each other, namely: —A=1©A=-1,-B=1© B =-1,
and 24 — C = 1 & C = —3. Substituting these values of 4, B, and C into
(3), we obtain a partial solution to (1), specifically:
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Vp(x) = —x* —x—3.
Hence, the general solution to the differential equation (1) is
V() +y.(x) = —x* —x =3+ ce* + e,

Systems of Differential Equations

By the term “system of differential equations,” we refer to two or more
simultaneous differential equations that contain an independent variable x,
the dependent variables y, z, ..., as well as the derivatives of the dependent
variables y, z, ... with respect to the independent variable x. The order of a
system of differential equations is the sum of the orders of the highest-
order derivatives that appear in the equations of the given system. For
instance, the order of the system

y'+z +x=0
{z” +y' +3x = 0}’
where the order of the highest-order derivative in the first equation is 3,
and the order of the highest-order derivative in the second equation is 2, is
3+2=5.
The systems of differential equations with constant coefficients where the
number of equations is equal to the number of dependent variables are
usually solved by means of differentiation and term deletions, so that we
ultimately come up with one differential equation. For instance, consider
the following system:

dy

E—3y+z=0
dz 4 _0' (1)
= y+z=

We differentiate the first equation of the system (1) with respect to x, so
that we obtain

dzy dy dz

w -3 E + E =0. (2)
Combining (1) with (2), so that we obtain a system of three equations in
three unknowns, we can use standard algebraic techniques for solving
systems of equations to delete z, and, therefore, we obtain

2
@y 29,y ©)
The differential equation (3) is homogeneous, and its general solution is

y = e*(cy + ). “)

Finally, the value of y that we found in (4) must be substituted into the
first equation of the system (1) to obtain

[e*(c; + cux)] —3[e*(cy + cx) ]| +z2=0> 2z =e*(2¢c; — ¢, + 2¢,%).
Therefore, the solution to the system (1) is
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y =e*(c; + c,x) and z = e*(2¢; — ¢, + 2¢,%).

Some Applications of Differential Equations in
Mathematical Modeling

In this section, we shall consider a few examples of applications of
differential equations in physics, biology, neuroscience, cognitive
psychology, strategic studies, and economics.

Mechanics

As aforementioned, Newton’s Second Law of Motion, which is the
“backbone” of mechanics, states that, if an object of mass m is moving
with acceleration a and being acted upon with force F, then
F =ma.
This is actually a differential equation, because
dv d?s

T dt dt?
where v = v(t) denotes the velocity of the object under consideration, and
s = s(t) denotes the position function of the given object, at any time ¢.
Hence, Newton’s Second Law of Motion can be written as a differential
equation in terms of either the velocity, v, or the position, s, of the object
under consideration as follows:

dv
and
d?s

where F, the force acting on the particle, need not be constant, but it may
vary with the position s or the velocity % of the particle.

Electricity

Let us consider a simple series electric circuit, that is, an RLC circuit,
which has the following components: a resistor R (implementing electrical
resistance, thus reducing current flow, adjusting signal levels, dividing
voltages, etc.), an inductor L (slowing down surges or spikes by
temporarily storing energy in an electro-magnetic field and then releasing
it back into the circuit), and a Capacitor C (storing and releasing electricity
into a circuit by distributing charged particles on (generally two) plates to
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create a potential difference). Moreover, this circuit has a source of
voltage (something like a battery) V, as shown, for instance, in Figure 10-
2. Here, R, L, and C are constants (independent of time), and we are
interested in the current I(t) across the circuit, which is a function of time
t. In the corresponding differential-equation model, time t will be the
independent variable. We can also have Q(t), which is the charge on the

capacitor, and then | = %. By Kirchhoft’s Law, the total voltage around

the circuit is equal to zero (since a circuit loop is a closed conducting path,
and, therefore, no energy is lost), so that the voltage V(t) from the battery
is equal to the voltage Vj across the resistor plus the voltage V; across the
inductor plus the voltage V. on the capacitor:

V)=V +V, + 1,
where:
by Ohm’s Law, the voltage Vj across the resistor is given by

Ve =R-I(t)

(this is the relationship between voltage, current, and resistance); the
voltage V- on the capacitor is given by

1
Ve = I Q)
(where C is the capacitance of the capacitor, that is, the ability of the

capacitor to store charge in it); and, by Faraday’s Law, the voltage V;

across the inductor is given by
N dl
e
(Faraday’s Law says that a changing magnetic flux through a circuit will

induce an electromagnetic flux in the circuit, and the induced

electromagnetic flux can act like a battery and affect the flow of charge,
that is, current, in the circuit). Furthermore, since I = % , the

aforementioned equations yield the following differential equation in
terms of Q = Q(t) (i.e., charge):
d?Q dQ 1
V(t) _LW+RE+EQ
(which is a non-homogeneous second-order linear differential equation
with constant coefficients, which appears in electric circuits, V (t) # 0).
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Figure 10-2: RLC series circuit (soure: Wikimedia Commons, Author:
Omegatron,
https.//commons.wikimedia.org/wiki/File:RLC series_circuit.png).

v(ﬁ L

Demography

In the 1790s, the English economist Thomas Malthus assumed that the rate
at which the population of a country grows at a certain time is proportional
to the total population of the country at that time. Hence, on the basis of
this assumption, we can develop the following model of population
growth: If p(t) denotes the total population at time t, then Malthus’s
assumption can be mathematically expressed in terms of the following
differential equation:
dp(t)

T kp(t)

where k is the growth constant or the decay constant, as appropriate, and
p(ty) = po is the initial condition (initial population). If k > 0, then the
population grows, and, if k < 0, then the population will shrink. This
differential equation is linear, and its solution is
p(t) = poe**
where p, denotes the initial population. If we modify this model in order
to allow the growth rate to vary linearly with time, then the model
becomes
dp(t)

9 - k(®p(t)
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where k(t) = at + b (for constants a and b), p(t,) = p, is the initial
condition (initial population), and this linear differential equation can be
solved separation of variables.

Epidemiology

Let us consider the spread of a disease through a population. Suppose that
we have a number of people, say N, who are infected with a disease. We
want to know how N will change in time. Hence, N is a function of ¢,
which denotes time. Each of the N people has a certain probability to
spread the disease to other people during some period of time. Let us
quantify infectiousness by using a constant k, so that the rate of change of
the number of infected people with respect to time equals this constant k
times the number of people who are already infected. In general, the rate
of change of a function with respect to time is the derivative of that
function with respect to time. Therefore, we obtain the following
differential equation:

dN () k-N(t dN () k-N@t)=0
= . S5 — — . =
It ®© It )
which yields
N(t) = Nye*t

where N, is the number of the infected people at the initial time (t = 0),
and the probability of infecting someone appears in the exponent (kt).
Thus, we understand why infectious diseases begin by speading
exponentially (since the rate of growth of the infected population is
proportional to the number of people who are already infected). When a

disease begins to spread, the constant k in the aforementioned exponent is
R,—1

T
where 7 is the time an infected person remains infectious, and R, denotes
the average number of people someone infects.

Interspecific Competition: The Lotka—Volterra Equations

The problem of the growth of two species competing for the same
resources has signigant applications in biology, ecology, and economics.
Consider two mixed populations of species that are mutually
interdependent and compete for the same resources. Let N; and N, denote
the number of individuals of species one and of species two, respectively.
Both N; and N, are functions of time t. Then we obtain the following
“logistic equations” for these two species:
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. . dnN, Ny
Population growth of species 1: —— = a,N, (1 - —)

. . dN, N,
Population growth of species 2: — = a,N, (1 - —)

which are uncoupled equations (i.e., we study the population growth of
each species without accounting for the presence of another species), and
N, - M; and N, - M,, where the factor M denotes the corresponding
“carrying capacity,” or largest sustainable population (the value of Mis
determined by available resources and by each individual’s resource
demand, so that the logistic equation has intra-specific competition built
into it, since there is also competition between the members of the same
species).

However, we have to model the competition between these two
populations (i.e., inter-specific competition). If N; is much smaller than
M;, and if N, is much smaller than M,, then resources are plentiful, and
these two populations, N; and N,, grow exponentially with growth rates
a, and a,, respectively. If species one and species two compete, then the
growth of species one reduces resources available to species two, and vice
versa. Because we do not know the exact impact species one and species
two have on each other, we introduce two additional parameters in order to
model interspecific competition. In particular, let g;, and g,; be
dimensionless parameters (constants) that respectively model the
consumption of species one’s resources by species two, and vice versa (for
instance, if both species eat exactly the same food, but species two
consumes twice as much as species one, then q;, = 2 and q,; = 0.5); that
is, q, represents the effect of species two on species one, and q,,
represents the effect of species one on species two. Then we can modify
and couple the two aforementioned logistic equations as follows:

Population growth of species 1 in the presence of species 2:

dN, N; +q1,N,
— =N, |l ——
ar A ( M, )
Population growth of species 2 in the presence of species 1:
% —aN (1 _ N2+Q21N1)
dt 22 M,

(the outcome of competition, according to the Lotka—Volterra model, is
ultimately determined by carrying capacity, that is, the M parameter, and
by the competition coefficient, that is, the g parameter). As time increases,
the solution to this model (system of differential equations), which starts at
(N5, N3), approaches a point (N{, N7 ), so that one of the following cases
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holds: (i) the point (N{, N7) lies in the fully positive quadrant of the x, y-
plane, so that both N and N7 are positive, which means that the species
co-exist; (ii) the point (N{,N7) = (0,0), which indicates extinction of
both species; or (iii) one of N{ and N7 may be zero and the other positive,
indicating a situation of competitive exclusion.

Differentiation and Growth of Cells

The minimal constituent matter elements of organic matter (such as DNA)
are subject to differentiations, which underpin the actualization and the
manifestation of the structural program of an organic being. In fact, due to
their differentiation, the cells of an organic being underpin its organic
constitution, which determines the corresponding organic being’s unity
and cohesion (namely, the attraction of molecules for other molecules of
the same kind). Furthermore, it is important to mention that eukaryotes
(that is, organisms whose cells have a nucleus enclosed within a nuclear
envelope), such as the human being, have two types of DNA: the DNA of
the cells (namely, the agent of the genetic information of the cells) and the
mitochondrial DNA (namely, the DNA located in mitochondria, which are
double membrane-bound organelles supplying cellular energy and
controlling the cell cycle and the cell growth; mitochondrial proteins—that
is, proteins transcribed from mitochondrial DNA—vary depending on the
tissue and the species).

For a cell of mass m, its growth rate may be proportional to m, and then
the model of the growth of a simple cell is given by the following
differential equation:

dm

—=km=>m=m,
dt 0

where m, denotes the initial condition (initial mass), and, usually, some
restriction, like m < m”, is assumed (that is, it is usually assumed that the
cell undergoes division once mass m* is reached rather than continuing to
Srow).

Moreover, we can assume that the growth rate of a cell is proportional to
the rate at which it can absorb nutrient and, thus, proportional to its surface
area, specifically, to the two-third power of its mass, thus obtaining the
differential equation

ekt

dm i 2

_—= 3

at "
where the 2/3-scaling surface law was proposed in 1919 by the American
biologists James Arthur Harris and Francis Gano Benedict, who conducted
biometric studies of basal metabolism. According to the 2/3-scaling
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surface law, the basal metabolism of animals differing in size is nearly
proportional to their respective body surfaces, and, as organisms increase
in size, their volume and, therefore, their mass increase at a much faster
rate than their surface area. In particular, the 2/3-scaling surface law is
based on the assumption that metabolic rates scale to avoid heat
exhaustion (bodies lose heat passively via their surface, but they produce
heat metabolically throughout their mass). In the 1930s, the Swiss
biologist Max Kleiber argued that a 3/4-power scaling (instead of the
Harris—Benedict surface law’s 2/3 -power scaling) describes more
accurately the relationship between an animal’s metabolic rate and its
mass (symbolically, if B is an animal’s metabolic rate, and if M is this
animal’s mass, then, according to Kleiber’s law, B ~ M3/%).

Neuroscience:
The Standard Leaky Integrate-and-Fire (LIF) Model

The brain (the central nervous system) contains nerve cells that are highly
specialized in transmitting messages. Each nerve cell, called a neuron,
consists of the soma (i.e., the central body of the cell), the (neur)axon, and
the dendrites. At the end of the neural tube, there is a special structure
called a synapse, through which the neurons communicate with each other.
When a message created in one neuron is about to be transmitted to the
next, the first neuron releases specialized chemicals called
neurotransmitters. The released neurotransmitters are taken up by specially
shaped regions, called receptors, on the cell membrane of the next neuron
involved in the particular synapse.

Neurons send signals along an axon to a dendrite through junctions called
synapses. The standard Leaky Integrate-and-Fire (LIF) model is a point
neuron model that helps us to represent and study the dynamics of the
neuron, and it is given by the following differential equation:

Vir) = av(t) 1 1
O =—==¢|LO-ZV©O -E)

with V() « V., if V(¢) > 0

where:

V(t) denotes membrane potential (i.e., the difference in electric potential
between the interior and the exterior of a biological cell; in other words,
the difference in the energy required for electric charges to move from the
internal to the exterior cellular environments and vice versa, so that, for
instance, the resting membrane potential of a neuron is approximately
—70 millivolts, meaning that the inside of the neuron is approximately
70 millivolts less than the outside);
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C denotes membrane capacitance (parameter) and is proportional to the
cell surface area;

R denotes membrane resistance (parameter) and is a function of open ion
channels (the greater the number of open channels, the lower the
membrane resistance);

E; denotes resting (membrane) potential (parameter) and is the electric
potential difference across the cell membrane when the cell is in a non-
excited state;

I, denotes trans-membrane current (an excitatory synaptic input initiates a
current flow across the membrane and into the neuron, and this current
consists of an ionic flow of positive ions (e.g., sodium ions Nat) in
addition to capacitive currents, and it is by convention a negative trans-
membrane current; this changes the membrane potential at the location of
the synaptic input, initiating axial currents, that is, currents inside the
neuron);

V. denotes reset membrane potential (transmission of a signal within a
neuron (from dendrite to axon terminal) is carried by a brief reversal of the
resting membrane potential called an “action potential,” and, when
neurotransmitter molecules bind to receptors located on a neuron’s
dendrites, ion channels open, so that, at excitatory synapses, this opening
allows positive ions to enter the neuron and results in “depolarization” of
the membrane, that is, a decrease in the difference in voltage between the
inside and the outside of the neuron; a stimulus from a sensory cell or
another neuron depolarizes the target neuron to its threshold potential
(e.g., —=55mV), and Na* channels in the axon hillock open, allowing
positive ions to enter the cell, and, once depolarization is complete, the
cell must now “reset” its membrane voltage back to the resting potential
by closing the Nat channels);

0 denotes firing threshold (i.e., the level that a depolarization must reach
for an action potential to occur, and, in most neurons, the threshold is
around —55mV to —65mV ; if the neuron does not reach this critical
threshold level, then no action potential will fire);

t denotes time.

It is worth mentioning that the combination of differential equations with
neural networks (computer systems modeled on the human brain and
nervous system) gives rise to Neural Differential Equations (NDE), which
empower Artificial Intelligence systems to synthesize time-evolving data
in an effective way. By a “neural differential equation,” we mean a
differential equation with neural network vector field, and, thus, its generic
form is the following:



421

dy(t
IACO)
with y(0) =y,

where the subscript 8 represents some vector of learnt parameters, so that
fo:R X R% - R% represents a standard neural network (for a systematic
study of these issues, see: R. Rico-Martinez et al, “Discrete-vs.
Continuous-Time Nonlinear Signal Processing of Cu Electrodissolution
Data,” Chemical Engineering Communications, vol. 118, 1992, pp. 25—
48).

A Mathematical Approach to Cognitive Psychology:
The Weber—Fechner Law

In general, “mathematical psychology” is a branch of psychology that is
based on mathematical modeling of perceptual, thought, cognitive, and
motor processes, and it tries to formulate scientific laws that relate
quantifiable strimulus characteristics with quantifiable behavior.

Psychological experiments conducted by the German physicist,
philosopher, and experimental psychologist Gustav Theodor Fechner and
the German physician Ernst Heinrich Weber (who is considered one of the
founders of experimental psychology) suggest that the minimum change
that we can detect in a stimulus’ magnitude (the just perceptible
difference) varies in such a way that the fractional change is a constant,
and, in particular, the intensity of our sensation increases as the logarithm
of an increase in the physical magnitude of the stimulus. Weber
demonstrated that, if S is the physical magnitude of the stimulus, then we

shall just perceive the change to s + As where A?S = k, a constant.

According to Fechner, this constant k represents a standard increase in the
psychological magnitude of the stimulus, I. Therefore,

AI_AS
- s
or
AS_S*
Al

(in a discrimination experiement, we are interested in measuring A/ as a
function of I, that is, we want to find the discrimination threshold Al such
that a stimulus with intensity I + AI is just discriminable from a stimulus
of intensity I). Treating Al and AS as infinitesimals, we realize that S is
related to I through the differential equation
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dS_kS
dl —

where k is a constant of proportionality. The aforementioned differential
equation (by separation of variables) yields

I—llS+
—En c

where c is a constant (this result means that the subjective sensation is
proportional to the logarithm of the intensity of the corresponding
stimulus; for instance, perceived loudness or brightness is proportional to
the logarithm of the actual intensity measured by means of an accurate
technical instrument). In fact, this is the reason why the intensity of sounds
(decibels), the brightness of stars (magnitudes), and many other similar
quantities are measured on logarithmic scales.

Strategic Studies and Warfare Problems:
The Lanchester—Deitchman Models

In the scholarly discipline of International Relations, the term “strategy” is
used in order to relate military means and political ends, in both war and
piece. When we study ancient history, “strategy” means a commander’s
battle plan and, generally, the “art of war” (a term usually associated with
the Chinese strategist and intellectual Sun Tzu); in the eighteenth and the
nineteenth centuries, “strategy” evolved into a country’s whole disposition
for war, both in peacetime and during periods of conflict; in the second
half of the twentieth century, “strategy” and “foreign policy” were usually
treated as two concepts and two practical activities inseparable from each
other, if not synonymous (at least among the industrial nations); and, by
the beginning of the twenty-first century, “strategy” explicitly included an
international actor’s disposition for economic and technological war.

In warfare problems, the calculation of a force ratio may be achieved by
simple rules or may include complex assumptions and subjective
judgments. For the quantitative study of a force ratio, the following three
variables are difficult to handle: (i) the disparity in number and lethality of
weapons between similar organizations; (ii) the variations in concepts of
combat support; and (iii) the concentration of forces.

In this section, we shall study the warfare modeling approach of the
English polymath and engineer Frederick W. Lanchester and the guerilla
and the mixed conventional-guerilla combat models developed by S. J.
Deitchman, who followed the methodology of F. W. Lanchester.

Let x(t) and y(t) denote respective strengths of the forces at time t,
where t is measured in days from the start of the combat. We shall identify
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the strengths with the numbers of combatants. We shall consider the ideal
case where x(t) and y(t) are differentiable functions of time. Even though
we may not have a specific formula for x(t) as a function of time, we may
have sufficient information about the operational loss rate (OLR) of the x-
force (i.e., the loss rate due to inevitable diseases, desertions, and other
non-combat mishaps), the combat loss rate (CLR), due to encounters with

the y-force, and the reinforcement rate (RR). Hence,

©0 = OLR + CLR +RR,

and a similar equation applies to the y-force.

Lanchester assumed that the loss rate of a force is directly proportional to
the enemy force strength. The following three Lanchester-type models are
of great significance; x(t) and y(t) denote the strengths of the opposing
forces at time ¢, and t denotes time from the start of the combat (you may

add reinforcement rates P (t) and Q(t) per day if relevant).

Model I: Conventional Combat (CONCOM; “aimed fire”):

,_ dx(t)
x' = T —Ay(t),x(0) = x,
d
=PO_pr,y0 =,

where the coefficients are non-negative loss rate constants: A denotes the
fighting effectiveness of y, and B denotes the fighting effectiveness of x.
In general, we assume that the “fighting effectiveness” is proportional to a
power of
T — x(0)
x(0)

where T denotes the total number of troops at time t = 0, x(0) denotes the
total number of fighting troops at time t = 0, and, therefore, T — x(0)
denotes the total number of support troops at time t = 0 (a similar formula
applies to the y-force). Solving the above system of differential equations
gives

y'" —Bx Bx

x' —Ay Ay
which, by the chain rule, yields

day
Y _a 9 _ dy_Bx
x' ¥ dx dx Ay

dt
so that (given that we have a separable equation, meaning that we can
separate variables and integrate each side) we obtain Lanchester’s Square
Law:
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2 2

x
Aydy=Bxdx$Afydy=fodx$Ay7+C1=B—+CZ

2
> Ay?—Bx?=C
where C is a constant, Ay? is the fighting strength of y, and Bx? is the
fighting strength of x. Then x wins if C <0, y wins if C >0, and a
2

stalemate (equilibrium) occurs if € =0 Ay? =Bx? & G) = %
(notice that we can use definite integrals, too, in which case we integrate y
over [y, ], and we integrate x over [x,, x]).

Model II: Guerilla Combat (GUERCOM):

=0 oyo
Todt Y
d
y =20 - gy

and we work in the same way as above to obtain the analogue of
Lanchester’s Square Law for a guerilla combat. Hence, we have:

y'  —Bx(y) y' B

X Ax(y®) x A

so that
- dy dy B
Y _ac WY _ YYD _
x,_g_dx:adx_A:aAdy—de
dt
:Afdy

=dex$Ay+Cl=Bx+CZ$Ay—BxEC

where C is a constant. Thus, a stalemate (equilibrium) occurs if C = 0 &
B

Ay = Bx & % ==
When each side is visible to the other, and every fighter on each side can
fire on any opponent, the loss rate on one side is proportional to the
number of opponents firing, that is, x' = —Ay(t) and y' = —Bx(t), and
this leads to the quadratic “square law” for “equality of fighting strength”
(i.e., the condition under which neither side wins), namely, Ay? = Bx?2.
However, when each side is invisible to the other (since guerillas, or
“insurgents,” strike at a time and place of their own choosing and then
disappear), and each fires into the area that is believed to be occupied by
the other, the loss rate on one side is proportional to the number of fighters
on the other and to the number of fighters occupying the area under fire,
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so that x" = —Ax(t)y(t) and y' = —Bx(t)y(t), and this leads to the
“linear law” for equilibrium (i.e., equality of fighting strength), namely,
Ay = Bx.

Moreover, Lanchester’s differential equations are the basis for the
application of the slightly more complex Deitchman’s law of mixed
combat, which enables the simulation of the combat dynamics of
qualtitatively different opponents x and y, such as the warfare of two
adversaries in guerilla and conventional combat: this problem can be
solved by a combination of quadratic and linear laws.

Model III: Mixed Guerilla-Conventional Combat (e.g., Vietnam War):

d
X' = ’; (tt) = —Ax(t)y(D)
d
y' = %t) = —Bx(t)

where y is the conventional force (out in the open), and x is the guerilla
force (hard to find); and we work in the same way as above to obtain the
analogue of Lanchester’s Square Law for a mixed guerilla-conventional
combat. Hence, we have:

y' —Bx(t) y B

X SAx(y®) x Ay(D)

dy
y @ _dy _dy B y?
F:g—i:ﬁz§=m:Afydy=dex:A7+C1
dt
=Bx+C,=>Ay>—2Bx=C
where C is a constant. Therefore, y wins if C > 0, x wins if C < 0, and a
stalemate (equilibrium) occurs if C = 0 & Ay? = 2Bx. In the history of
war, this type of combat is also known under the terms
“counterinsurgency” and ‘“‘counter-revolutionary” operations, and its
history has been thoroughly studied by Joseph MacKay in his book The
Counterinsurgent Imagination (Cambridge: Cambridge University Press,
2023), and, in this type of war, information asymmetry is of paramount
importance in determining the outcome of war.

Arms Race Models:
Richardson’s Methodology

One manifestation of tension between nations is the existence of an arms
race. In the context of an arms race, each nation responds, in some fashion,
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to any increase in the military capabilities of the opposing nation. The
pioneer in mathematical theorizing about arms races was the English
mathematician, physicist, and psychologist Lewis Fry Richardson (1881—
1953). In developing his model of arms races, Richardson relied on three
basic assumptions: (i) In an armaments race between two countries, each
country attempts to increase its armaments proportionately to the size of
the armaments of the other. (ii) The burden of armaments upon the
economy of the country imposes a restraint upon further expenditures, and
this restraint is proportional to the size of the existing force. (iii) A nation
would procure arms, guided either by ambition, grievances, hostility, or
the need to maintain internal order, even if no other nation posed a threat.
The aforementioned three assumptions yield the following pair of linear
differential equations, which summarize a two-nation arms race:

My =kMg —aM, +g 1)
Mg =IM, —bMg + h 2)
where: M; and Mg denote the rates of change in the arms stocks (or
military budgets) of nations A and B, represented by M, and My,
respectively; k and [ are “response” coefficients; k (resp. !) indicates the
influence of B’s (resp. A’s) total arms stock on the increase in A’s (resp.
B’s) arms, and this influence is assumed to be positive, meaning that the
higher the level of B’s (resp. A’s) weapons stocks the greater the increase
in A’s (resp. B’s) weapons stocks will be; the coefficients a and b are
“fatigue” factors indicating the damping effects on the arms race of the
economic burden of maintaining the present level of armaments, and this
effect is expressed as a proportion (a,b) of the present arms stocks
(M4, Mg); and, finally, the constants g and h denote “grievance” and
“minimal security,” summarizing the contribution to increased armaments
of basic hostility between the opposing nations as well as the influence of
the need to maintain internal order.

Given the above definitions, the differential equation (1) means that the
change in A’s level of armaments (i.e., M) is equal to a certain proportion
(k) of B’s arms stocks (i.e., Mz) minus a certain amount due to economic
constraints (aM,) plus an amount reflecting grievances and hostility; and a
similar interpretation holds for the differential equation (2).

Richardson wanted to determine whether the arms race would reach an
equilibrium, and, if so, if this equilibrium would be stable. In an arms race
model, an equilibrium is a point at which neither side has any reason to
further increase or decrease its stock of arms. In terms of the differential
equations (1) and (2), an equilibrium occurs when both derivatives are
equal to zero, that is, when

My, =Mg =0, 3)
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and the simultaneous equations (1) and (2) can then be solved to find the
equilibrium point. An equilibrium point is said to be stable if and only if
any movements away from the equilibrium (for whatever reason) are
followed by movements back to the equilibrium. Therefore, an arms race
reaches a stable equilibrium if neither side has an incentive to icrease its
arms stock, and, should there be a movement away from the equilibrium,
the equilibrium is soon recovered. Mathematically, in this arms race
model, the equilibrium point is stable if and only if

kl < ab, 4
that is, if and only if the product of the response coefficients is less than
the product of the fatigue coefficients (the political interpretation of
condition (4) is that the nations’ collective fatigue must overwhelm their
joint defense competition).

Notice that, since the differential equations (1) and (2) are linear, they can
be represented by a pair of straight lines whose intersection will be the
equilibrium point, satisfying condition (3). The stability condition (4) will
be satisfied whenever the slope of My = 0 is less than the slope of M =
0.

Elementary Ballistics

Ballistics (i.e., the field of mechanics concerned with the launching, flight
behavior, and impact effects of projectiles) was put in a rigorous
mathematical context by Isaac Newton, Johann Bernoulli, and Euler. The
main problem of exterior ballistics is to determine the trajectory of a
projectile launched from a cannon with a given angle and a given velocity.
The differential equation of motion involves the gravity g, the velocity v
of the projectile, the tangent inclination 6 of the projectile, and the air
resistance F (v), which is an unknown function of v; namely:

gd(vcos@) = vF(v)do
(if F(v) = 0, that is, if we ignore air resistance, then we obtain a parabolic
trajectory; but the actual trajectory is calculated for a given non-zero
F(v)).
If we ignore air resistance, then the distance travelled by a bullet is given
by the formula

2h
g

where v, is the initial velocity of the bullet, h is the height from which the
bullet is fired, and g is the acceleration due to gravity. If this formula
incorporates drag (or resistance), then it becomes

X =,
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CpAv?2t?

2m
where C is the drag coefficient of the bullet (a dimensionless quantity that
quantifies the drag of the bullet in its environment, and, understandably,
the shape of an object has a very significant effect on the amount of drag),
p is the air density, A is the area of the bullet, t is the time of flight, and m
is the mass of the bullet.
Remark: The “drag force” of an object as it moves through a fluid is given
by

X = vyt —

Fy= s pv?CA & ¢ = —8
= — L3 =
a=75pPY pv2A
where F; is the drag force (measured in newtons), p denotes density
(kg/m3), v denotes velocity (m/sec), C denotes the drag coefficient, and

A denotes the frontal cross-sectional area (m?).

Business Cycles and Economic Growth

By the term “Gross Domestic Product,” we mean the total monetary value
of all final goods and services produced (and sold on the market) within a
country during a period of time (typically one year). The formula for
calculating Gross Domestic Product (GDP) is the following:
GDP = private consumption + gross private investment

+ government investment

+ government spending + (exports — imports)
and the term “gross” indicates that products are counted regardless of their
subsequent use (a product can be used for consumption, for investment, or
to replace an asset). Nominal GDP uses current prices in its measure. Real
GDP is an inflation-adjusted measure of the total monetary value of all
final goods and services produced (and sold on the market) within a
country during a period of time (typically one year):

Real GDP = Nominal GDP

ed " GDP Deflator
(for instance, if an economy’s prices have increased by 1% since the base
year that is used in order to calculate the Real GDP, then the GDP Deflator

is equal to 1.01). If Y (¢) is the current state of GDP, then d};—(tt) is the rate

of change of Y (¢) with respect to time t (i.e., the “growth rate”).

The Harrod—Domar model was developed independently by the English
economist Sir Roy Harrod and the Russian-American economist Evsey
Domar in order to analyze business cycles, and it was used in order to
explain an economy’s growth rate through savings and capital
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productivity. Growth is measured in terms of GDP, and, according to the
Harrod—Domar model, savings (denoted by S) lead to investment (denoted
by I), so that S = I, investment leads to changes in capital stock (denoted
by AK), so that I = AK, and the capital-output ratio is constant, so that the

ratio §= c is constant, and then Z—I; = ¢ (meaning that the marginal

product of capital is constant and equal to the average product of capital).
Hence, this model postulates that the output growth rate is given by the
differential equation

1dY(¢t) 5

Y dr ¢
where s denotes the savings rate, 6 denotes the rate of depreciation of

capital stock, and c is the aforementioned constant (marginal product of
capital). The solution

Y(t) = Ypelbe-ot
demonstrates that increasing investment through savings and productivity
boosts economic growth.
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Nicolas Laos’s Photographs with Other
Scientists and Philosophers

With my mathematics mentor Professor Themistocles M. Rassias (former
Chairman of the Department of Mathematics at the University of La
Verne’s Athens Campus and Professor at the National Technical
University of Athens). Professor Th. M. Rassias has received several
awards, and he is an active member of an array of journals in mathematical
analysis and optimization. His work extends over several fields of
mathematical analysis, and he has published numerous research papers and
research books on nonlinear functional analysis, functional equations,
approximation theory, analysis on manifolds, calculus of variations,
inequalities, and metric geometry. Professor Th. M. Rassias’s research
work is known in the field of mathematical analysis with the terms
“Hyers—Ulam—Rassias stability (of functional equations)” and “Cauchy—
Rassias stability,” and in geometry with the term “Aleksandrov—Rassias
problem (for isometric mappings).” Moreover, Professor Th. M. Rassias
has conducted pioneering research in the Morse theory of critical points
and in the study of Plateau’s problem (i.e., the problem of determining the
surfaces of minimum area spanned in a given curve or subject to other
boundary conditions), modifying Marston Morse’s critical point theory in
order to solve Plateau’s problem.
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With Professor Svetoslav Jordanov Bilchev (former Chairman of the
Department of Algebra and Geometry at the “Angel Kanchev” University
of Ruse), at whose invitation, I addressed the Fifth International
Conference on Differential Equations and Applications held in Ruse,
Bulgaria, 24-29 August 1995. Professor S. J. Bilchev (1946-2010)
received several awards, and his research interests included
geometry/differential geometry, differential equations, inequalities, game
theory, and mathematical models in economics. I cooperated with
Professor S. J. Bilchev in the fields of differential equations and topology,
and some results of our joint work have been published by the Union of
Bulgarian Mathematicians and have been presented at mathematical
conferences in Ruse and Kazanlak.
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With Professor Stepan Tersian (faculty member of the Department of
Mathematics at the “Angel Kanchev” University of Ruse and member of
the Institute of Mathematics and Informatics at the Bulgarian Academy of
Sciences). Professor S. Tersian and Professor S. J. Bilchev were the
editors of the Proceedings of the Fifth International Conference on
Differential Equations and Applications held in Ruse, Bulgaria, 24-29
August 1995, published by the “Angel Kanchev” University of Ruse and
the Union of Bulgarian Mathematicians. The aforementioned volume of
proceedings includes my research paper “A Comparative Study of Linear
and Nonlinear Differential Equations with Applications.”
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ro—————
With Professor Stojan Chernev (faculty member of the Center of Applied
Mathematics and Informatics at the “Angel Kanchev” University of Ruse).
At the University of Ruse, I had the opportunity to investigate various
problems by means of dynamical systems, that is, expressions of the form

d - 2> - 3

TX= f(x, t,u,b’)
where: t denotes time; the vector X represents the state of the system, and
it consists of the minimal set of variables (x;, x;, X3, ...) that are needed in

order to describe the system under consideration; the vector field j? , called
the “dynamics,” is a set of functions (fi,f5,f5,...) that describe the
dynamics of the corresponding states of the system (so that the time
derivative of x; will be given by the first-row equation f;, the time
derivative of x, will be given by the second-row equation f;, etc.); the
vector U denotes all the variables over which we have active control (i.e.,
variables that we can manipulate in order to change the behavior of the
system); and the vector ,[3 denotes the system’s parameters over which we
do not explicitly have control, but which are important in order to
understand the corresponding dynamical system (and big changes in the E
parameters may give rise to big changes in the system’s behavior, called
“bifurcations,” meaning that curves may branch, or “bifurcate,” at a
critical point of the corresponding function, so that two or more values of
y may be possible for a single value of x).
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From right to left, with: Professor Ruslan Mitkov (Research Professor at
the Institute of Mathematics of the Bulgarian Academy of Sciences),
Professor Myron Grammatikopoulos (Professor of Mathematics at the
University of Ioannina, Greece, and Visiting Professor of Mathematics at
the “Angel Kanchev” University of Ruse, Bulgaria), Professor Emiliya
Velikova (Professor of Mathematics at the “Angel Kanchev” University of
Ruse), and Ms R. Gatzova (Secretary, Center of Applied Mathematics and
Informatics at the “Angel Kanchev” University of Ruse).
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With the President of the University of La Verne, California, Dr. Stephen
C. Morgan (first on the left) and other senior board members of the
University of La Verne, 1996. During my studies at the University of La
Verne, while majoring in Mathematics, I also conducted interdisciplinary
studies, which underpinned my subsequent further studies and work in the
fields of interdisciplinary mathematics and epistemology. During my
studies at the University of La Verne, while majoring in Mathematics, I
also conducted interdisciplinary studies, which underpinned my
subsequent further studies and work in the fields of interdisciplinary
mathematics and epistemology.
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With my philosophy mentor Professor Giuliano Di Bernardo, who held the
Chair of Philosophy of Science and Logic at the Faculty of Sociology of
the Universita degli Studi di Trento from 1979 until 2010, and he is a
member of the Académie Internationale de Philosophie des Sciences.
Apart from the field of academic philosophy, my cooperation with
Professor Giuliano Di Bernardo includes work in the context of the
Dignity Order, an international private exclusive membership association
of which Professor Giuliano Di Bernardo is the Founder and Grand
Master, with the goal of promoting the dignity of humanity. Prof. Di
Bernardo personally inducted me into the Dignity Order and bestowed
upon me the titles of a Knight and a Grand Prior of the Dignity Order.
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Sardinia, Italy, 2023; a convocation of the Knights and the Dames of
Dignity in Orosei: Based on, and in line with, the teachings and honors
that I have received from Professor Giuliano Di Bernardo in the context of
the Dignity Order (on the left), and using Freemasonry as an instrument
and a symbolic technology for accomplishing my projects (totally
detached from the profound degeneration that mainstream contemporary
Freemasonries have suffered), I manage a unique and exclusive,
autonomous Masonic association of literati (on the right) in order to
operate as a guild of rigorously educated men and women who share and
serve concrete epistemological, moral, aesthetic, and ideological values,
principles, and visions, as well as in order to preserve and promote the
concept and the value of the Homo universalis and to operate as a
custodian of sophisticated and complex knowledge. My initiative to create
a new, genuinely philosophically informed, intellectually significant, and
historically relevant Freemasonry from literati for literati is based on my
argument that contemplation must be rigorous and combined with action
and on my attempt to articulate a creative synthesis between various
aspects of Plato’s political theory, modern philosophy, and cybernetics.
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With Dr. Spyros Kiartzis, electrical engineer and business economist,
Director of Alternative Energy Sources and New Technologies for the
Hellenic Petroleum Group (HELLENiQ ENERGY Holdings S.A.), at an
event that I organized in December 2023 in order to present some results
of my scholarly endeavors.
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Presenting some results of my research work regarding epistemology and
mathematical modeling in the social sciences in the Ceremonial Hall of the
Rectorate of the National and Kapodistrian University of Athens (“loannis
Drakopoulos” amphitheater), in May 2022; with Dr. Stavros Mavroudeas
(Ph.D./Birkbeck College, University of London), Professor of Political
Economy at the Department of Social Policy of Panteion University in
Athens, Greece (on my right). Professor Stavros Mavroudeas’s areas of
expertise include Marxist political economy, macroeconomics, and growth
theory.
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I present part of my research work and social action as well as my
initiative to create a new Freemasonry that is scholarly rigorous,
historically responsible, and politically aware and active, according to my
training and work in the Dignity Order, at a press conference in
Thessaloniki, Greece, 2023:
https://www.thessnews.gr/thessaloniki/mathimata-tektonikis-filosofias-o-
nikolaos-laos-ypografei-ena-endiaferon-vivlio/
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Presenting my work in the scholarly discipline of epistemology based on
Giuliano Di Bernardo’s thought and publications, in the Ceremonial Hall
of the Greek Society of Writers, in Athens, in 2023; with Dr. Ioannis
Katselidis, Lecturer of History of Economic Theory at the National and
Kapodistrian University of Athens and at the Athens University of
Economics and Business (on my right). The major focus of my philosophy
is structuralism. Structuralism does not imply that a structural argument
(e.g., a theorem) should dictate anything to reality, but it implies that, due
to a valid structural argument, we have to expect that the empirical
morphology will take a particular form, and, whenever reality does not
comply with a structural argument, it simply makes the situation more
thought-provoking and intellectually challenging.
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In the Ceremonlal Hall of the Greek Society of Writers, in Athens, in
2023, having on my left the lawyer and criminologist Mrs. Christina Ch.
Florou (member of the Athens Bar Association), the biologist Dr.
Vasileios Balis (Academic Director of the Aegean College’s Thessaloniki
Campus and associate of the Center for Regenerative Medicine of the
Aristotle University of Thessaloniki), and the business consultant and
biochemist Dr. Stamatis Tournis (Managing Partner and Principal
Consultant of the Sigma Business Network, expert in the full spectrum of
operations research and risk management). An epistemology roundtable
focused on the Greek edition of Professor Giuliano Di Bernardo’s book
The Epistemological Foundation of Sociology.
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Between the distinguished Greek political journalist and analyst Mr.
Spyros Sourmelidis (on the left) and the Greek publisher and philologist
Mr. Agisilaos Kalamaras (on the right), Athens 2023. In that event, I
explained that my methodology and my mindset, in general, are inspired
by cybernetics, which cultivates an inter-disciplinary approach to
knowledge. As the renowned British polymath, cybernetics expert,
management consultant, and university professor Stafford Beer (1926—
2002) has aptly pointed out, all worthwhile thinking is underpinned by
syntheses of different fields of study. Cybernetics is an integral part of my
thought and of my arguments in favor of modernity. Whereas informatics
is a branch of engineering and applied mathematics that deals with the
study of computing and computational systems, cybernetics is a strongly
interdisciplinary field that deals with the study of systems and control,
communication, as well as information processing in living organisms and
machines. Thus, cybernetics is focused on the application of principles
from mathematics, engineering, biology, neuroscience, and social sciences
in order to understand structures and explain the behavior of complex
systems and in order to develop models for the control and regulation of
the systems under study, whereas computer science is focused on the
design, the development, and the use of software and hardware systems,
including their underlying principles, technologies, and methodologies.



